1
|
Filik K, Szermer-Olearnik B, Oleksy S, Brykała J, Brzozowska E. Bacteriophage Tail Proteins as a Tool for Bacterial Pathogen Recognition-A Literature Review. Antibiotics (Basel) 2022; 11:555. [PMID: 35625199 PMCID: PMC9137617 DOI: 10.3390/antibiotics11050555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, a number of bacterial detection methods have been developed to replace time-consuming culture methods. One interesting approach is to mobilize the ability of phage tail proteins to recognize and bind to bacterial hosts. In this paper, the authors provide an overview of the current methodologies in which phage proteins play major roles in detecting pathogenic bacteria. Authors focus on proteins capable of recognizing highly pathogenic strains, such as Acinetobacter baumannii, Campylobacter spp., Yersinia pestis, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus spp., Salmonella spp., and Shigella. These pathogens may be diagnosed by capture-based detection methods involving the use of phage protein-coated nanoparticles, ELISA (enzyme-linked immunosorbent assay)-based methods, or biosensors. The reviewed studies show that phage proteins are becoming an important diagnostic tool due to the discovery of new phages and the increasing knowledge of understanding the specificity and functions of phage tail proteins.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | | | | | | |
Collapse
|
2
|
Bank NC, Singh V, Rodriguez-Palacios A. Classification of Parabacteroides distasonis and other Bacteroidetes using O- antigen virulence gene: RfbA-Typing and hypothesis for pathogenic vs. probiotic strain differentiation. Gut Microbes 2022; 14:1997293. [PMID: 35090379 PMCID: PMC8803095 DOI: 10.1080/19490976.2021.1997293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis (Pdis) is the type species for the new Parabacteroides genus, and a gut commensal of the Bacteroidetes phylum. Emerging reports (primarily based on reference strain/ATCC-8503) concerningly propose that long-known opportunistic pathogen Pdis is a probiotic. We posit there is an urgent need to characterize the pathogenicity of Pdis strain-strain variability. Unfortunately, no methods/insights exist to classify Bacteroidetes for this purpose. Herein, we developed a virulence gene-based classification system for Pdis and Bacteroidetes to facilitate pathogenic-vs-probiotic characterization. We used DNA in silico methods to develop a system based on the virulence (lipopolysaccharide/bacterial wall) 'rfbA O-antigen-synthesis gene'. We then performed phylogenetic analysis of rfbA from fourteen Pdis complete genomes (21 genes), other Parabacteroides, Bacteroidetes, and Enterobacteriaceae; and proposed a PCR-based Restriction-Fragment Length Polymorphism method. Cluster analysis revealed that Pdis can be classified into four lineages (based on gene gaps/insertions) which we designated rfbA-Types I, II, III, and IV. In context, we found 14 additional rfbA-types (I-XVIII) interspersed with numerous Bacteroidetes and pathogenic Enterobacteriaceae forming three major "rfbA-superclusters." For laboratory rfbA-Typing implementation, we developed a PCR-primer strategy to amplify Pdis rfbA genes (100%-specificity) to conduct MboII-RFLP and sub-classify Pdis. In-silico primers for other Bacteroidetes are proposed/discussed. Comparative analysis of lipopolysaccharide/lipid-A gene lpxK confirmed rfbA as highly discriminant. In conclusion, rfbA-Typing classifies Bacteroidetes/Pdis into unique clusters/superclusters given rfbA copy/sequence variability. Analysis revealed that most pathogenic Pdis strains are single-copy rfbA-Type I . The relevance of the rfbA strain variability in disease might depend on their hypothetical modulatory interactions with other O-antigens/lipopolysaccharides and TLR4 lipopolysaccharide-receptors in human/animal cells.
Collapse
Affiliation(s)
- Nicholas C. Bank
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University , Cleveland, United States
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University , Cleveland, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University , Cleveland, United States,School of Medicine, Digestive Health Research Institute, Case Western Reserve University, Cleveland, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, United States,CONTACT Alex Rodriguez-Palacios Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, United States; School of Medicine, Digestive Health Research Institute, Case Western Reserve University, Cleveland, United States; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, United States
| |
Collapse
|
3
|
Halimeh FB, Rafei R, Osman M, Kassem II, Diene SM, Dabboussi F, Rolain JM, Hamze M. Historical, current, and emerging tools for identification and serotyping of Shigella. Braz J Microbiol 2021; 52:2043-2055. [PMID: 34524650 PMCID: PMC8441030 DOI: 10.1007/s42770-021-00573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The Shigella genus includes serious foodborne disease etiologic agents, with 4 species and 54 serotypes. Identification at species and serotype levels is a crucial task in microbiological laboratories. Nevertheless, the genetic similarity between Shigella spp. and Escherichia coli challenges the correct identification and serotyping of Shigella spp., with subsequent negative repercussions on surveillance, epidemiological investigations, and selection of appropriate treatments. For this purpose, multiple techniques have been developed historically ranging from phenotype-based methods and single or multilocus molecular techniques to whole-genome sequencing (WGS). To facilitate the selection of the most relevant method, we herein provide a global overview of historical and emerging identification and serotyping techniques with a particular focus on the WGS-based approaches. This review highlights the excellent discriminatory power of WGS to more accurately elucidate the epidemiology of Shigella spp., disclose novel promising genomic targets for surveillance methods, and validate previous well-established methods.
Collapse
Affiliation(s)
- Fatima Bachir Halimeh
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Issmat I Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA
| | - Seydina M Diene
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Marc Rolain
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
4
|
In Silico Serotyping Based on Whole-Genome Sequencing Improves the Accuracy of Shigella Identification. Appl Environ Microbiol 2019; 85:AEM.00165-19. [PMID: 30709819 DOI: 10.1128/aem.00165-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria of the genus Shigella, consisting of 4 species and >50 serotypes, cause shigellosis, a foodborne disease of significant morbidity, mortality, and economic loss worldwide. Classical Shigella identification based on selective media and serology is tedious, time-consuming, expensive, and not always accurate. A molecular diagnostic assay does not distinguish Shigella at the species level or from enteroinvasive Escherichia coli (EIEC). We inspected genomic sequences from 221 Shigella isolates and observed low concordance rates between conventional designation and molecular serotyping: 86.4% and 80.5% at the species and serotype levels, respectively. Serotype determinants for 6 additional serotypes were identified. Examination of differentiation gene markers commonly perceived as characteristic hallmarks in Shigella showed high variability among different serotypes. Using this information, we developed ShigaTyper, an automated workflow that utilizes limited computational resources to accurately and rapidly determine 59 Shigella serotypes using Illumina paired-end whole-genome sequencing (WGS) reads. Shigella serotype determinants and species-specific diagnostic markers were first identified through read alignment to an in-house curated reference sequence database. Relying on sequence hits that passed a threshold level of coverage and accuracy, serotype could be unambiguously predicted within 1 min for an average-size WGS sample of ∼500 MB. Validation with WGS data from 380 isolates showed an accuracy rate of 98.2%. This pipeline is the first step toward building a comprehensive WGS-based analysis pipeline of Shigella spp. in a field laboratory setting, where speed is essential and resources need to be more cost-effectively dedicated.IMPORTANCE Shigella causes diarrheal disease with serious public health implications. However, conventional Shigella identification methods are laborious and time-consuming and can be erroneous due to the high similarity between Shigella and enteroinvasive Escherichia coli (EIEC) and cross-reactivity between serotyping antisera. Further, serotype interpretation is complicated for inexperienced users. To develop an easier method with higher accuracy based on whole-genome sequencing (WGS) for Shigella serotyping, we systematically examined genomic information of Shigella isolates from 53 serotypes to define rules for differentiation and serotyping. We created ShigaTyper, an automated pipeline that accurately and rapidly excludes non-Shigella isolates and identifies 59 Shigella serotypes using Illumina paired-end WGS reads. A serotype can be unambiguously predicted at a data processing speed of 538 MB/min with 98.2% accuracy from a regular laptop. Once it is installed, training in bioinformatics analysis and Shigella genetics is not required. This pipeline is particularly useful to general microbiologists in field laboratories.
