1
|
Blanco P, Hipólito A, García-Pastor L, Trigo da Roza F, Toribio-Celestino L, Ortega A, Vergara E, San Millán Á, Escudero J. Identification of promoter activity in gene-less cassettes from Vibrionaceae superintegrons. Nucleic Acids Res 2024; 52:2961-2976. [PMID: 38214222 PMCID: PMC11014356 DOI: 10.1093/nar/gkad1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alba Cristina Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid 28222, Spain
| | - José Antonio Escudero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
2
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
3
|
Al-Azawi IH, Al-Bidiri MS. DISTRIBUTION OF INTEGRON III AND PHYLOGENIC CLADE AMONG MDR UROPATHOGENIC E. COLI FROM PATIENT IN AL-DIWANIYAH CITY, IRAQ. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1254-1260. [PMID: 35758440 DOI: 10.36740/wlek202205205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: The goal of this study is to identify Uropathogenic E. coli multidrug-resistant bacteria, as well as their genetic profile clade and correlation with dispersion integron. PATIENTS AND METHODS Materials and methods: Five hundred urine samples from UTI patients were collected in Al-Diwaniyah, Iraq. They were then investigated by a qualified consulting doctor. After cultivation in special media (MacConkey agar and Eosin-Methylene blue) to detect Enterobacteriacea, including Escherichia coli, the samples were identified using the Vitec 2 compact system, as well as MIC susceptibility testing to Amikacin, Levofloxacin, Cefepime, Meropenem, Nitrofurantion, and Trimethoprim-sulfamethoxazole for detect multidrug resistance isolates. Multiplex PCR was used to detect three types of integrase gene. Finally, ERIC2-PCR was used to detect the genetic profile of all isolates. RESULTS Results: From 500 UTI samples, 22 isolates UPEC detected resistance to different class of antibiotic, including: 86.3% to Cefepime, 54.5% - to Trimethoprim-sulfamethoxazole, 31.8% -Levofloxacin, 18.8% - Amikacin, 18.8% - Imipenem, 0% to Nitrofurantion. Twenty of the 22 isolates had various integrase gene classes as: 54.5%, 36.3%, 72.2% for Intl I, Intl II, and Intl III, respectively; while two isolates have no integron. CONCLUSION Conclusions: Integron III has a higher incidence and compensates other classes; isolates with triple classes are more virulent and antibiotic resistant. Their genomic profile reveals association with human urine and unique clade of relatives.
Collapse
|
4
|
Kim S, Chung HY, Kwon JG, Choi SH, Lee JH. Fresh Crab Plays an Important Role as a Nutrient Reservoir for the Rapid Propagation of Vibrio vulnificus. Front Microbiol 2021; 12:645860. [PMID: 33767684 PMCID: PMC7985530 DOI: 10.3389/fmicb.2021.645860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is a well-known opportunistic pathogen causing food-borne illnesses by ingestion of contaminated seafood. A new strain of V. vulnificus FORC_016 was isolated from a patient's blood sample in South Korea. The genome consists of two circular DNA chromosomes: chromosome I (3,234,424 bp with a G + C contents of 46.60% containing 2,889 ORFs, 106 tRNA genes, and 31 rRNA genes) and chromosome II (1,837,945 bp with a GC content of 47.00% containing 1,572 ORFs, 13 tRNA genes, and 3 rRNA genes). In addition, chromosome I has a super integron (SI) containing 209 ORFs, which is probably associated with various additional functions including antibiotic resistance and pathogenicity. Pan-genome analysis with other V. vulnificus genomes revealed that core genome regions contain most of the important virulence factors. However, accessory genome regions are located in the SI region and contain unique genes regarding cell wall biosynthesis and generation of host cell protecting capsule, suggesting possible resistance ability against environmental stresses. Comparative RNA-Seq analysis of samples between contact and no contact to the crab conditions showed that expressions of amino acid/peptide and carbohydrate transport and utilization genes were down-regulated, but expressions of cell division and growth-related genes were up-regulated, suggesting that the crab may be a nutrition reservoir for rapid propagation of V. vulnificus. Therefore, consumption of the contaminated fresh crab would provide a large number of V. vulnificus to humans, which may be more dangerous. Consequently, biocontrol of V. vulnificus may be critical to ensure the safety in seafood consumption.
Collapse
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Joon-Gi Kwon
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Ramirez DA, Saka HA, Nores R. Detection of Vibrio cholerae aDNA in human burials from the fifth cholera pandemic in Argentina (1886-1887 AD). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 32:74-79. [PMID: 33453495 DOI: 10.1016/j.ijpp.2020.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Detecting traces of ancient DNA of Vibrio cholerae to provide genetic information associated with the fifth cholera pandemic. MATERIALS Sediment samples from the sacral foramina of four individuals were analyzed, recovered from a mass grave near an institution dedicated exclusively to the isolation and treatment of citizens infected with cholera in the late 19th century in the city of Cordoba, Argentina. METHODS Paleogenetic techniques (ancient DNA extraction, PCR amplification, and Sanger sequencing) were applied. Specific primers for Vibrio cholerae (VCR, ctxA, ctxB, and tcpA) were designed. RESULTS By amplifying and sequencing the Vibrio cholerae repeats fragment, the infection in at least one individual was confirmed. CONCLUSIONS The synthesis of the paleogenetic results with the archaeological and historical evidence strongly supports that at least one individual from the mass grave in Cordoba, Argentina, was a victim of the fifth cholera pandemic. SIGNIFICANCE Confirming the presence of the disease through multiple lines of evidence, including genetic, archaeological, and historical analyses, strengthens and affirms our understanding of the presence, effects, and potential evolutionary paths of the disease in the past. LIMITATIONS Vibrio cholerae repeats were sequenced in one individual, while the remaining genes could not be amplified, which is likely related to gene copy number. SUGGESTIONS FOR FUTURE RESEARCH Paleogenetic examination of ancient samples from different locations will broaden our understanding of the origin, evolution, and past dissemination of Vibrio cholerae epidemic strains.
