1
|
A New Insight into the Bactericidal Mechanism of 405 nm Blue Light-Emitting-Diode against Dairy Sourced Cronobacter sakazakii. Foods 2021; 10:foods10091996. [PMID: 34574108 PMCID: PMC8470084 DOI: 10.3390/foods10091996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
(1) Background: Limited evidence exists addressing the action of antimicrobial visible light against Cronobacter sakazakii. Here, we investigated the antimicrobial effects of blue-LED (light emitting diode) at 405 nm against two persistent dairy environment sourced strains of C. sakazakii (ES191 and AGRFS2961). (2) Methods: Beside of investigating cell survival by counts, the phenotypic characteristics of the strains were compared with a reference strain (BAA894) by evaluating the metabolic rate, cell membrane permeability, and ROS level. (3) Results: The two environment isolates (ES191 and AGRFS2961) were more metabolic active and ES191 showed dramatic permeability change of the outer membrane. Notably, we detected varied impacts of different ROS scavengers (catalase > thiourea > superoxide dismutase) during light application, suggesting that hydrogen peroxide (H2O2), the reducing target of catalase, has a key role during blue light inactivation. This finding was further strengthened, following the observation that the combined effect of external H2O2 (sublethal concentration) and 405 nm LED, achieved an additional 2–4 log CFU reduction for both stationary phase and biofilm cells. (4) Conclusions: H2O2 could be used in combination with blue light to enhance bactericidal efficacy and form the basis of a new hurdle technology for controlling C. sakazakii in dairy processing plants.
Collapse
|
2
|
Webster DA, Dikshit KL, Pagilla KR, Stark BC. The Discovery of Vitreoscilla Hemoglobin and Early Studies on Its Biochemical Functions, the Control of Its Expression, and Its Use in Practical Applications. Microorganisms 2021; 9:1637. [PMID: 34442716 PMCID: PMC8398370 DOI: 10.3390/microorganisms9081637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
In 1986, the surprising identification of a hemoglobin (VHb) in the bacterium Vitreoscilla greatly extended the range of taxa in which this oxygen binding protein functions. Elucidation of many of its biochemical properties and relation to overall cell physiology, as well as the sequence of the gene encoding it and aspects of control of its expression were determined in the following years. In addition, during the early years following its discovery, strategies were developed to use its expression in heterologous microbial hosts to enhance processes of practical usefulness. The VHb discovery also served as the foundation for what has become the fascinatingly rich field of bacterial hemoglobins. VHb's position as the first known bacterial hemoglobin and its extensive use in biotechnological applications, which continue today, make a review of the early studies of its properties and uses an appropriate and interesting topic thirty-five years after its discovery.
Collapse
Affiliation(s)
- Dale A. Webster
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Kanak L. Dikshit
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Krishna R. Pagilla
- Department of Civil and Environmental Engineering, University of Nevada at Reno, Reno, NV 89557, USA;
| | - Benjamin C. Stark
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
3
|
Guo Z, Tan H, Lv Z, Ji Q, Huang Y, Liu J, Chen D, Diao Y, Si J, Zhang L. Targeted expression of Vitreoscilla hemoglobin improves the production of tropane alkaloids in Hyoscyamus niger hairy roots. Sci Rep 2018; 8:17969. [PMID: 30568179 PMCID: PMC6299274 DOI: 10.1038/s41598-018-36156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023] Open
Abstract
Under hypoxic conditions, the expression of Vitreoscilla hemoglobin (VHb) in plants is proposed to increase the productivity of certain oxygen-requiring metabolic pathways by promoting the delivery of oxygen. Tropane alkaloids (TAs) are a class of important plant secondary metabolites with significant medicinal value; the final step in their biosynthesis requires oxygen. Whether heterologous expression of VHb, especially in different subcellular compartments, can accelerate the accumulation of TAs is not known. Herein, the effect of heterologous expression of VHb in different subcellular locations on the TA profile of H. niger hairy roots was investigated. The targeted expression of VHb in the plastids (using pVHb-RecA construct), led to the accumulation of 197.68 μg/g hyoscyamine in the