Collapse
|
5
|
Nicolás MF, Ramos PIP, Marques de Carvalho F, Camargo DRA, de Fátima Morais Alves C, Loss de Morais G, Almeida LGP, Souza RC, Ciapina LP, Vicente ACP, Coimbra RS, Ribeiro de Vasconcelos AT. Comparative Genomic Analysis of a Clinical Isolate of Klebsiella quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 Beta-Lactamases Producer Harboring Two Drug-Resistance Plasmids from Southeast Brazil. Front Microbiol 2018; 9:220. [PMID: 29503635 PMCID: PMC5820359 DOI: 10.3389/fmicb.2018.00220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the blaKPC−2 was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings.
Collapse
Affiliation(s)
- Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | | | | | | | | - Luiz G P Almeida
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Rangel C Souza
- Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | - Ana C P Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Roney S Coimbra
- Neurogenômica, Fiocruz Institute Renê Rachou, Belo Horizonte, Brazil
| | | |
Collapse
|
6
|
Dhiviya Prabaa MS, Naveen Kumar DR, Yesurajan IF, Anandan S, Kamini W, Balaji V. Identification of nonserotypeable Shigella spp. using genome sequencing: a step forward. Future Sci OA 2017; 3:FSO229. [PMID: 29134117 PMCID: PMC5674244 DOI: 10.4155/fsoa-2017-0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/04/2022] Open
Abstract
AIM Sequencing technology has replaced conventional methods in identifying and characterizing bacterial pathogens. We characterized 23 nonserotypeable Shigella that biochemically resembled Shigella spp. using whole genome sequencing. MATERIALS & METHODS Genome sequences were analyzed using online tools based on 16S rRNA, k-mer, gyrB sequences and analysis of O-antigen arrangement was done using PATRIC database for species identification. Sequence types, plasmid types, antimicrobial resistance and virulence genes were also investigated. RESULTS The SpeciesFinder using 16S rRNA sequences identified only 74% of the isolates, whereas KmerFinder and gyrB sequence analysis identified 100% of the isolates to its species level. Antimicrobial resistance, virulence and plasmid incompatibility groups were identified in all the isolates. Sequence types were determined. CONCLUSION This study shows that whole genome sequencing approach for Shigella O-antigen analysis has greater discriminative power than other methods using different bioinformatics pipeline for identification of nonserotypeable Shigella.
Collapse
Affiliation(s)
| | | | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632 004, India
| | - Walia Kamini
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi – 110 029, India
| | - Veeraraghavan Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore – 632 004, India
| |
Collapse
|
7
|
Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Anandan S, Walia K, Veeraraghavan B. Molecular diagnosis of non-serotypeable Shigella spp.: problems and prospects. J Med Microbiol 2017; 66:255-257. [PMID: 28266285 DOI: 10.1099/jmm.0.000438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is not always possible to identify Shigella serogroups/serotypes by biochemical properties alone. Specific identification requires serotyping. Occasionally, isolates that resemble Shigella spp. biochemically, but are non-agglutinable with available antisera, have been observed. Several mechanisms have been reported to limit the efficiency of the serotyping assay. Serotype conversion is a major mechanism in Shigella spp. to escape protective host immune responses. This easy conversion through significant modification of the O-antigen backbone results in different serotypes, which makes laboratory identification difficult. Furthermore, members of the family Enterobacteriaceae are closely related and there is antigenic cross-over (intra- and inter-specific cross-reaction) which affects the agglutination reaction. The performance of the available methods for identification of non-serotypeable Shigella is discussed here, and reveals them to be non-reliable. This shows a need for an alternative method for identification and typing of Shigella spp.
Collapse
Affiliation(s)
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi 110 029, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, India
| |
Collapse
|
8
|
Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Anandan S, Veeraraghavan B. Update on: Shigella new serogroups/serotypes and their antimicrobial resistance. Lett Appl Microbiol 2016; 64:8-18. [PMID: 27783408 DOI: 10.1111/lam.12690] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/02/2023]
Abstract
Shigellosis represents a major burden of disease in developing countries. A low infectious dose allows the disease to be spread effectively. Although shigellosis is mostly a self-limiting disease, antibiotics are recommended to reduce deaths, disease symptoms and organism-shedding time. However, in India, antimicrobial resistance among the genus Shigella is more common than among any other enteric bacteria. Notably, new serotypes or subserotypes in Shigella are reported from various parts of the world. Identification of new subserotypes of Shigella spp. is becoming a major issue as these strains are nontypeable by conventional serotyping. The commercially available antisera may not cover all possible epitopes of the O lipopolysaccharide antigen of Shigella serotypes. Therefore, molecular methods which most closely approach the resolution of full serotyping are necessary to identify such strains. In addition, the knowledge of a prevalent serotype in various geographic regions may assist in formulating strategies such as the development of a vaccine to prevent infection especially when the immunity to disease is serotype specific, and to understand the disease burden caused by new Shigella serotypes.
Collapse
Affiliation(s)
| | | | - S Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - B Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
9
|
Abstract
Background Ninety-two Streptococcus pneumoniae serotypes have been described so far, but the pneumococcal conjugate vaccine introduced in the Brazilian basic vaccination schedule in 2010 covers only the ten most prevalent in the country. Pneumococcal serotype-shifting after massive immunization is a major concern and monitoring this phenomenon requires efficient and accessible serotyping methods. Pneumococcal serotyping based on antisera produced in animals is laborious and restricted to a few reference laboratories. Alternatively, molecular serotyping methods assess polymorphisms in the cps gene cluster, which encodes key enzymes for capsular polysaccharides synthesis in pneumococci. In one such approach, cps-RFLP, the PCR amplified cps loci are digested with an endonuclease, generating serotype-specific fingerprints on agarose gel electrophoresis. Methods In this work, in silico and in vitro approaches were combined to demonstrate that XhoII is the most discriminating endonuclease for cps-RFLP, and to build a database of serotype-specific fingerprints that accommodates the genetic diversity within the cps locus of 92 known pneumococci serotypes. Results The expected specificity of cps-RFLP using XhoII was 76% for serotyping and 100% for serogrouping. The database of cps-RFLP fingerprints was integrated to Molecular Serotyping Tool (MST), a previously published web-based software for molecular serotyping. In addition, 43 isolates representing 29 serotypes prevalent in the state of Minas Gerais, Brazil, from 2007 to 2013, were examined in vitro; 11 serotypes (nine serogroups) matched the respective in silico patterns calculated for reference strains. The remaining experimental patterns, despite their resemblance to their expected in silico patterns, did not reach the threshold of similarity score to be considered a match and were then added to the database. Conclusion The cps-RFLP method with XhoII outperformed the antisera-based and other molecular serotyping methods in regard of the expected specificity. In order to accommodate the genetic variability of the pneumococci cps loci, the database of cps-RFLP patterns will be progressively expanded to include new variant in vitro patterns. The cps-RFLP method with endonuclease XhoII coupled with MST for computer-assisted interpretation of results may represent a relevant contribution to the real time detection of changes in regional pneumococci population diversity in response to mass immunization programs.