Collapse
Affiliation(s)
- Darío Alejandro Ramirez
- Instituto de Antropología de Córdoba (IDACOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| | - Héctor Alex Saka
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| | - Rodrigo Nores
- Instituto de Antropología de Córdoba (IDACOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| |
Collapse
|
6
|
Buongermino Pereira M, Österlund T, Eriksson KM, Backhaus T, Axelson-Fisk M, Kristiansson E. A comprehensive survey of integron-associated genes present in metagenomes. BMC Genomics 2020; 21:495. [PMID: 32689930 PMCID: PMC7370490 DOI: 10.1186/s12864-020-06830-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Integrons are genomic elements that mediate horizontal gene transfer by inserting and removing genetic material using site-specific recombination. Integrons are commonly found in bacterial genomes, where they maintain a large and diverse set of genes that plays an important role in adaptation and evolution. Previous studies have started to characterize the wide range of biological functions present in integrons. However, the efforts have so far mainly been limited to genomes from cultivable bacteria and amplicons generated by PCR, thus targeting only a small part of the total integron diversity. Metagenomic data, generated by direct sequencing of environmental and clinical samples, provides a more holistic and unbiased analysis of integron-associated genes. However, the fragmented nature of metagenomic data has previously made such analysis highly challenging. Results Here, we present a systematic survey of integron-associated genes in metagenomic data. The analysis was based on a newly developed computational method where integron-associated genes were identified by detecting their associated recombination sites. By processing contiguous sequences assembled from more than 10 terabases of metagenomic data, we were able to identify 13,397 unique integron-associated genes. Metagenomes from marine microbial communities had the highest occurrence of integron-associated genes with levels more than 100-fold higher than in the human microbiome. The identified genes had a large functional diversity spanning over several functional classes. Genes associated with defense mechanisms and mobility facilitators were most overrepresented and more than five times as common in integrons compared to other bacterial genes. As many as two thirds of the genes were found to encode proteins of unknown function. Less than 1% of the genes were associated with antibiotic resistance, of which several were novel, previously undescribed, resistance gene variants. Conclusions Our results highlight the large functional diversity maintained by integrons present in unculturable bacteria and significantly expands the number of described integron-associated genes.
Collapse
Affiliation(s)
- Mariana Buongermino Pereira
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - K Martin Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Centre for Sustainable Development, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Backhaus
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marina Axelson-Fisk
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Langlete P, Krabberød AK, Winther-Larsen HC. Vesicles From Vibrio cholerae Contain AT-Rich DNA and Shorter mRNAs That Do Not Correlate With Their Protein Products. Front Microbiol 2019; 10:2708. [PMID: 31824470 PMCID: PMC6883915 DOI: 10.3389/fmicb.2019.02708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host–pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.
Collapse
Affiliation(s)
- Petter Langlete
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders Kristian Krabberød
- Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne Cecilie Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Cathelicidin Peptides Restrict Bacterial Growth via Membrane Perturbation and Induction of Reactive Oxygen Species. mBio 2019; 10:mBio.02021-19. [PMID: 31506312 PMCID: PMC6737244 DOI: 10.1128/mbio.02021-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an important part of the mammalian innate immune system in the battle against microbial infection. How AMPs function to control bacteria is not clear, as nearly all activity studies use nonphysiological levels of AMPs. We monitored peptide action in live bacterial cells over short time frames with single-cell resolution and found that the primary effect of cathelicidin peptides is to increase the production of oxidative molecules that cause cellular damage in Gram-positive and Gram-negative bacteria. All metazoans produce antimicrobial peptides (AMPs) that have both broad antimicrobial and immunomodulatory activity. Cathelicidins are AMPs that preferentially kill Gram-negative bacteria in vitro, purportedly by assembling into higher-order structures that perforate the membrane. We utilized high-resolution, single-cell fluorescence microscopy to examine their mechanism of action in real time. Engineered cathelicidins rapidly bound to Gram-negative and Gram-positive cells and penetrated the cytoplasmic membrane. Rapid failure of the peptidoglycan superstructure in regions of active turnover caused leakage of cytoplasmic contents and the formation of membrane-bound blebs. A mutation anticipated to destabilize interactions between cathelicidin subunits had no effect on bactericidal activity, suggesting that cathelicidins have activities beyond perforating the membrane. Nanomolar concentrations of cathelicidins, although not bactericidal, reduced the growth rate of Gram-negative and Gram-positive bacteria. The cells exhibited expression changes in multiple essential processes, including protein synthesis, peptidoglycan biosynthesis, respiration, and the detoxification of reactive oxygen species (ROS). Time-lapse imaging revealed that ROS accumulation preceded bleb formation, and treatments that reduced cellular ROS levels overcame these bactericidal effects. We propose that that the primary effect of cathelicidins is to induce the production of ROS that damage bacterial molecules, leading to slowed growth or cell death. Given their low circulating levels in vivo, AMPs may serve to slow bacterial population expansion so that cellular immunity systems can respond to and battle the infection.
Collapse
|
9
|
Dorman MJ, Kane L, Domman D, Turnbull JD, Cormie C, Fazal MA, Goulding DA, Russell JE, Alexander S, Thomson NR. The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One. Proc Biol Sci 2019; 286:20182025. [PMID: 30966987 PMCID: PMC6501683 DOI: 10.1098/rspb.2018.2025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/21/2019] [Indexed: 02/01/2023] Open
Abstract
The sixth global cholera pandemic lasted from 1899 to 1923. However, despite widespread fear of the disease and of its negative effects on troop morale, very few soldiers in the British Expeditionary Forces contracted cholera between 1914 and 1918. Here, we have revived and sequenced the genome of NCTC 30, a 102-year-old Vibrio cholerae isolate, which we believe is the oldest publicly available live V. cholerae strain in existence. NCTC 30 was isolated in 1916 from a British soldier convalescent in Egypt. We found that this strain does not encode cholera toxin, thought to be necessary to cause cholera, and is not part of V. cholerae lineages responsible for the pandemic disease. We also show that NCTC 30, which predates the introduction of penicillin-based antibiotics, harbours a functional β-lactamase antibiotic resistance gene. Our data corroborate and provide molecular explanations for previous phenotypic studies of NCTC 30 and provide a new high-quality genome sequence for historical, non-pandemic V. cholerae.