transgenic H. niger hairy roots, which was 1.25-fold of the content present in the lines in which VHb expression was not targeted, and 3.66-fold of that present in the wild type (WT) lines. The content of scopolamine was increased by 2.20- and 4.70-fold in the pVHb-RecA transgenic lines compared to that in the VHb transgenic and WT lines. Our results demonstrate that VHb could stimulate the accumulation of TAs in the transgenic H. niger hairy roots. Quantitative RT-PCR analysis revealed that the expression of key genes involved in TA biosynthesis increased significantly in the VHb transgenic lines. We present the first description of a highly efficient strategy to increase TA content in H. niger. Moreover, our results also shed light on how the production of desired metabolites can be efficiently enhanced by using more accurate and appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.,Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zongyou Lv
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Qian Ji
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuxiang Huang
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yong Diao
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China. .,Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
4
|
|
5
|
Enhancement of welan gum production in Sphingomonas sp. HT-1 via heterologous expression of Vitreoscilla hemoglobin gene. Carbohydr Polym 2017; 156:135-142. [DOI: 10.1016/j.carbpol.2016.08.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
|
6
|
Pan H, Xu J, Kweon OG, Zou W, Feng J, He GX, Cerniglia CE, Chen H. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes. J Ind Microbiol Biotechnol 2015; 42:745-57. [PMID: 25720844 DOI: 10.1007/s10295-015-1599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes.
Collapse
Affiliation(s)
- Hongmiao Pan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079-9502, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 2015; 99:1627-36. [PMID: 25575886 DOI: 10.1007/s00253-014-6350-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Since its first use in 1990 to enhance production of α-amylase in E. coli, engineering of heterologous hosts to express the hemoglobin from the bacterium Vitreoscilla (VHb) has become a widely used strategy to enhance production of a variety of bioproducts, stimulate bioremediation, and increase growth and survival of engineered organisms. The hosts have included a variety of bacteria, yeast, fungi, higher plants, and even animals. The beneficial effects of VHb expression are presumably the result of one or more of its activities. The available evidence indicates that these include oxygen binding and delivery to the respiratory chain and oxygenases, protection against reactive oxygen species, and control of gene expression. In the past 4 to 5 years, the use of this "VHb technology" has continued in a variety of biotechnological applications in a wide range of organisms. These include enhancement of production of an ever wider array of bioproducts, new applications in bioremediation, a possible role in enhancing aerobic waste water treatment, and the potential to enhance growth and survival of both plants and animals of economic importance.
Collapse
|
8
|
Bedekar PA, Saratale RG, Saratale GD, Govindwar SP. Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to Reactive Orange 16, degradation of RO16 and evaluation of toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11075-11085. [PMID: 24888611 DOI: 10.1007/s11356-014-3041-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Lysinibacillus sp. RGS degrades sulfonated azo dye Reactive Orange 16 (RO16) efficiently. Superoxide dismutase and catalase activity were tested to study the response of Lysinibacillus sp. RGS to the oxidative stress generated by RO16. The results demonstrated that oxidative stress enzymes not only protect the cell from oxidative stress but also has a probable role in decolorization along with an involvement of oxidoreductive enzymes. Formation of three different metabolites after degradation of RO16 has been confirmed by GC-MS analysis. FTIR analysis verified the degradation of functional groups of RO16, and HPTLC confirmed the removal of auxochrome group from the RO16 after degradation. Toxicity studies confirmed the genotoxic, cytotoxic, and phytotoxic nature of RO16 and the formation of less toxic products after the treatment of Lysinibacillus sp. RGS. Therefore, Lysinibacillus sp. RGS has a better perspective of bioremediation for textile wastewater treatment.