Collapse
|
10
|
Tareb R, Bernardeau M, Horvath P, Vernoux JP. Rough and smooth morphotypes isolated from Lactobacillus farciminis CNCM I-3699 are two closely-related variants. Int J Food Microbiol 2015; 193:82-90. [DOI: 10.1016/j.ijfoodmicro.2014.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/27/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
11
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 895] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
12
|
Serological cross-reaction between O-antigens of Shigella dysenteriae type 4 and an environmental Escherichia albertii isolate. Curr Microbiol 2013; 67:590-5. [PMID: 23748967 DOI: 10.1007/s00284-013-0405-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
An environmental freshwater bacterial isolate, DM104, appearing as Shigella-like colonies on selective agar plates was found to show strong and specific serological cross-reactivity with Shigella dysenteriae type 4. Biochemical identification according to the analytical profile index, molecular serotyping by restriction of the amplified O-antigen gene cluster (rfb-RFLP), together with phylogenetic analysis of the 16S rRNA gene and multi-locus sequence analysis, identified the isolate as Escherichia albertii. rfb-RFLP of DM104, revealed a profile different from that of S. dysenteriae type 4. However, western blot analysis of extracted lipopolysaccharides demonstrated strong cross-reactivity with S. dysenteriae type 4 using specific monovalent antisera and a lipopolysaccharide gel banding profile similar to that of S. dysenteriae type 4. The observed O-antigen cross-reaction between an E. albertii isolate and S. dysenteriae extends our knowledge of the extent of O-antigen cross-reaction within the Escherichia/Shigella group of organisms, and offers the possibility of using DM104 and similar cross-reacting strains as shigellosis vaccine candidates.
Collapse
|
13
|
Kosek M, Yori PP, Gilman RH, Vela H, Olortegui MP, Chavez CB, Calderon M, Bao JP, Hall E, Maves R, Burga R, Sanchez GM. Facilitated molecular typing of Shigella isolates using ERIC-PCR. Am J Trop Med Hyg 2012; 86:1018-25. [PMID: 22665611 DOI: 10.4269/ajtmh.2012.11-0671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To evaluate the performance of enterobacterial repetitive intergenic sequence-based polymerase chain reaction (ERIC-PCR) typing versus the current standard for the typing of Shigella pulsed gel electrophoresis (PFGE), we typed 116 Shigella isolates from a village in an endemic setting over a 20-month period using both methods. PFGE identified 37 pulse types and had a discrimination index of 0.925 (95% confidence interval = 0.830-1.00), whereas ERIC-PCR identified 42 types and had a discrimination index of 0.961 (95% confidence interval = 0.886-1.00). PFGE and ERIC-PCR showed a 90.4% correlation in the designation of isolates as clonal or non-clonal in pairwise comparisons. Both systems were highly reproducible and provided highly similar and supplementary data compared with serotyping regarding the transmission dynamics of shigellosis in this community. ERIC-PCR is considerably more rapid and inexpensive than PFGE and may have a complementary role to PFGE for initial investigations of hypothesized outbreaks in resource-limited settings.
Collapse
Affiliation(s)
- Margaret Kosek
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ramos PIP, Picão RC, Vespero EC, Pelisson M, Zuleta LFG, Almeida LGP, Gerber AL, Vasconcelos ATR, Gales AC, Nicolás MF. Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil. BMC Microbiol 2012; 12:173. [PMID: 22882772 PMCID: PMC3438125 DOI: 10.1186/1471-2180-12-173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND An important virulence factor of Klebsiella pneumoniae is the production of capsular polysaccharide (CPS), a thick mucus layer that allows for evasion of the host's defense and creates a barrier against antibacterial peptides. CPS production is driven mostly by the expression of genes located in a locus called cps, and the resulting structure is used to distinguish between different serotypes (K types). In this study, we report the unique genetic organization of the cps cluster from K. pneumoniae Kp13, a clinical isolate recovered during a large outbreak of nosocomial infections that occurred in a Brazilian teaching hospital. RESULTS A pyrosequencing-based approach showed that the cps region of Kp13 (cpsKp13) is 26.4 kbp in length and contains genes common, although not universal, to other strains, such as the rmlBADC operon that codes for L-rhamnose synthesis. cpsKp13 also presents some unique features, like the inversion of the wzy gene and a unique repertoire of glycosyltransferases. In silico comparison of cpsKp13 RFLP pattern with 102 previously published cps PCR-RFLP patterns showed that cpsKp13 is distinct from the C patterns of all other K serotypes. Furthermore, in vitro serotyping showed only a weak reaction with capsular types K9 and K34. We confirm that K9 cps shares common genes with cpsKp13 such as the rmlBADC operon, but lacks features like uge and Kp13-specific glycosyltransferases, while K34 capsules contain three of the five sugars that potentially form the Kp13 CPS. CONCLUSIONS We report the first description of a cps cluster from a Brazilian clinical isolate of a KPC-producing K. pneumoniae. The gathered data including K-serotyping support that Kp13's K-antigen belongs to a novel capsular serotype. The CPS of Kp13 probably includes L-rhamnose and D-galacturonate in its structure, among other residues. Because genes involved in L-rhamnose biosynthesis are absent in humans, this pathway may represent potential targets for the development of antimicrobial agents. Studying the capsular serotypes of clinical isolates is of great importance for further development of vaccines and/or novel therapeutic agents. The distribution of K-types among multidrug-resistant isolates is unknown, but our findings may encourage scientists to perform K-antigen typing of KPC-producing strains worldwide.