Collapse
Affiliation(s)
- Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Leanne Kane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Daryl Domman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Claire Cormie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - David A. Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Sarah Alexander
- Public Health England, 61 Colindale Avenue, London NW9 5DF, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
10
|
Abstract
Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based primarily on the key enzymes required for transposition, such as transposases/recombinases and reverse transcriptases. Recent progress in whole-genome sequencing and long-read assembly, combined with expansion of the familiar range of model organisms, resulted in identification of unprecedentedly long transposable units spanning dozens or even hundreds of kilobases, initially in prokaryotic and more recently in eukaryotic systems. Here, we focus on such oversized eukaryotic TEs, including retrotransposons and DNA transposons, outline their complex and often combinatorial nature and closely intertwined relationship with viruses, and discuss their potential for participating in transfer of long stretches of DNA in eukaryotes.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
- Corresponding author: E-mail:
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
11
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
12
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
14
|
Pérez-Valdespino A, Lazarini-Martínez A, Rivera-González AX, García-Hernández N, Curiel-Quesada E. Dynamics of a Class 1 Integron Located on Plasmid or Chromosome in Two Aeromonas spp. Strains. Front Microbiol 2016; 7:1556. [PMID: 27733851 PMCID: PMC5039178 DOI: 10.3389/fmicb.2016.01556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Integrons are non-mobile bacterial genetic elements that carry different cassettes conferring antibiotic resistance. Cassettes can excise or integrate by action of an integron-encoded integrase, enabling bacteria to face environmental challenges. In this work, the functionality and dynamics of two integrons carrying the same cassette arrangement (dfrA12–orfF–aadA2), but located on plasmid or chromosome in two different strains were studied. In order to demonstrate the functionality of the Class 1 integrase, circular cassette integration intermediaries were PCR amplified by PCR using extrachromosomal DNA extracted from bacteria grown in the presence or absence of cassette-encoded antibiotics. Circular aadA2 and dfrA12–orfF–aadA2 cassettes were detected in cultures grown either in the presence or absence of antibiotics in both strains. No dfrA12–orfF circular intermediates could be detected under any culture conditions. These results show that both integrons are functional. However, these elements show different dynamics and functionality since the presence of streptomycin led to detectable gene rearrangements in the variable region only in the strain with the plasmid-born integron. In addition, complete integration products were demonstrated using a receptor molecule carrying an empty integron. In this case, integration products were observed in both strains even in the absence of antibiotics, but they were more evident in the strain with the plasmid-located integron when streptomycin was present in the culture medium. This suggests that integrons in the two strains respond differently to streptomycin even though DNA sequences upstream the intI1 gene, including the lexA boxes of both integrons are identical.
Collapse
Affiliation(s)
- Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional Mexico City, Mexico
| | - Alfredo Lazarini-Martínez
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional Mexico City, Mexico
| | - Alejandro X Rivera-González
- Molecular Genetics Laboratory, Medical Research Unit, Pediatric Hospital, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Normand García-Hernández
- Molecular Genetics Laboratory, Medical Research Unit, Pediatric Hospital, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
15
|
Nivina A, Escudero JA, Vit C, Mazel D, Loot C. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res 2016; 44:7792-803. [PMID: 27496283 PMCID: PMC5027507 DOI: 10.1093/nar/gkw646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 01/29/2023] Open
Abstract
The integron is a bacterial recombination system that allows acquisition, stockpiling and expression of cassettes carrying protein-coding sequences, and is responsible for the emergence and rise of multiresistance in Gram-negative bacteria. The functionality of this system depends on the insertion of promoterless cassettes in correct orientation, allowing their expression from the promoter located upstream of the cassette array. Correct orientation is ensured by strand selectivity of integron integrases for the bottom strand of cassette recombination sites (attC), recombined in form of folded single-stranded hairpins. Here, we investigated the basis of such strand selectivity by comparing recombination of wild-type and mutated attC sites with different lengths, sequences and structures. We show that all three unpaired structural features that distinguish the bottom and top strands contribute to strand selectivity. The localization of Extra-Helical Bases (EHBs) directly favors integrase binding to the bottom strand. The Unpaired Central Spacer (UCS) and the Variable Terminal Structure (VTS) influence strand selectivity indirectly, probably through the stabilization of the bottom strand and the resulting synapse due to the nucleotide skew between the two strands. These results underscore the importance of the single-stranded nature of the attC site that allows such tight control over integron cassette orientation.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Antonio Escudero
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Claire Vit
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Didier Mazel
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Céline Loot
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| |
Collapse
|
16
|
Abstract
Similar to other genera and species of bacteria, whole genomic sequencing has revolutionized how we think about and address questions of basic Vibrio biology. In this review we examined 36 completely sequenced and annotated members of the Vibrionaceae family, encompassing 12 different species of the genera Vibrio, Aliivibrio, and Photobacterium. We reconstructed the phylogenetic relationships among representatives of this group of bacteria by using three housekeeping genes and 16S rRNA sequences. With an evolutionary framework in place, we describe the occurrence and distribution of primary and alternative sigma factors, global regulators present in all bacteria. Among Vibrio we show that the number and function of many of these sigma factors differs from species to species. We also describe the role of the Vibrio-specific regulator ToxRS in fitness and survival. Examination of the biochemical capabilities was and still is the foundation of classifying and identifying new Vibrio species. Using comparative genomics, we examine the distribution of carbon utilization patterns among Vibrio species as a possible marker for understanding bacteria-host interactions. Finally, we discuss the significant role that horizontal gene transfer, specifically, the distribution and structure of integrons, has played in Vibrio evolution.