Collapse
Affiliation(s)
- Priyanka A Bedekar
- Department of Biotechnology, Shivaji University, Kolhapur, 416004, India
| | | | | | | |
Collapse
|
9
|
Erenler SO, Geckil H. Effect of Vitreoscilla Hemoglobin and Culture Conditions on Production of Bacterial l-Asparaginase, an Oncolytic Enzyme. Appl Biochem Biotechnol 2014; 173:2140-51. [DOI: 10.1007/s12010-014-1016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
|
10
|
Potential probiotic Escherichia coli 16 harboring the Vitreoscilla hemoglobin gene improves gastrointestinal tract colonization and ameliorates carbon tetrachloride induced hepatotoxicity in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:213574. [PMID: 25050329 PMCID: PMC4090500 DOI: 10.1155/2014/213574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023]
Abstract
The present study describes the beneficial effects of potential probiotic E. coli 16 (pUC8:16gfp) expressing Vitreoscilla hemoglobin (vgb) gene, associated with bacterial respiration under microaerobic condition, on gastrointestinal (GI) colonization and its antioxidant activity on carbon tetrachloride (CCl4) induced toxicity in Charles Foster rats. In vitro, catalase activity in E. coli 16 (pUC8:16gfp) was 1.8 times higher compared to E. coli 16 (pUC-gfp) control. In vivo, E. coli 16 (pUC8:16gfp) not only was recovered in the fecal matter after 70 days of oral administration but also retained antibacterial activities, whereas E. coli 16 (pUC-gfp) was not detected. Oral administration of 200 and 500 μL/kg body weight of CCl4 to rats at weekly interval resulted in elevated serum glutamyl pyruvate transaminase (SGPT) and serum glutamyl oxalacetate transaminase (SGOT) levels compared to controls. Rats prefed with E. coli 16 (pUC8:16gfp) demonstrated near to normal levels for SGPT and SGOT, whereas the liver homogenate catalase activity was significantly increased compared to CCl4 treated rats. Thus, pUC8:16gfp plasmid encoding vgb improved the growth and GI tract colonization of E. coli 16. In addition, it also enhanced catalase activity in rats harboring E. coli 16 (pUC8:16gfp), thereby preventing the absorption of CCl4 to GI tract.
Collapse
|
11
|
Pandey S, Singh A, Kumar P, Chaudhari A, Nareshkumar G. Probiotic Escherichia coli CFR 16 producing pyrroloquinoline quinone (PQQ) ameliorates 1,2-dimethylhydrazine-induced oxidative damage in colon and liver of rats. Appl Biochem Biotechnol 2014; 173:775-86. [PMID: 24718737 DOI: 10.1007/s12010-014-0897-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/30/2014] [Indexed: 01/10/2023]
Abstract
Inflammation of the gastrointestinal tract is associated with reactive oxygen species (ROS) genesis. Alleviation of oxidative stress is achieved by using antioxidants and probiotics. Present study investigates a synergistic effect of the probiotic Escherichia coli CFR 16 containing Vitreoscilla haemoglobin gene (vgb), green fluorescent protein (gfp) gene and pyrroloquinoline quinone (pqq) gene cluster on oxidative stress induced by 1,2-dimethylhydrazine (DMH). Adult virgin Charles foster male rats (3-4 months) weighing 200-250 g were administered with DMH (25 mg/kg body weight, s.c.) twice a week for eight consecutive weeks. Rats receiving only DMH dose showed increased lipid peroxidation in liver and intestinal tissues with reduced activity of antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Oral dose of E. coli CFR 16::vgb-gfp harbouring pqq gene cluster increased rat faecal PQQ concentration by twofold, reduced lipid peroxidation and retained SOD, CAT and GPx activities close to normal levels in liver and colonic tissues following DMH treatment. In addition, significant protection was found in colonic histological sections of these rat groups. This study demonstrates a protective efficacy in the following order: E. coli CFR 16 < E. coli CFR 16::vgb-gfp < vitamin C = PQQ < E. coli CFR 16::vgb-gfp (pqq).