Collapse
|
15
|
Azmuda N, Rahman MZ, Sultana M, Jenssen EL, Khan SI, Birkeland NK. Evidence of interspecies O antigen gene cluster transfer between Shigella boydii 15 and Escherichia fergusonii. APMIS 2012; 120:959-66. [PMID: 23030400 DOI: 10.1111/j.1600-0463.2012.02926.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/01/2012] [Indexed: 01/24/2023]
Abstract
An environmental bacterial isolate, Iso10, previously found to show serological cross-reactivity with type-specific Shigella boydii 15 antisera was subjected to further molecular and serological analyses that revealed interspecies transfer of the O antigen gene cluster. Western blot analysis of Iso10 cell surface extracts and purified lipopolysaccharides demonstrated strong cross-reactivity with S. boydii 15-specific monovalent antisera and a lipopolysaccharide gel banding profile similar to that of S. boydii 15. Biochemical and phylogenetic analyses identified the Iso10 isolate as Escherichia fergusonii. O antigen gene cluster analyses of Iso10, carried out by restriction fragment length analysis of the amplified ~10-kb O antigen-encoding gene cluster, revealed a profile highly similar to that of S. boydii 15, confirming the presence of the S. boydii 15 somatic antigen in Iso10. To the best of our knowledge, this is the first report of interspecies transfer of O antigen-encoding genes between S. boydii and E. fergusonii, and it has implications for our understanding of the role of lateral gene transfer in the emergence of novel Shigella serotypes.
Collapse
Affiliation(s)
- Nafisa Azmuda
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | | | | | | | | |
Collapse
|
16
|
Molecular serogrouping of porcine enterotoxigenic Escherichia coli from Australia. J Microbiol Methods 2011; 88:73-6. [PMID: 22093999 DOI: 10.1016/j.mimet.2011.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common etiological agent of neonatal, pre and post weaning diarrhoea in piglets. One of the most important steps in the diagnosis and epidemiological understanding of this organism is accurate serogrouping. In many instances, however, conventional serogrouping fails to produce accurate identification of serogroups. In this communication we report a modified and simplified molecular serogrouping method (rfb-RFLP) for the accurate identification of the most common porcine ETEC strains that cause neonatal, pre and post weaning diarrhoea in Australia.
Collapse
|
17
|
Pavlovic M, Luze A, Konrad R, Berger A, Sing A, Busch U, Huber I. Development of a duplex real-time PCR for differentiation between E. coli and Shigella spp. J Appl Microbiol 2011; 110:1245-51. [DOI: 10.1111/j.1365-2672.2011.04973.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Structural elucidation of the O-antigen of the Shigella flexneri provisional serotype 88-893: structural and serological similarities with S. flexneri provisional serotype Y394 (1c). Carbohydr Res 2011; 346:872-6. [PMID: 21392735 DOI: 10.1016/j.carres.2011.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 11/23/2022]
Abstract
The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. (1)H and (13)C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap2Ac-(1→3)[α-D-Glcp-(1→2)-α-D-Glcp-(1→4)]-β-D-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme.
Collapse
|
19
|
Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl Environ Microbiol 2011; 77:2209-14. [PMID: 21296934 DOI: 10.1128/aem.02229-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that can cause severe infections. Serotyping provides a basis for the categorization of bacterial strains and is an important tool for epidemiological and surveillance purposes. In this study, of the 135 Cronobacter strains tested initially, 119 were identified as C. sakazakii and used. A serotyping scheme for C. sakazakii that classifies strains based on their different O antigens was developed. Seven antisera that exhibited high agglutinin titers (>640) were produced. O2 and O6 antisera were specific for their homologous strains, O4 and O7 antisera gave heterologous titers with O1 and O6 antigens, respectively, and O1, O3, and O5 antisera cross-reacted with each other and require preabsorption with the other two antigens. All of these 119 C. sakazakii strains were clearly assigned to these seven serotypes. O1 and O2 are the dominant serotypes, comprising 69.7% of the isolates. We also characterized the O-antigen gene clusters using restriction fragment length polymorphism (RFLP). The grouping of C. sakazakii strains based on their RFLP banding patterns correlated well with the grouping of strains based on our serotyping scheme. The serotype scheme presented here could prove to be a useful tool for serotyping C. sakazakii isolates.
Collapse
|
20
|
Multiplex Polymerase Chain Reaction Assay for Detection of Nonserotypable Shiga Toxin–ProducingEscherichia coliStrains of Serogroup O147. Foodborne Pathog Dis 2010; 7:1407-14. [DOI: 10.1089/fpd.2010.0614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
MST (molecular serotyping tool): a program for computer-assisted molecular identification of Escherichia coli and Shigella O antigens. J Clin Microbiol 2010; 48:1921-3. [PMID: 20200287 DOI: 10.1128/jcm.00357-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli and Shigella O antigens can be inferred using the rfb-restriction fragment length polymorphism (RFLP) molecular test. We present herein a dynamic programming algorithm-based software to compare the rfb-RFLP patterns of clinical isolates with those in a database containing the 171 previously published patterns corresponding to all known E. coli/Shigella O antigens.
Collapse
|
22
|
Navarro A, Eslava C, Perea LM, Inzunza A, Delgado G, Morales-Espinosa R, Cheasty T, Cravioto A. New enterovirulent Escherichia coli serogroup 64474 showing antigenic and genotypic relationships to Shigella boydii 16. J Med Microbiol 2010; 59:453-461. [PMID: 20075111 DOI: 10.1099/jmm.0.015602-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies based on the analysis of housekeeping genes indicate that Escherichia coli and all Shigella species, except for Shigella boydii type 13, belong to a single species. This study analysed the phenotypic and genotypic characteristics of 23 E. coli strains isolated in different countries from faecal specimens taken from children with diarrhoea. Strains were identified using the VITEK system and typed with rabbit sera obtained against 186 somatic and 53 flagellar E. coli antigens and against 45 Shigella somatic antigens. Biochemical analysis of these strains showed a typical E. coli profile with a defined reaction against both E. coli O179 and S. boydii 16 somatic antisera. Agglutination assays for flagellar antigens showed a response against H2 in 7 (30 %) strains, H10 in 2 (9 %) strains, H32 in 12 (52 %) strains and H34 in 2 (9 %) strains, demonstrating 4 serotypes associated with this new somatic antigen 64474. A serum against one of these E. coli strains (64474) was prepared. Absorption assays of S. boydii 16 and E. coli 64474 antisera with E. coli O179 antigen removed the agglutination response against this O179 antigen completely, while the agglutination titres against both S. boydii 16 and E. coli 64474 remained the same. Four (17 %) E. coli strains showed antimicrobial resistance to piperacillin only, one (4 %) to piperacillin and trimethoprim/sulfamethoxazole, one (4 %) to ciprofloxacin, nitrofurantoin and piperacillin, and two (9 %) strains were resistant to ciprofloxacin, norfloxacin, ofloxacin, piperacillin and trimethoprim/sulfamethoxazole. With regards to PCR assays, one (4 %) of the strains was positive for Shigella gene ipaH, one (4 %) for ipaA, two (9 %) for ipaB, one (4 %) for ipaD, two (9 %) for sepA and three (13 %) for ospF. The rfb gene cluster in the E. coli strains was analysed by RFLP and compared with the gene cluster obtained from S. boydii 16. The rfb-RFLP patterns for all 23 E. coli strains were similar to those obtained for S. boydii 16. The results from PCR tests to detect rfb genes wzx (encoding O unit flippase) and wzy (encoding polymerase) belonging to a cluster related to the biosynthesis of the S. boydii 16-specific O antigen were positive in 21 (91 %) and 22 (96 %) of the strains, respectively. PCR assays to detect E. coli virulence genes were also performed. These assays detected enterotoxigenic E. coli genes ltA1 in 12 of the strains (52 %), st1a in 4 (17 %), cfa1 in 6 (26 %), cs1 in 1 (4 %), cs3 in 3 (13 %), cs13 in 9 (39 %) and cs14 in 5 (22 %) of the strains. Results from the PFGE analyses confirmed the wide geographical distribution of these strains suggesting that 64474 : H2, 64474 : H10, 64474 : H32 and 64474 : H34 are new serotypes of E. coli strains with a defined virulence capacity, and share a common O antigen with S. boydii 16.