Collapse
|
17
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Abstract
The integron is a powerful system which, by capturing, stockpiling, and rearranging new functions carried by gene encoding cassettes, confers upon bacteria a rapid adaptation capability in changing environments. Chromosomally located integrons (CI) have been identified in a large number of environmental Gram-negative bacteria. Integron evolutionary history suggests that these sedentary CIs acquired mobility among bacterial species through their association with transposable elements and conjugative plasmids. As a result of massive antibiotic use, these so-called mobile integrons are now widespread in clinically relevant bacteria and are considered to be the principal agent in the emergence and rise of antibiotic multiresistance in Gram-negative bacteria. Cassette rearrangements are catalyzed by the integron integrase, a site-specific tyrosine recombinase. Central to these reactions is the single-stranded DNA nature of one of the recombination partners, the attC site. This makes the integron a unique recombination system. This review describes the current knowledge on this atypical recombination mechanism, its implications in the reactions involving the different types of sites, attC and attI, and focuses on the tight regulation exerted by the host on integron activity through the control of attC site folding. Furthermore, cassette and integrase expression are also highly controlled by host regulatory networks and the bacterial stress (SOS) response. These intimate connections to the host make the integron a genetically stable and efficient system, granting the bacteria a low cost, highly adaptive evolution potential "on demand".
Collapse
|
19
|
Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, Chen D, Bian H, Li Y, Yu G. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 2015; 14:45. [PMID: 26487554 PMCID: PMC4618277 DOI: 10.1186/s12941-015-0100-6] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/14/2015] [Indexed: 11/30/2022] Open
Abstract
As recently indiscriminate abuse of existing antibiotics in both clinical and veterinary treatment leads to proliferation of antibiotic resistance in microbes and poses a dilemma for the future treatment of such bacterial infection, antimicrobial resistance has been considered to be one of the currently leading concerns in global public health, and reported to widely spread and extended to a large variety of microorganisms. In China, as one of the currently worst areas for antibiotics abuse, the annual prescription of antibiotics, including both clinical and veterinary treatment, has approaching 140 gram per person and been roughly estimated to be 10 times higher than that in the United Kingdom, which is considered to be a potential area for the emergence of “Super Bugs”. Based on the integrons surveillance in Guangzhou, China in the past decade, this review thus aimed at summarizing the role of integrons in the perspective of both clinical setting and environment, with the focus on the occurrence and prevalence of class 1, 2 and 3 integrons.
Collapse
Affiliation(s)
- Yang Deng
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China.
| | - Xuerui Bao
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China.
| | - Lili Ji
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China.
| | - Lei Chen
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Junyan Liu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China.
| | - Jian Miao
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China.
| | - Dingqiang Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical College, Guangzhou, 510120, China.
| | - Huawei Bian
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yanmei Li
- Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, 510620, China.
| | - Guangchao Yu
- First Affiliated Hospital of Jinan University, Guangzhou, 510620, China.
| |
Collapse
|
20
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
21
|
López-Pérez M, Gonzaga A, Ivanova EP, Rodriguez-Valera F. Genomes of Alteromonas australica, a world apart. BMC Genomics 2014; 15:483. [PMID: 24942065 PMCID: PMC4119200 DOI: 10.1186/1471-2164-15-483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea. RESULTS Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T. CONCLUSIONS The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.
Collapse
Affiliation(s)
| | | | | | - Francisco Rodriguez-Valera
- División de Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, San Juan, 03550 Alicante, Spain.
| |
Collapse
|
22
|
Zhang C, Pang B, Zhou Z, Wang H, Zhou H, Lu X, Du P, Zhang L, Li J, Cui Z, Chen C, Stokes HW, Kan B. The purifying trend in the chromosomal integron in Vibrio cholerae strains during the seventh pandemic. INFECTION GENETICS AND EVOLUTION 2014; 26:241-9. [PMID: 24905599 DOI: 10.1016/j.meegid.2014.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 12/31/2022]
Abstract
Chromosomal integron (CI) arrays in Vibrio spp. are generally large and display great variation. Here we determined the sequence of CI array in a toxigenic O139 Vibriocholerae strain and compared it with the arrays from the genome of different O1 biotypes available in GenBank. Then PCR scanning was used to determine the CI array variations in 83 epidemic O139 strains and subsequently these variations were compared with that found in toxigenic O1 El Tor strains in our previous work. Few differences were observed in the cohort of toxigenic O139 strains compared to the toxigenic O1 El Tor strains. On the basis of CI arrays, the toxigenic O1 El Tor and O139 strains isolated concurrently in recent years appear to be more similar to each other than to the O1 strains isolated in previous decades, suggesting a closer evolutionary relationship between them. Comparison of CI arrays in toxigenic O1 El Tor and O139 V. cholerae strains isolated between 1961 and 2009 revealed a purifying trend in the CI arrays in the chronological order during the seventh pandemic.
Collapse
Affiliation(s)
- Cuicai Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhemin Zhou
- The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Haiyin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Lijuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhigang Cui
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Chen Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - H W Stokes
- The ithree Institute, University of Technology, Sydney, New South Wales, Australia
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China.
| |
Collapse
|
23
|
Lukjancenko O, Ussery DW. Vibrio chromosome-specific families. Front Microbiol 2014; 5:73. [PMID: 24672511 PMCID: PMC3957060 DOI: 10.3389/fmicb.2014.00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/10/2014] [Indexed: 11/13/2022] Open
Abstract
We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1 specific protein families, and these include several broad activities: pyridoxine 5' phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid binding, and ribosomal components; in contrast, chromosome 2 specific protein families have only 66 Molecular Function GO terms and include many membrane-associated activities, such as ion channels, transmembrane transporters, and electron transport chain proteins. Thus, it appears that whilst there are many "housekeeping systems" encoded in chromosome 1, there are far fewer core functions found in chromosome 2. However, the presence of many membrane-associated encoded proteins in chromosome 2 is surprising.