Collapse
Affiliation(s)
- Sumeet Pandey
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | | | | | | | | |
Collapse
|
12
|
Zhang Y, Meng D, Wang Z, Guo H, Wang Y, Wang X, Dong X. Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. JOURNAL OF HAZARDOUS MATERIALS 2012; 229-230:434-8. [PMID: 22704773 DOI: 10.1016/j.jhazmat.2012.05.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 05/25/2023]
Abstract
Rhodobacter sphaeroides W16 and Acinetobacter lwoffii DNS32 which were isolated from soil in cold area subjected to a long-term atrazine application in Heilongjiang Province (China) can degrade atrazine efficiently. The investigation of their antioxidant properties will be useful for bioremediation and engineering applications of atrazine-degrading bacteria. Superoxide dismutase (SOD) and catalase (CAT) from two atrazine-degrading bacteria and one non-atrazine-degrading bacterium were tested for response to the oxidative stress caused by atrazine. Atrazine produced a greater inhibition of growth in Bacillus subtilis B19. The three bacteria apparently produced two activity peaks of SOD and CAT. The results demonstrated all three bacteria possessed a mechanism for atrazine tolerance that may include controlling the cellular redox balance by producing reactive oxygen species (ROS) and the subsequent scavenging of the ROS, but such response was more rapid and at lower levels in the two atrazine-degrading bacteria, suggesting less oxidative damage in these cells upon atrazine exposure. Compared to B. subtilis B19, atrazine-degrading bacteria had relatively high tolerance to atrazine stress, especially R. sphaeroides W16. Therefore, R. sphaeroides W16 and A. lwoffii DNS32 have a good application prospect of bioremediation project for soil contaminated by atrazine in cold area in Heilongjiang Province.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Recombinant E. coli expressing Vitreoscilla haemoglobin prefers aerobic metabolism under microaerobic conditions: A proteome-level study. J Biosci 2012; 37:617-33. [DOI: 10.1007/s12038-012-9245-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Zhang Y, Meng D, Wang Z, Guo H, Wang Y. Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiol Lett 2012; 334:95-101. [PMID: 22724442 DOI: 10.1111/j.1574-6968.2012.02625.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/08/2012] [Accepted: 06/17/2012] [Indexed: 11/30/2022] Open
Abstract
Bacteria are present extensively in the environment. Investigation of their antioxidant properties will be useful for further study on atrazine stress tolerance of bacteria and the defense mechanism of antioxidant enzymes against atrazine or other triazine herbicides. Superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and total antioxidant capacity (T-AOC) from one Gram-negative representative strain Escherichia coli K12 and one Gram-positive representative strain Bacillus subtilis B19, respectively, were tested for response to atrazine stress. The results indicated that SOD, CAT, GST and T-AOC were induced upon exposure to atrazine. The growth of two bacteria was better in the absence than in the presence of atrazine, indicating that atrazine can decrease bacterial growth. The changes of enzyme activities indicate the presence of oxidative stress. Oxidative stress induced by atrazine may be due to imbalance of redox potential in bacterial cells, which leads to bacterial metabolic disorder.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & the Environment, Northeast Agricultural University, Harbin, China.