Collapse
Affiliation(s)
- Armando Navarro
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Carlos Eslava
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Luis Manuel Perea
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Alma Inzunza
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Gabriela Delgado
- Microbiología y Parasitología, Facultadde Medicina, Universidad Nacional Autónoma de México, CiudadUniversitaria, Mexico City DF 04510, Mexico
| | - Rosario Morales-Espinosa
- Microbiología y Parasitología, Facultadde Medicina, Universidad Nacional Autónoma de México, CiudadUniversitaria, Mexico City DF 04510, Mexico
| | - Thomas Cheasty
- Laboratory of Gastrointestinal Pathogens, HealthProtection Agency, London NW9 5EQ, UK
| | - Alejandro Cravioto
- International Centre for Diarrhoeal Disease Research,Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
23
|
Al-Khaldi SF, Mossoba MM, Burke TL, Fry FS. Differentiation of Whole Bacterial Cells Based on High-Throughput Microarray Chip Printing and Infrared Microspectroscopic Readout. Foodborne Pathog Dis 2009; 6:1001-7. [DOI: 10.1089/fpd.2009.0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sufian F. Al-Khaldi
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| | - Magdi M. Mossoba
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| | - Tara L. Burke
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| | - Frederick S. Fry
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland
| |
Collapse
|
24
|
Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 2008; 74:3783-94. [PMID: 18441119 DOI: 10.1128/aem.02302-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide polymorphism associated with the O-antigen-encoding locus, rfb, in Enterobacter sakazakii was determined by PCR-restriction fragment length polymorphism analysis. Based on the analysis of these DNA profiles, 12 unique banding patterns were detected among a collection of 62 strains from diverse origins. Two common profiles were identified and were designated serotypes O:1 and O:2. DNA sequencing of the 12,500-bp region flanked by galF and gnd identified 11 open reading frames, all with the same transcriptional direction. Analysis of the proximal region of both sequences demonstrated remarkable heterogeneity. A PCR assay targeting genes specific for the two prominent serotypes was developed and applied for the identification of these strains recovered from food, environmental, and clinical samples.
Collapse
|
25
|
Proudy I, Bouglé D, Coton E, Coton M, Leclercq R, Vergnaud M. Genotypic characterization of Enterobacter sakazakii isolates by PFGE, BOX-PCR and sequencing of the fliC gene. J Appl Microbiol 2007; 104:26-34. [PMID: 17850301 DOI: 10.1111/j.1365-2672.2007.03526.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS Enterobacter sakazakii is an emerging food-borne pathogen that can cause rare but severe forms of neonatal meningitis, bacteraemia and necrotizing enterocolitis. A rapid typing method at the strain level is needed to determine the monoclonality or polyclonality of the isolates during outbreaks. METHODS AND RESULTS The BOX-PCR fingerprinting technique, which targets the repetitive BOX sequences, and sequencing of the flagellin gene, fliC, were evaluated against a panel of 27 Ent. sakazakii strains from clinical and environmental sources. The typeability and discriminatory power of the techniques were compared with those of pulsed-field gel electrophoresis (PFGE), the reference genotyping method. BOX-PCR results yielded 92% agreement with PFGE results, whereas fliC gene sequencing was poorly discriminative. CONCLUSIONS In our study, BOX-PCR and PFGE were similarly discriminatory to type Ent. sakazakii strains. The weak variability of the Ent. sakazakii fliC gene was related to the absence of the variable central domain present in most fliC genes of Enterobacteriaceae. SIGNIFICANCE AND IMPACT OF THE STUDY The BOX-PCR typing provides an accurate discrimination and a rapid answer to identify clonal isolates of Ent. sakazakii.
Collapse
Affiliation(s)
- I Proudy
- Service de Microbiologie, EA 2128 Interactions Hôte et Microorganismes des Epithéliums, CHU Côte de Nacre, Université de Caen Basse-Normandie, Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Grimont F, Lejay-Collin M, Talukder KA, Carle I, Issenhuth S, Le Roux K, Grimont PAD. Identification of a group of shigella-like isolates as Shigella boydii 20. J Med Microbiol 2007; 56:749-754. [PMID: 17510258 DOI: 10.1099/jmm.0.46818-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections by Shigella species are an important cause of diarrhoeal disease worldwide. Of 4198 Shigella isolates received by the French National Reference Centre for Escherichia coli and Shigella, 180 from patients with diarrhoea and dysentery in 2000-2004 did not react with any available polyclonal rabbit antisera used to identify the established Shigella serogroups. This study describes the molecular and phenotypic characteristics of these isolates in seroagglutination tests, molecular serotyping (rfb-RFLP and fliC-RFLP), ribotyping, detection of invasivity and enterotoxins genes, and antibiotic sensitivity. All isolates gave biochemical reactions typical of Shigella boydii, were mannitol-positive and indole-negative. They all carried invasion-associated genes, enterotoxin 2 [ShET-2] and an IS630 sequence. They had a unique ribotype that was distinct from all other Shigella and E. coli patterns. Further characterization by rfb-RFLP clearly distinguished this serogroup from all other Shigella or E. coli O-groups. The fliC-RFLP pattern corresponded to P4, an F-pattern which is associated with 10 different serogroups of S. boydii. A new antiserum prepared against strain 00-977 agglutinated all 180 isolates and cross-agglutination and absorption studies with anti-00-977 serum and anti-CDC 99-4528 (reference for the newly described S. boydii serogroup 20) serum showed identical antigenic structure. Furthermore, strains 00-977 and CDC 99-4528 had the same molecular serotype, ribotype and virulence genes.
Collapse
Affiliation(s)
- Francine Grimont
- French National Reference Centre for Escherichia coli and Shigella, Unité de Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, Paris, France
| | - Monique Lejay-Collin
- French National Reference Centre for Escherichia coli and Shigella, Unité de Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, Paris, France
| | - Kaisar A Talukder
- International Centre for Diarrhoeal Diseases Research, Dhaka-100, Bangladesh
| | - Isabelle Carle
- French National Reference Centre for Escherichia coli and Shigella, Unité de Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, Paris, France
| | - Sylvie Issenhuth
- French National Reference Centre for Escherichia coli and Shigella, Unité de Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, Paris, France
| | - Karine Le Roux
- French National Reference Centre for Escherichia coli and Shigella, Unité de Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, Paris, France
| | - Patrick A D Grimont
- French National Reference Centre for Escherichia coli and Shigella, Unité de Biodiversité des Bactéries Pathogènes Emergentes, Institut Pasteur, Paris, France
| |
Collapse
|
27
|
van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, Brisse S, Struelens M. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007; 13 Suppl 3:1-46. [PMID: 17716294 DOI: 10.1111/j.1469-0691.2007.01786.x] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For bacterial typing to be useful, the development, validation and appropriate application of typing methods must follow unified criteria. Over a decade ago, ESGEM, the ESCMID (Europen Society for Clinical Microbiology and Infectious Diseases) Study Group on Epidemiological Markers, produced guidelines for optimal use and quality assessment of the then most frequently used typing procedures. We present here an update of these guidelines, taking into account the spectacular increase in the number and quality of typing methods made available over the past decade. Newer and older, phenotypic and genotypic methods for typing of all clinically relevant bacterial species are described according to their principles, advantages and disadvantages. Criteria for their evaluation and application and the interpretation of their results are proposed. Finally, the issues of reporting, standardisation, quality assessment and international networks are discussed. It must be emphasised that typing results can never stand alone and need to be interpreted in the context of all available epidemiological, clinical and demographical data relating to the infectious disease under investigation. A strategic effort on the part of all workers in the field is thus mandatory to combat emerging infectious diseases, as is financial support from national and international granting bodies and health authorities.