Collapse
Affiliation(s)
- Oksana Lukjancenko
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark Lyngby, Denmark
| | - David W Ussery
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark Lyngby, Denmark ; Comparative Genomics Group, Oak Ridge National Laboratory, Biosciences Division Oak Ridge, TN, USA
| |
Collapse
|
24
|
Krin E, Cambray G, Mazel D. The superintegron integrase and the cassette promoters are co-regulated in Vibrio cholerae. PLoS One 2014; 9:e91194. [PMID: 24614503 PMCID: PMC3948777 DOI: 10.1371/journal.pone.0091194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/10/2014] [Indexed: 12/23/2022] Open
Abstract
Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI) and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter) partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Guillaume Cambray
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- CNRS, UMR 3525, Paris, France
- * E-mail:
| |
Collapse
|
25
|
REN CHUNFENG, ZHAO YONGJING, SHEN YAN. Analysis of the effect of integrons on drug-resistant Staphylococcus aureus by multiplex PCR detection. Mol Med Rep 2013; 7:719-24. [PMID: 23337960 PMCID: PMC3597458 DOI: 10.3892/mmr.2013.1284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/05/2012] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to detect class Ⅰ, II and III integrons using multiplex PCR, and to analyze the role that these integrons play in mediating multidrug-resistant Staphylococcus aureus (SA). The sensitivity of SA to 20 types of antibiotics was examined using the K-B method. A genomic DNA extraction kit was used for extracting genomic DNA and a high-purity 96 plasmid extraction kit was used for extracting plasmid DNA. Class Ⅰ, II and III integrons were amplified using multiplex PCR. Agarose gel electrophoresis was used for analysing amplification products. The positive rate of class Ⅰ and II integrons in the plasmid DNA from SA was higher compared to that of the genomic DNA. The positive rate of class Ⅰ integrons was highest in the group with multidrug resistance to amoxicillin/clavulanic acid, piperacillin/tazobactam, ciprofloxacin, tetracycline, rifampin, imipenem, cefazolin, cefuroxime, levofloxacin and gentamicin. As regards integron detection in the plasmids from drug-resistant SA strians obtained from sputum, blood, cerebrospinal fluid, drainage fluid, excretion and urine specimens, the difference in the detection rate of class Ⅰ integrons among the six types of specimens was significant. Multiplex PCR is an effective method to detect class Ⅰ, II and III integrons. The SA plasmid is the main carrier transferring integrons. Integrons mediate the formation of SA multidrug resistance.
Collapse
Affiliation(s)
- CHUNFENG REN
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - YONGJING ZHAO
- Zhengzhou Children’s Hospital, Zhengzhou, Henan 450053, P.R. China
| | - YAN SHEN
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
26
|
Marin MA, Vicente ACP. Architecture of the superintegron in Vibrio cholerae: identification of core and unique genes. F1000Res 2013; 2:63. [PMID: 25580216 PMCID: PMC4032106 DOI: 10.12688/f1000research.2-63.v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/20/2022] Open
Abstract
Background:
Vibriocholerae, the etiologic agent of cholera, is indigenous to aquatic environments. The
V. cholerae genome consists of two chromosomes; the smallest of these harbors a large gene capture and excision system called the superintegron (SI), of ~120 kbp. The flexible nature of the SI that results from gene cassette capture, deletion and rearrangement is thought to make it a hotspot of
V.cholerae diversity, but beyond the basic structure it is not clear if there is a core genome in the SI and if so how it is structured. The aim of this study was to explore the core genome structure and the differences in gene content among strains of
V. cholerae. Methods: From the complete genomes of seven
V.cholerae and one
Vibrio mimicus representative strains,
we recovered the SI sequences based on the locations of the structural gene
IntI4 and the
V.choleraerepeats. Analysis of the pangenome, including cluster analysis of functional genes, pangenome profile analysis, genetic variation analysis of functional genes, strain evolution analysis and function enrichment analysis of gene clusters, was performed using a pangenome analysis pipeline in addition to the R scripts, splitsTree4 and genoPlotR. Results and conclusions: Here, we reveal the genetic architecture of the
V. cholerae SI. It contains eight core genes when
V. mimicus is included and 21 core genes when only
V. cholerae strains are considered; many of them are present in several copies. The
V. cholerae SI has an open pangenome, which means that
V. cholerae may be able to import new gene cassettes to SI. The set of dispensable SI genes is influenced by the niche and type species. The core genes are distributed along the SI, apparently without a position effect.
Collapse
Affiliation(s)
- Michel A Marin
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Rio de Janeiro, 4365, PO Box 926 CEP 21045-900, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Rio de Janeiro, 4365, PO Box 926 CEP 21045-900, Brazil
| |
Collapse
|
27
|
Tennstedt T, Szczepanowski R, Braun S, Pühler A, Schlüter A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol Ecol 2012; 45:239-52. [PMID: 19719593 DOI: 10.1016/s0168-6496(03)00164-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment.
Collapse
Affiliation(s)
- Thomas Tennstedt
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
28
|
Bashir A, Klammer A, Robins WP, Chin CS, Webster D, Paxinos E, Hsu D, Ashby M, Wang S, Peluso P, Sebra R, Sorenson J, Bullard J, Yen J, Valdovino M, Mollova E, Luong K, Lin S, LaMay B, Joshi A, Rowe L, Frace M, Tarr CL, Turnsek M, Davis BM, Kasarskis A, Mekalanos JJ, Waldor MK, Schadt EE. A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol 2012; 30:701-707. [PMID: 22750883 DOI: 10.1038/nbt.2288] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/30/2012] [Indexed: 02/08/2023]
Abstract
Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lori Rowe
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Michael Frace
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Cheryl L Tarr
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Maryann Turnsek
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta GA 30333
| | - Brigid M Davis
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA.,Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute, Boston, MA
| | | | | | - Matthew K Waldor
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA.,Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute, Boston, MA
| | - Eric E Schadt
- Pacific Biosciences, Menlo Park, CA.,Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City
| |
Collapse
|
29
|
Abstract
As a major concern in public health, methicillin-resistant staphylococci (MRS) still remains one of the most prevalent pathogens that cause nosocomial infections throughout the world and has been recently labeled as a "super bug" in antibiotic resistance. Thus, surveillance and investigation on antibiotic resistance mechanisms involved in clinical MRS strains may raise urgent necessity and utmost significance. As a novel antibiotic resistance mechanism, class 1 integron has been identified as a primary source of antimicrobial resistance genes in Gram-negative organisms. However, most available studies on integrons had been limited within Gram-negative microbes, little is known for clinical Gram-positive bacteria. Based on series studies of systematic integrons investigation in hundreds of staphylococci strains during 2001-2006, this review concentrated on the latest development of class 1 integron in MRS isolates, including summary of prevalence and occurrence of class 1 integron, analysis of correlation between integron and antibiotic resistance, further demonstration of the role integrons play as antibiotic determinants, as well as origin and evolution of integron-associated gene cassettes during this study period.