| | | | | | | | | |
Collapse
|
15
|
Kahraman H, Aytan E, Kurt AG. Production of methionine γ- lyase in recombinant Citrobacter freundii bearing the hemoglobin gene. BMB Rep 2011; 44:590-4. [DOI: 10.5483/bmbrep.2011.44.9.590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Further investigation of the mechanism of Vitreoscilla hemoglobin (VHb) protection from oxidative stress in Escherichia coli. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0099-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Stark BC, Dikshit KL, Pagilla KR. Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla. Biotechnol Lett 2011; 33:1705-14. [DOI: 10.1007/s10529-011-0621-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
|
18
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
19
|
Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochem J 2010; 426:271-80. [DOI: 10.1042/bj20091417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacterial haemoglobin from Vitreoscilla, VHb, displays several unusual properties that are unique among the globin family. When the gene encoding VHb, vgb, is expressed from its natural promoter in either Vitreoscilla or Escherichia coli, the level of VHb increases more than 50-fold under hypoxic conditions and decreases significantly during oxidative stress, suggesting similar functioning of the vgb promoter in both organisms. In the present study we show that expression of VHb in E. coli induced the antioxidant genes katG (catalase–peroxidase G) and sodA (superoxide dismutase A) and conferred significant protection from oxidative stress. In contrast, when vgb was expressed in an oxyR mutant of E. coli, VHb levels increased and the strain showed high sensitivity to oxidative stress without induction of antioxidant genes; this indicates the involvement of the oxidative stress regulator OxyR in mediating the protective effect of VHb under oxidative stress. A putative OxyR-binding site was identified within the vgb promoter and a gel-shift assay confirmed its interaction with oxidized OxyR, an interaction which was disrupted by the reduced form of the transcriptional activator Fnr (fumurate and nitrate reductase). This suggested that the redox state of OxyR and Fnr modulates their interaction with the vgb promoter. VHb associated with reduced OxyR in two-hybrid screen experiments and in vitro, converting it into an oxidized state in the presence of NADH, a condition where VHb is known to generate H2O2. These observations unveil a novel mechanism by which VHb may transmit signals to OxyR to autoregulate its own biosynthesis, simultaneously activating oxidative stress functions. The activation of OxyR via VHb, reported in the present paper for the first time, suggests the involvement of VHb in transcriptional control of many other genes as well.
Collapse
|
20
|
Kurt AG, Aytan E, Ozer U, Ates B, Geckil H. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J 2009; 4:1077-88. [PMID: 19585534 DOI: 10.1002/biot.200900130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Given the well-established beneficial effects of Vitreoscilla hemoglobin (VHb) on heterologous organisms, the potential of this protein for the production of L-DOPA and dopamine in two bacteria, Citrobacter freundii and Erwinia herbicola, was investigated. The constructed recombinants bearing the VHb gene (vgb(+)) had substantially higher levels of cytoplasmic L-DOPA (112 mg/L for C. freundii and 97 mg/L for E. herbicola) than their respective hosts (30.4 and 33.8 mg/L) and the vgb(-) control strains (35.6 and 35.8 mg/L). Further, the vgb(+) recombinants of C. freundii and E. herbicola had 20-fold and about two orders of magnitude higher dopamine levels than their hosts, repectively. The activity of tyrosine phenol-lyase, the enzyme converting L-tyrosine to L-DOPA, was well-correlated to cytoplasmic L-DOPA levels. As cultures aged, higher tyrosine phenol-lyase activity of the vgb(+) strains was more apparent.
Collapse
|
21
|
Shao T, Yuan H, Yan B, Lü Z, Min H. Antioxidant enzyme activity in bacterial resistance to nicotine toxicity by reactive oxygen species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:456-462. [PMID: 19294456 DOI: 10.1007/s00244-009-9305-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 02/24/2009] [Indexed: 05/27/2023]
Abstract
We analyzed superoxide dismutase (SOD), catalase (CAT), and ATPase activities in the highly nicotine-degrading strain Pseudomonas sp. HF-1 and two standard strains Escherichia coli and Bacillus subtilis in an attempt to understand antioxidant enzymes in bacteria are produced in response to nicotine, which increases the virulence of the bacteria. Nicotine had different effects on different antioxidant enzymes of different bacteria. SOD plays a more important role in resistance to nicotine stress in E. coli than it does in CAT. Multiple antioxidant enzymes are involved in combating oxidative stress caused by nicotine in Pseudomonas sp. HF-1. The contribution of a particular antioxidant enzyme for protection from nicotine stress varies with the growth phase involved. The inhibition of ATPase in Pseudomonas sp. HF-1 at the stationary phase was enhanced with increasing nicotine concentration, showing a striking dose-response relationship. Nicotine probably affected the metabolism of ATP to some extent. Furthermore, different bacteria possessed distinct SOD isoforms to cope with oxidative stress caused by nicotine.