Collapse
Affiliation(s)
- A van Belkum
- Erasmus MC, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
AHMED S, RIDDLE M, WIERZBA T, MESSIH IABDEL, MONTEVILLE M, SANDERS J, KLENA J. Epidemiology and genetic characterization of Shigella flexneri strains isolated from three paediatric populations in Egypt (2000-2004). Epidemiol Infect 2006; 134:1237-48. [PMID: 16690004 PMCID: PMC2870525 DOI: 10.1017/s095026880600642x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2006] [Indexed: 11/06/2022] Open
Abstract
Ninety-seven isolates of Shigella flexneri from children seeking medical care from three sites in Egypt were characterized. Overall, 46.4% of children (median age 17 months) were febrile or reported blood in their stools, 25.8% were dehydrated and 16.5% were admitted to hospital. Serotypes 2a (37.1%), 1b (18.6%), 1c (17.5%), and 6 (15.5%) comprised over 88.7% of the total isolates. We observed marked resistance to ampicillin (87.6%), tetracycline (84.5%) and trimethoprim-sulfamethoxazole (63.9%). Pulsed-field electrophoresis grouped the majority of isolates within a serotype together, separately from isolates of an alternative serotype. The set gene was present in all serogroup 2a isolates, however, the sen gene was detected in every isolate. Our results show S. flexneri 1c has emerged as a dominant S. flexneri serotype in Egypt. Development and application of a Shigella vaccine should consider the diversity of Shigella serotypes within a geographical region prior to administration.
Collapse
Affiliation(s)
- S. F. AHMED
- United States Naval Medical Research Unit – 3, Cairo, Egypt
| | - M. S. RIDDLE
- United States Naval Medical Research Unit – 3, Cairo, Egypt
| | - T. F. WIERZBA
- United States Naval Medical Research Unit – 3, Cairo, Egypt
| | | | | | - J. W. SANDERS
- United States Naval Medical Research Unit – 3, Cairo, Egypt
| | - J. D. KLENA
- United States Naval Medical Research Unit – 3, Cairo, Egypt
- Author for correspondence: J. D. Klena, Ph. D., PSC 452 Box 154, FPO AE 09835 USA. ( or )
| |
Collapse
|
29
|
Melito PL, Woodward DL, Munro J, Walsh J, Foster R, Tilley P, Paccagnella A, Isaac-Renton J, Ismail J, Ng LK. A novel Shigella dysenteriae serovar isolated in Canada. J Clin Microbiol 2005; 43:740-4. [PMID: 15695673 PMCID: PMC548111 DOI: 10.1128/jcm.43.2.740-744.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The etiological agent most commonly associated with bacillary dysentery is Shigella. As part of its mandate, the Bacteriology and Enteric Disease Program of Health Canada identifies and serotypes unusual isolates of Shigella received from provincial laboratories of public health. In this report, six unusual isolates from three provinces were analyzed biochemically and serologically using slide and tube agglutinations and molecularly using standard pulsed-filed gel electrophoresis (PFGE), PCR, and PCR-restriction fragment length polymorphism (RFLP) techniques. All six isolates were identical. PFGE analysis grouped these strains; biochemically, they were mannitol negative and consistent with the profile of Shigella. Serologically, these strains produced weak reactions in Shigella dysenteriae serovars 4 and 16 and Escherichia coli O159 and O173 antisera. Molecular serotyping by PCR-RFLP of the rfb gene produced an S. dysenteriae serovar 2/E. coli O112ac pattern. They were positive by PCR for ipaH and ial enteroinvasive genes but negative for all other genes tested. Antiserum was prepared from one of the isolates and tested against Shigella and E. coli reference strains as well as the other isolates. The antiserum reacted with the five remaining isolates and showed cross-reactivity with S. dysenteriae serovars 1, 4, and 16; Shigella flexneri type 3; and E. coli O118, O159, O168, O172, and O173 antigens. Absorbing the sera with E. coli O159 and S. dysenteriae serovar 4 antigen removed all cross-reactions and only slightly reduced the homologous titer. Based on biochemical, molecular, and complete serological analysis, we propose that these six isolates represent a new provisional serovar of S. dysenteriae, type strain BEDP 02-5104.
Collapse
Affiliation(s)
- P L Melito
- Bacteriology and Enteric Disease Program, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, Manitoba R3E 3R2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Perelle S, Dilasser F, Grout J, Fach P. Detection of Escherichia coli serogroup O103 by real-time polymerase chain reaction. J Appl Microbiol 2005; 98:1162-8. [PMID: 15836486 DOI: 10.1111/j.1365-2672.2005.02545.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aims of the study were to identify the specific genes of O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O103 and to provide the basis for a specific real-time PCR test for rapid detection of E. coli O103. METHODS AND RESULTS The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species, were used to amplify the 12-kbp O103 O-antigen biosynthesis locus of STEC O103. A DNA library representative of this cluster allowed two O103-specific probes to be identified in the flippase (wzx) and UDP-galactose-4-epimerase (galE) genes. Two specific O103 serotyping real-time PCR tests based on these two genes were successfully developed. CONCLUSIONS These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen real-time PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY These findings increase the number of real-time PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.