Collapse
Affiliation(s)
- Zhenbo Xu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China; Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD 21201, USA
| | - Lin Li
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - Lei Shi
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Room #9209, 650W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Mansson M, Gram L, Larsen TO. Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 2011; 9:1440-1468. [PMID: 22131950 PMCID: PMC3225927 DOI: 10.3390/md9091440] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022] Open
Abstract
Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.
Collapse
Affiliation(s)
- Maria Mansson
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Lone Gram
- National Food Institute, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Thomas O. Larsen
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| |
Collapse
|
31
|
Siebor E, Neuwirth C. The new variant of Salmonella genomic island 1 (SGI1-V) from a Proteus mirabilis French clinical isolate harbours blaVEB-6 and qnrA1 in the multiple antibiotic resistance region. J Antimicrob Chemother 2011; 66:2513-20. [PMID: 21846670 DOI: 10.1093/jac/dkr335] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The clinical strain of Proteus mirabilis VB1248 isolated from a blood culture in August 2009 was multiresistant (i.e. resistant to β-lactams, fluoroquinolones, aminoglycosides and sulphonamides). We searched for the presence of a Salmonella genomic island 1 (SGI1). METHODS The whole genetic structure surrounding the genes involved in antibiotic resistance was characterized by PCR or gene walking followed by DNA sequencing. RESULTS The new variant SGI1-V (42.9 kb) was located downstream of the thdF chromosomal gene. Genes sharing homology with phage-related genes were detected on a structure of 8.3 kb located between the right junction of the SGI1-V and the hipB/hipA genes. Some genetic rearrangements occurred in the SGI1-V backbone: an insertion of 2349 bp within the open reading frame (ORF) S014, and a deletion of 3766 bp in the region spanning from ORFs S021 to S025 leading to the lack of ORFs S023 and S024. The multidrug resistance (MDR) region of 17.1 kb was located on a complex class 1 integron extremely different from those described so far. The cassette array included aacA4, aadB and dhfrA1. Adjacent to this classical structure, bla(VEB-6) was found flanked by 135 bp elements and bracketed by two 3'-conserved segments (3'-CS). Downstream of the second copy of 3'-CS, the qnrA1 gene was associated with common region 1. CONCLUSIONS We have identified in P. mirabilis the new variant SGI1-V containing the bla(VEB-6) and qnrA1 genes in the MDR region. This is the first report of an extended-spectrum β-lactamase-encoding gene and a qnr determinant conferring resistance to quinolones on an SGI1-like structure. It might constitute a source of spread of resistance to other bacterial species.
Collapse
Affiliation(s)
- Eliane Siebor
- Laboratory of Bacteriology, University Hospital of Dijon, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France
| | | |
Collapse
|
32
|
Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, Ploy MC, Barbé J, Mazel D, Erill I. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2011; 2:6. [PMID: 21529368 PMCID: PMC3108266 DOI: 10.1186/1759-8753-2-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/30/2011] [Indexed: 11/26/2022] Open
Abstract
Background Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. Results Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. Conclusions Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Collapse
Affiliation(s)
- Guillaume Cambray
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Émilie Guerin
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Sandra Da Re
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria, and VISAVET, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marie-Cécile Ploy
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Jordi Barbé
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| |
Collapse
|
33
|
Hasan NA, Grim CJ, Haley BJ, Chun J, Alam M, Taviani E, Hoq M, Munk AC, Saunders E, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Xie G, Nair GB, Huq A, Colwell RR. Comparative genomics of clinical and environmental Vibrio mimicus. Proc Natl Acad Sci U S A 2010; 107:21134-9. [PMID: 21078967 PMCID: PMC3000290 DOI: 10.1073/pnas.1013825107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Whether Vibrio mimicus is a variant of Vibrio cholerae or a separate species has been the subject of taxonomic controversy. A genomic analysis was undertaken to resolve the issue. The genomes of V. mimicus MB451, a clinical isolate, and VM223, an environmental isolate, comprise ca. 4,347,971 and 4,313,453 bp and encode 3,802 and 3,290 ORFs, respectively. As in other vibrios, chromosome I (C-I) predominantly contains genes necessary for growth and viability, whereas chromosome II (C-II) bears genes for adaptation to environmental change. C-I harbors many virulence genes, including some not previously reported in V. mimicus, such as mannose-sensitive hemagglutinin (MSHA), and enterotoxigenic hemolysin (HlyA); C-II encodes a variant of Vibrio pathogenicity island 2 (VPI-2), and Vibrio seventh pandemic island II (VSP-II) cluster of genes. Extensive genomic rearrangement in C-II indicates it is a hot spot for evolution and genesis of speciation for the genus Vibrio. The number of virulence regions discovered in this study (VSP-II, MSHA, HlyA, type IV pilin, PilE, and integron integrase, IntI4) with no notable difference in potential virulence genes between clinical and environmental strains suggests these genes also may play a role in the environment and that pathogenic strains may arise in the environment. Significant genome synteny with prototypic pre-seventh pandemic strains of V. cholerae was observed, and the results of phylogenetic analysis support the hypothesis that, in the course of evolution, V. mimicus and V. cholerae diverged from a common ancestor with a prototypic sixth pandemic genomic backbone.