Collapse
Affiliation(s)
- Tiejuan Shao
- College of Life Science, Zhejiang University, Zi Jin Gang Campus, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Geckil H, Gencer S, Ates B, Ozer U, Uckun M, Yilmaz I. Effect of Vitreoscilla hemoglobin on production of a chemotherapeutic enzyme, L-asparaginase, by Pseudomonas aeruginosa. Biotechnol J 2006; 1:203-8. [PMID: 16892249 DOI: 10.1002/biot.200500048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The production of L-asparaginase, an enzyme widely used in cancer chemotherapy, is mainly regulated by carbon catabolite repression and oxygen. This study was carried out to understand how different carbon sources and Vitreoscilla hemoglobin (VHb) affect the production of this enzyme in Pseudomonas aeruginosa and its VHb-expressing recombinant strain (PaJC). Both strains grown with various carbon sources showed a distinct profile of the enzyme activity. Compared to no carbohydrate supplemented medium, glucose caused a slight repression of L-asparaginase in P. aeruginosa, while it stimulated it in the PaJC strain. Glucose, regarded as one of the inhibitory sugars for the production L-asparaginase by other bacteria, was determined to be the favorite carbon source compared to lactose, glycerol and mannitol. Furthermore, contrary to common knowledge of oxygen repression of L-asparaginase in other bacteria, oxygen uptake provided by VHb was determined to even stimulate the L-asparaginase synthesis by P. aeruginosa. This study, for the first time, shows that in P. aeruginosa utilizing a recombinant oxygen uptake system, VHb, L-asparaginase synthesis is stimulated by glucose and other carbohydrate sources compared to the host strain. It is concluded that carbon catabolite and oxygen repression of L-asparaginase in fermentative bacteria is not the case for a respiratory non-fermentative bacterium like P. aeruginosa.
Collapse
Affiliation(s)
- Hikmet Geckil
- Department of Biology, Inonu University, Malatya 44280, Turkey.
| | | | | | | | | | | |
Collapse
|
24
|
Suwanwong Y, Kvist M, Isarankura-Na-Ayudhya C, Tansila N, Bulow L, Prachayasittikul V. Chimeric antibody-binding Vitreoscilla hemoglobin (VHb) mediates redox-catalysis reaction: new insight into the functional role of VHb. Int J Biol Sci 2006; 2:208-15. [PMID: 16967102 PMCID: PMC1560407 DOI: 10.7150/ijbs.2.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022] Open
Abstract
Experimentation was initiated to explore insight into the redox-catalysis reaction derived from the heme prosthetic group of chimeric Vitreoscilla hemoglobin (VHb). Two chimeric genes encoding chimeric VHbs harboring one and two consecutive sequences of Fc-binding motif (Z-domain) were successfully constructed and expressed in E. coli strain TG1. The chimeric ZVHb and ZZVHb were purified to a high purity of more than 95% using IgG-Sepharose affinity chromatography. From surface plasmon resonance, binding affinity constants of the chimeric ZVHb and ZZVHb to human IgG were 9.7 x 107 and 49.1 x 107 per molar, respectively. More importantly, the chimeric VHbs exhibited a peroxidase-like activity determined by activity staining on native PAGE and dot blotting. Effects of pH, salt, buffer system, level of peroxidase substrate and chromogen substrate were determined in order to maximize the catalytic reaction. From our findings, the chimeric VHbs displayed their maximum peroxidase-like activity at the neutral pH (~7.0) in the presence of high concentration (20-40 mM) of hydrogen peroxide. Under such conditions, the detection limit derived from the calibration curve was at 250 ng for the chimeric VHbs, which was approximately 5-fold higher than that of the horseradish peroxidase. These findings reveal the novel functional role of Vitreoscilla hemoglobin indicating a high trend of feasibility for further biotechnological and medical applications.