Collapse
Affiliation(s)
- S Perelle
- Agence Française de Sécurité Sanitaire des Aliments, Laboratoire d'Etudes et de Recherches sur la Qualité des Aliments et sur les Procédés Agroalimentaires, Unité EBA: Etude moléculaire des contaminants biologiques alimentaires, Maisons-Alfort, France
| | | | | | | |
Collapse
|
31
|
Brisse S, Issenhuth-Jeanjean S, Grimont PAD. Molecular serotyping of Klebsiella species isolates by restriction of the amplified capsular antigen gene cluster. J Clin Microbiol 2004; 42:3388-98. [PMID: 15297473 PMCID: PMC497587 DOI: 10.1128/jcm.42.8.3388-3398.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of the present work was to develop a molecular method that would enable determination of the capsular serotypes of Klebsiella isolates without the use of antiserum. PCR amplification of the capsular antigen gene cluster (cps) was followed by digestion with the restriction enzyme HincII (cps PCR-restriction fragment length polymorphism [RFLP] analysis). The profiles (C patterns) obtained for 224 strains representing the 77 known K serotypes showed 3 to 13 fragments ranging in size from 0.2 to 4.4 kb. A total of 97 distinct C patterns were obtained; 100% of 61 pairs of samples tested twice showed reproducible C patterns. The C patterns were K-type specific; i.e., the C pattern(s) of any K serotype was distinct from the C patterns of all other K serotypes, with the only exceptions being serotypes K22 and K37, which are known to cross-react. For 12 of 17 K types for which at least two strains were included, C-pattern variations were found among strains with the same K serotype. Therefore, cps PCR-RFLP analysis has a higher discriminatory power than classical K serotyping. C-pattern identity was observed among strains with a given K type that were collected many years apart and from distinct sources, indicating C-pattern stability. Only 4.5% of the strains were nontypeable, because of unsuccessful PCR amplification (whereas 8 to 23% are nontypeable by classical K serotyping). Three of four noncapsulated strains analyzed showed recognizable C patterns. The K serotypes of 18 (82%) of 22 recent Klebsiella pneumoniae clinical isolates could be deduced from their C patterns. In conclusion, cps PCR-RFLP analysis allows determination of the K serotype, while it is easier to perform and more discriminatory than classical serotyping.
Collapse
Affiliation(s)
- Sylvain Brisse
- Unité Biodiversité des Bactéries Pathogènes Emergentes (U389 INSERM), Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
32
|
Surdeanu M, Ciudin L, Pencu E, Straut M. Comparative study of three different DNA fingerprint techniques for molecular typing of Shigella flexneri strains isolated in Romania. Eur J Epidemiol 2003; 18:703-10. [PMID: 12952147 DOI: 10.1023/a:1024831609901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, 97 epidemiologically unrelated Shigella flexneri strains isolated during 1994 (69 isolates) and 1997 (28 isolates) were characterised by ribotyping, enterobacterial repetitive intergenic consensus sequence-based PCR typing, and pulsed-field gel electrophoresis. Number of strains belonging to each of the six serotypes is selected equal to their distribution in Romania. The isolates comprise 24 ribotypes based on combination of two restriction patterns obtained with HindlII and PstI, respectively, 7 enterobacterial repetitive intergenic consensus (ERIC)-PCR types, and 92 XbaI pulsed-field gel electrophoresis (PFGE) patterns grouped in 31 pulsotypes at Dice coefficients of 85% similarity. We find no significant difference in the distribution of isolates collected during the two periods. Macrorestriction analysis by PFGE offers maximal discrimination. There seems to be little genetic variability among circulating S. flexneri strains of serotype 2a, suggesting that even a combination of several molecular techniques, including PFGE, could not easily differentiate an outbreak strain from temporally associated independent isolates.
Collapse
MESH Headings
- DNA Fingerprinting/methods
- DNA Fingerprinting/standards
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Deoxyribonucleases, Type II Site-Specific
- Discriminant Analysis
- Disease Outbreaks/statistics & numerical data
- Dysentery, Bacillary/epidemiology
- Dysentery, Bacillary/microbiology
- Electrophoresis, Gel, Pulsed-Field/methods
- Electrophoresis, Gel, Pulsed-Field/standards
- Genetic Variation/genetics
- Genotype
- Humans
- Molecular Epidemiology
- Phylogeny
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/standards
- Polymorphism, Restriction Fragment Length
- Ribotyping/methods
- Ribotyping/standards
- Romania/epidemiology
- Serotyping/methods
- Serotyping/standards
- Shigella flexneri/genetics
- Site-Specific DNA-Methyltransferase (Adenine-Specific)
Collapse
Affiliation(s)
- Maria Surdeanu
- Molecular Epidemiology Laboratory, Cantacuzino Institute, Bucharest, Romania
| | | | | | | |
Collapse
|
33
|
Perelle S, Dilasser F, Grout J, Fach P. Identification of the O-antigen biosynthesis genes of Escherichia coli O91 and development of a O91 PCR serotyping test. J Appl Microbiol 2003; 93:758-64. [PMID: 12392520 DOI: 10.1046/j.1365-2672.2002.01743.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aims of the study were to characterize the O91 O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O91 and to provide the basis for a specific PCR test for rapid detection of E. coli O91. METHODS AND RESULTS The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species were used to amplify the 10-kbp O91 O-antigen biosynthesis locus of STEC O91. A DNA library representative of this cluster allowed two O91 specific probes to be identified, and two specific PCR O91 serotyping tests to be successfully developed. CONCLUSIONS These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY These findings increase the number of PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.
Collapse
Affiliation(s)
- S Perelle
- Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches sur l'Hygiène et la Qualité des Aliments, Unité: Atelier de Biotechnologie, Maisons-Alfort, France.
| | | | | | | |
Collapse
|
34
|
Talukder KA, Islam Z, Islam MA, Dutta DK, Safa A, Ansaruzzaman M, Faruque ASG, Shahed SN, Nair GB, Sack DA. Phenotypic and genotypic characterization of provisional serotype Shigella flexneri 1c and clonal relationships with 1a and 1b strains isolated in Bangladesh. J Clin Microbiol 2003; 41:110-7. [PMID: 12517835 PMCID: PMC149623 DOI: 10.1128/jcm.41.1.110-117.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 09/14/2002] [Accepted: 10/06/2002] [Indexed: 11/20/2022] Open
Abstract
The serotypes of 144 strains of Shigella flexneri serotype 1 (serotypes 1a, 1b, and 1c) isolated from patients attending the Dhaka treatment center of the International Centre for Diarrhoeal Disease Research, Bangladesh, between 1997 and 2001 were serologically confirmed by using commercially available antisera and a panel of monoclonal antibodies specific for S. flexneri group and type factor antigen (MASF). Among serotype 1 isolates, the prevalence of provisional serotype S. flexneri 1c increased from 0 to 56% from 1978 to 2001 in Bangladesh. Detailed biochemical studies revealed that none of the strains of serotype 1 produced indole, while all the strains fermented mannose, mannitol, and trehalose. Twenty percent of the serotype 1c and all the serotype 1a strains fermented maltose and 53% of the serotype 1c strains and 60% of the serotype 1a strains fermented arabinose, whereas all serotype 1b strains were negative for fermentation of these sugars. Only 18% of serotype 1b strains were resistant to nalidixic acid, and most of the serotype 1c and 1b strains were resistant to ampicillin, tetracycline, and trimethoprim-sulfamethoxazole. All the strains of serotypes 1a and 1b and about 88% of the serotype 1c strains were found to be invasive by the Sereny test, had a 140-MDa plasmid, and had Congo red absorption ability. Plasmid profile analysis showed that 26% of the strains of serotype 1 contained identical patterns. Most of the serotype 1c strains (72%) had the 1.6-MDa plasmid, which was not found in either serotype 1a or 1b strains. A self-transmissible middle-range plasmid (35 to 80 MDa) was found in some strains carrying the multiple-antibiotic-resistance gene. Pulsed-field gel electrophoresis analysis yielded three types (types A, B, and C) with numerous subtypes among the serotype 1c strains, whereas serotypes 1b and 1a yielded only one type for each serotype, and those types were related to the types for serotype 1c strains. Ribotyping analysis yielded three patterns for serotype 1c strains and one pattern each for serotype 1a and 1b strains which were similar to the patterns for the serotype 1c strains. Overall analysis of the results concluded that subserotype 1c is closely related to serotypes 1a and 1b. Furthermore, the high rate of prevalence of serotype 1c necessitates the commercial production of antibody against this subserotype to allow the determination of the actual burden of shigellosis caused by provisional serotype 1c.