Collapse
Affiliation(s)
| | - Christopher J. Grim
- Maryland Pathogen Research Institute and
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742
| | | | - Jongsik Chun
- School of Biological Sciences and
- Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Munirul Alam
- International Vaccine Institute, Seoul, 151-818, Republic of Korea;International Center for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh
| | | | - Mozammel Hoq
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - A. Christine Munk
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Elizabeth Saunders
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Thomas S. Brettin
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - David C. Bruce
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Jean F. Challacombe
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - J. Chris Detter
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Cliff S. Han
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Gary Xie
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - G. Balakrish Nair
- National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India
| | - Anwar Huq
- Maryland Pathogen Research Institute and
| | - Rita R. Colwell
- Maryland Pathogen Research Institute and
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742
| |
Collapse
|
34
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
35
|
Chowdhury N, Asakura M, Neogi S, Hinenoya A, Haldar S, Ramamurthy T, Sarkar B, Faruque S, Yamasaki S. Development of simple and rapid PCR‐fingerprinting methods for
Vibrio cholerae
on the basis of genetic diversity of the superintegron. J Appl Microbiol 2010; 109:304-12. [DOI: 10.1111/j.1365-2672.2009.04658.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. Chowdhury
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - M. Asakura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Research and Development Centre, Fuso Pharmaceutical Industries Ltd., Osaka, Japan
| | - S.B. Neogi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - A. Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - S. Haldar
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - B.L. Sarkar
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - S.M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - S. Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
36
|
Vesth T, Wassenaar TM, Hallin PF, Snipen L, Lagesen K, Ussery DW. On the origins of a Vibrio species. MICROBIAL ECOLOGY 2010; 59:1-13. [PMID: 19830476 PMCID: PMC2807590 DOI: 10.1007/s00248-009-9596-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/17/2009] [Indexed: 05/28/2023]
Abstract
Thirty-two genome sequences of various Vibrionaceae members are compared, with emphasis on what makes V. cholerae unique. As few as 1,000 gene families are conserved across all the Vibrionaceae genomes analysed; this fraction roughly doubles for gene families conserved within the species V. cholerae. Of these, approximately 200 gene families that cluster on various locations of the genome are not found in other sequenced Vibrionaceae; these are possibly unique to the V. cholerae species. By comparing gene family content of the analysed genomes, the relatedness to a particular species is identified for two unspeciated genomes. Conversely, two genomes presumably belonging to the same species have suspiciously dissimilar gene family content. We are able to identify a number of genes that are conserved in, and unique to, V. cholerae. Some of these genes may be crucial to the niche adaptation of this species.
Collapse
Affiliation(s)
- Tammi Vesth
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
| | - Trudy M. Wassenaar
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany
| | - Peter F. Hallin
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Lars Snipen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Biostatistics, Department of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Karin Lagesen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Oslo, Norway
| | - David W. Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
Kiiru JN, Saidi SM, Goddeeris BM, Wamae NC, Butaye P, Kariuki SM. Molecular characterisation of Vibrio cholerae O1 strains carrying an SXT/R391-like element from cholera outbreaks in Kenya: 1994-2007. BMC Microbiol 2009; 9:275. [PMID: 20040104 PMCID: PMC2806261 DOI: 10.1186/1471-2180-9-275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 12/29/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Over the last decade, cholera outbreaks in parts of Kenya have become common. Although a number of recent studies describe the epidemiology of cholera in Kenya, there is paucity of information concerning the diversity and occurrence of mobile genetic elements in Vibrio cholerae strains implicated in these outbreaks. A total of 65 Vibrio cholerae O1 El Tor serotype Inaba isolated between 1994 and 2007 from various outbreaks in Kenya were investigated for mobile genetic elements including integrons, transposons, the integrating conjugative elements (ICEs), conjugative plasmids and for their genotypic relatedness. RESULTS All the strains were haemolytic on 5% sheep blood and positive for the Vibrio cholerae El Tor-specific haemolysin toxin gene (hylA) by PCR. They all contained strB, sulII, floR and the dfrA1 genes encoding resistance to streptomycin, sulfamethoxazole, chloramphenicol and trimethoprim respectively. These genes, together with an ICE belonging to the SXT/R391 family were transferable to the rifampicin-resistant E. coli C600 en bloc. All the strains were negative for integron class 1, 2 and 3 and for transposase gene of transposon Tn7 but were positive for integron class 4 and the trpM gene of transposon Tn21. No plasmids were isolated from any of the 65 strains. All the strains were also positive for all V. cholera El Tor pathogenic genes except the NAG- specific heat-stable toxin (st) gene. None of the strains were positive for virulence genes associated with the V. cholerae classical biotype. All the strains were positive for El Tor-specific CTXphi bacteriophage rstrR repressor gene (CTXETPhi) but negative for the Classical, Calcutta, and the Environmental repressor types. Pulse Field Gel Electrophoresis (PFGE) showed that regardless of the year of isolation, all the strains bearing the SXT element were clonally related. CONCLUSIONS This study demonstrates that the V. cholerae O1 strains carrying an SXT/R391-like element implicated in recent cholera outbreaks in Kenya has not changed significantly between 1994 and 2007 and are clonally related.
Collapse
Affiliation(s)
- John N Kiiru
- Centre for Microbiology Research, Kenya Medical Research Institute, PO Box 43640, Nairobi, Kenya.
| | | | | | | | | | | |
Collapse
|
38
|
Presence of dfr6 gene cassette in superintegron of non-O1/non-O139 strain of Vibrio cholerae. Antimicrob Agents Chemother 2009; 53:4959-60. [PMID: 19704128 DOI: 10.1128/aac.00540-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Abstract
Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.
Collapse
Affiliation(s)
- Dean A Rowe-Magnus
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario M4N 3N5, Canada.
| |
Collapse
|
40
|
Joss MJ, Koenig JE, Labbate M, Polz MF, Gillings MR, Stokes HW, Doolittle WF, Boucher Y. ACID: annotation of cassette and integron data. BMC Bioinformatics 2009; 10:118. [PMID: 19383137 PMCID: PMC2674596 DOI: 10.1186/1471-2105-10-118] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 04/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although integrons and their associated gene cassettes are present in ~10% of bacteria and can represent up to 3% of the genome in which they are found, very few have been properly identified and annotated in public databases. These genetic elements have been overlooked in comparison to other vectors that facilitate lateral gene transfer between microorganisms. DESCRIPTION By automating the identification of integron integrase genes and of the non-coding cassette-associated attC recombination sites, we were able to assemble a database containing all publicly available sequence information regarding these genetic elements. Specialists manually curated the database and this information was used to improve the automated detection and annotation of integrons and their encoded gene cassettes. ACID (annotation of cassette and integron data) can be searched using a range of queries and the data can be downloaded in a number of formats. Users can readily annotate their own data and integrate it into ACID using the tools provided. CONCLUSION ACID is a community resource providing easy access to annotations of integrons and making tools available to detect them in novel sequence data. ACID also hosts a forum to prompt integron-related discussion, which can hopefully lead to a more universal definition of this genetic element.