Collapse
Affiliation(s)
- Yaneenart Suwanwong
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Malin Kvist
- 2. Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | - Natta Tansila
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Leif Bulow
- 2. Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Virapong Prachayasittikul
- 1. Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
te Biesebeke R, Boussier A, van Biezen N, Braaksma M, van den Hondel CAMJJ, de Vos WM, Punt PJ. Expression ofAspergillus hemoglobin domain activities inAspergillus oryzae grown on solid substrates improves growth rate and enzyme production. Biotechnol J 2006; 1:822-7. [PMID: 16927259 DOI: 10.1002/biot.200600036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
DNA fragments coding for hemoglobin domains (HBD) were isolated from Aspergillus oryzae and Aspergillus niger. The HBD activities were expressed in A. oryzae by introduction of HBD gene fragments under the control of the promoter of the constitutively expressed gpdA gene. In the transformants, oxygen uptake was significantly higher, and during growth on solid substrates the developed biomass was at least 1.3 times higher than that of the untransformed wild-type strain. Growth rate of the HBD-activity-producing strains was also significantly higher compared to the wild type. During growth on solid cereal substrates, the amylase and protease activities in the extracts of the HBD-activity-producing strains were 30-150% higher and glucoamylase activities were at least 9 times higher compared to the wild-type strain. These results suggest that the Aspergillus HBD-encoding gene can be used in a self-cloning strategy to improve biomass yield and protein production of Aspergillus species.
Collapse
Affiliation(s)
- Rob te Biesebeke
- Wageningen Center for Food Sciences (WCFS), Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Geckil H, Barak Z, Chipman DM, Erenler SO, Webster DA, Stark BC. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst Eng 2005; 26:325-30. [PMID: 15309606 DOI: 10.1007/s00449-004-0373-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microbial production of butanediol and acetoin has received increasing interest because of their diverse potential practical uses. Although both products are fermentative in nature, their optimal production requires a low level of oxygen. In this study, the use of a recombinant oxygen uptake system on production of these metabolites was investigated. Enterobacter aerogenes was transformed with a pUC8-based plasmid carrying the gene (vgb) encoding Vitreoscilla (bacterial)hemoglobin (VHb). The presence of vgb and production of VHb by this strain resulted in an increase in viability from 72 to 96 h in culture, but no overall increase in cell mass. Accumulation of the fermentation products acetoin and butanediol were enhanced (up to 83%) by the presence of vgb/VHb. This vgb/VHb related effect appears to be due to an increase of flux through the acetoin/butanediol pathway, but not at the expense of acid production.
Collapse
Affiliation(s)
- Hikmet Geckil
- Department of Biology, Inonu University, Malatya 44069, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Geckil H, Arman A, Gencer S, Ates B, Yilmaz HR. Vitreoscilla hemoglobin renders Enterobacter aerogenes highly susceptible to heavy metals. Biometals 2004; 17:715-23. [PMID: 15689114 DOI: 10.1007/s10534-004-1216-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
When expressed in heterologous microorganisms Vitreoscilla hemoglobin (VHb) acts as oxygen storage and causes a higher oxygen uptake. In this study, the effect of this protein on growth, sensitivity and antioxidant properties of Enterobacter aerogenes exposed to metal stress was investigated. The strain expressing VHb was more sensitive to mercury and cadmium as the minimal inhibitory concentration (MIC) for these metals was up to 2-fold lower in this strain than the host and the recombinant strain carrying a comparable plasmid. At lower concentrations than MIC, the metals partially limited growth and caused an inhibition proportional to metal concentration applied. The growth pattern of VHb expressing strain was also distinctly different from other two non-hemoglobin strains. The hemoglobin containing strain showed substantially higher superoxide dismuates (SOD) activity than the non-hemoglobin strains, while catalase levels were similar in all strains. All strains exposed to copper, however, showed similar MIC values, growth patterns, and SOD and catalase levels.
Collapse
Affiliation(s)
- Hikmet Geckil
- Department of Biology, Inonu University, Malatya 44069, Turkey.
| | | | | | | | | |
Collapse
|
29
|
Geckil H, Gencer S, Uckun M. Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of l-asparaginase, an enzyme used in cancer therapy. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|