Collapse
Affiliation(s)
- Kaisar A Talukder
- Enteric Laboratory., Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Shigella, which still stands as a genus with four species today, in reality belongs to the extremely diverse species Escherichia coli. There are several lineages of Shigella strains derived through independent acquisition of the pINV virulence plasmid. The chromosomally determined phenotypic properties of Shigella result from convergent evolution during niche adaptation, most due to loss of function, some from negative selection pressure.
Collapse
Affiliation(s)
- Ruiting Lan
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
36
|
Coimbra RS, Lefevre M, Grimont F, Grimont PA. Clonal relationships among Shigella serotypes suggested by cryptic flagellin gene polymorphism. J Clin Microbiol 2001; 39:670-4. [PMID: 11158126 PMCID: PMC87795 DOI: 10.1128/jcm.39.2.670-674.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2000] [Accepted: 11/04/2000] [Indexed: 11/20/2022] Open
Abstract
The presence of cryptic fliC alleles in the genomes of 120 strains representative of the four Shigella species was investigated. One fragment was obtained by PCR amplification of fliC, with a size varying from 1.2 to 3.2 kbp, depending on the species or serotype. After digestion with endonuclease HhaI, the number of fragments in patterns varied from three to nine, with sizes of between 115 and 1,020 bp. Patterns sharing most of their bands were grouped to constitute an F type. A total of 17 different F types were obtained from all strains included in this study. A unique pattern was observed for each the following serotypes: Shigella dysenteriae 1, 2, 8, and 10 and S. boydii 7, 13, 15, 16, and 17. On the contrary, S. dysenteriae serotype 13 and S. sonnei biotype e were each subdivided into two different F types. S. flexneri serotypes 3a and X could be distinguished from the cluster containing S. flexneri serotypes 1 to 5 and Y. S. flexneri serotype 6 clustered with S. boydii serotypes 1, 2, 3, 4, 6, 8, 10, 11, 14, and 18 and S. dysenteriae serotypes 4, 5, 6, 7, 9, 11, and 12. Two other clusters were outlined: one comprising S. dysenteriae serotypes 3, 12, 13 (strain CDC598-77), 14, and 15 and the other one joining S. boydii serotypes 5 and 9. None of the 17 fliC patterns was found in the fliC HhaI pattern database previously described for Escherichia coli. Overall, this work supports the hypothesis that Shigella evolved from different ancestral strains of E. coli. Moreover, the method outlined here is a promising tool for the identification of some clinically important Shigella strains as well as for confirmation of atypical isolates as Shigella spp.
Collapse
Affiliation(s)
- R S Coimbra
- Unité des Entérobactéries, INSERM U389, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
37
|
Coimbra RS, Lenormand P, Grimont F, Bouvet P, Matsushita S, Grimont PA. Molecular and phenotypic characterization of potentially new Shigella dysenteriae serotype. J Clin Microbiol 2001; 39:618-21. [PMID: 11158117 PMCID: PMC87786 DOI: 10.1128/jcm.39.2.618-621.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From September 1997 to November 1998, the French National Center for Salmonella and Shigella received 22 Shigella isolates recovered from 22 different patients suffering from dysentery. None of these isolates reacted with any of the antisera used to identify established Shigella serotypes, but all of them agglutinated in the presence of antisera to a previously described potentially new Shigella dysenteriae serotype (represented by strain 96-204) primarily isolated from stool cultures of imported diarrheal cases in Japan. All French isolates, as well as strain 96-204, showed biochemical reactions typical of S. dysenteriae and gave positive results in a PCR assay for detection of the plasmid ipaH gene coding for invasiveness. No Shiga toxin gene was detected by PCR. These isolates were indistinguishable by molecular analysis of ribosomal DNA (ribotyping) and seemed to be related to S. dysenteriae serotypes 3 and 12. However, further characterization by restriction of the amplified O-antigen gene cluster clearly distinguished this new serotype from all other Shigella or Escherichia coli serotypes.
Collapse
Affiliation(s)
- R S Coimbra
- Unité des Entérobactéries, INSERM U389, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Coimbra RS, Nicastro G, Grimont PA, Grimont F. Computer identification of Shigella species by rRNA gene restriction patterns. Res Microbiol 2001; 152:47-55. [PMID: 11281325 DOI: 10.1016/s0923-2508(00)01167-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a MluI ribotyping scheme for Shigella which approaches correlation with serotyping. One hundred and seventeen reference strains and previously serotyped clinical isolates representing the 57 Shigella serotypes and biotypes were included in this study. A total of 51 distinct ribotypes were obtained and a database was built with them. The number of bands composing each ribotype varied from 9 to 15. The fragments ranged in size from 1.6 to 18.8 kbp. One hundred and eleven clinical isolates were successfully identified in a double blind study with standard biochemical/serologic methods, by automatic comparison of their ribotypes with our database using the software Taxotron.
Collapse
Affiliation(s)
- R S Coimbra
- Unité des entérobactéries, Inserm 389, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
39
|
Coimbra RS, Grimont F, Lenormand P, Burguière P, Beutin L, Grimont PA. Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 2000; 151:639-54. [PMID: 11081579 DOI: 10.1016/s0923-2508(00)00134-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The precise serotyping of clinical Escherichia coli isolates is a crucial step for diagnostic and epidemiological purposes. Epidemiological knowledge associated with serotyping is so important that no alternative method may be considered if it does not correlate with serotyping. Unfortunately, E. coli are difficult to serotype. Genes specifically involved in O-antigen synthesis are clustered in E. coli, Shigella and Salmonella. Published oligonucleotide sequences complementary to JUMPstart and the gnd gene (the conserved flanking sequences upstream and downstream of O-antigen gene clusters, respectively) were used to amplify the O-antigen gene cluster of representative strains of 148 E. coli O-serogroups. A unique amplified fragment was observed for each serogroup (size ranging from 1.7 to 20 kbp). Clearly identifiable and reproducible O-patterns were obtained for the great majority of O-serogroups after MboII digestion of amplified products. The number of bands composing each pattern varied from five to 25. A database was built with the patterns obtained. A total of 147 O-patterns were obtained. Thirteen O-serogroups were subdivided into different O-patterns. However, each of 13 other O-patterns was shared by two or more O-serogroups. 0-serogroups of clinical isolates were deduced accurately from O-patterns in all cases, even for some rough or nonagglutinating isolates. The restriction method (rfb-RFLP) may prove to be better than serotyping since 100% of strains are typable, which is not the case with serotyping.
Collapse
Affiliation(s)
- R S Coimbra
- Unité des entérobactéries, Inserm 389, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|