Collapse
Affiliation(s)
- Michael J Joss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Labbate M, Case RJ, Stokes HW. The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol 2009; 532:103-25. [PMID: 19271181 DOI: 10.1007/978-1-60327-853-9_6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The integron includes a site-specific recombination system capable of integrating and expressing genes contained in structures called mobile gene cassettes. Integrons were originally identified on mobile elements from pathogenic bacteria and were found to be a major reservoir of antibiotic-resistance genes. Integrons are now known to be ancient structures that are phylogenetically diverse and, to date, have been found in approximately 9% of sequenced bacterial genomes. Overall, gene diversity in cassettes is extraordinarily high, suggesting that the integron/gene cassette system has a broad role in adaptation rather than being confined to simply conferring resistance to antibiotics. In this chapter, we provide a review of the integron/gene cassette system highlighting characteristics associated with this system, diversity of elements contained within it, and their importance in driving bacterial evolution and consequently adaptation. Ideas on the evolution of gene cassettes and gene cassette arrays are discussed.
Collapse
Affiliation(s)
- Maurizio Labbate
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
42
|
Quiroga C, Roy PH, Centrón D. The S.ma.I2 class C group II intron inserts at integron attC sites. MICROBIOLOGY-SGM 2008; 154:1341-1353. [PMID: 18451043 DOI: 10.1099/mic.0.2007/016360-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously found the class C S.ma.I2 group II (GII) intron in Serratia marcescens SCH909 inserted into the variable region of a class 1 integron within the attC site of the ant(2'')-Ia gene cassette. Here, we demonstrate that this ant(2'')-Ia : : S.ma.I2 gene cassette is a recombinationally active element despite the presence of the S.ma.I2 intron. In addition, S.ma.I2 is an active GII intron capable of performing self-splicing and invading specific target sites. Intron homing to a DNA target site is RecA-independent and recognizes the intron binding site (IBS)1 and IBS3 regions, formed by the 5' TTGTT 3' consensus sequence located within the inverse core site of attC integrons. Our results also indicate that the process for S.ma.I2 intron mobilization involves a secondary structure provided by the folding of the complete attC site. Moreover, phylogenetic analysis of the class C GII introns showed a clear divergent clade formed by introns that insert within specific sites usually associated with lateral gene transfer.
Collapse
Affiliation(s)
- Cecilia Quiroga
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada.,Departamento de Microbiología, Inmunología y Parasitología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paul H Roy
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Canada.,Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Daniela Centrón
- Departamento de Microbiología, Inmunología y Parasitología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Boucher Y, Labbate M, Koenig JE, Stokes HW. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 2007; 15:301-9. [PMID: 17566739 DOI: 10.1016/j.tim.2007.05.004] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/13/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Integrons facilitate the capture of potentially adaptive exogenous genetic material by their host genomes. It is now clear that integrons are not limited to the clinical contexts in which they were originally discovered because approximately 10% of bacterial genomes that have been partially or completely sequenced harbour this genetic element. This wealth of sequence information has revealed that integrons are not only much more phylogenetically diverse than previously thought but also more mobilizable, with many integrons having been subjected to frequent lateral gene transfer throughout their evolutionary history. This indicates that the genetic characteristics that make integrons such efficient vectors for the spread of antibiotic resistance genes have been associated with these elements since their earliest origins. Here, we give an overview of the structural and phylogenetic diversity of integrons and describe evolutionary events that have contributed to the success of these genetic elements.
Collapse
Affiliation(s)
- Yan Boucher
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | |
Collapse
|
44
|
Abstract
Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.
Collapse
Affiliation(s)
- H Harbottle
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland 20708, USA.
| | | | | | | |
Collapse
|
45
|
Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 2007; 63:1588-605. [PMID: 17367382 DOI: 10.1111/j.1365-2958.2007.05613.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Superintegrons (SIs) are chromosomal genetic elements containing assemblies of genes, each flanked by a recombination sequence (attC site) targeted by the integron integrase. SIs may contain hundreds of attC sites and intrinsic instability is anticipated; yet SIs are remarkably stable. This implies that either selective pressure maintains the genes or mechanisms exist which favour their persistence in the absence of selection. Toxin/antitoxin (TA) systems encode a stable toxin and a specific, unstable antitoxin. Once activated, the continued synthesis of the unstable antitoxin is necessary for cell survival. A bioinformatic search of accessible microbial genomes for SIs and TA systems revealed that large SIs harboured TA gene cassettes while smaller SIs did not. We demonstrated the function of TA loci in different genomic contexts where large-scale deletions can occur; in SIs and in a 165 kb dispensable region of the Escherichia coli genome. When devoid of TA loci, large-scale genome loss was evident in both environments. The inclusion of two TA loci, relBE1 and parDE1, which we identified in the Vibrio vulnificus SI rendered these environments refractory to gene loss. Thus, chromosomal TA loci can stabilize massive SI arrays and limit the extensive gene loss that is a hallmark of reductive evolution.
Collapse
Affiliation(s)
- Silvia Szekeres
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario, M4N 3N5, Canada
| | | | | | | | | |
Collapse
|
46
|
Yildiz FH. Processes controlling the transmission of bacterial pathogens in the environment. Res Microbiol 2007; 158:195-202. [PMID: 17350808 DOI: 10.1016/j.resmic.2006.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/27/2006] [Accepted: 12/01/2006] [Indexed: 11/20/2022]
Abstract
Many pathogens in the environment can be transmitted to human populations and cause outbreaks and epidemics. Transmission is a multifactorial process influenced by the physiology of the pathogen as it exits its initial host, the mechanisms it uses for surviving outside the host, the physiology of the pathogen as it enters the next susceptible host and its ability to establish a successful infection. Few studies so far have focused on the processes responsible for modulating microbial survival in non-host environments and the transmission dynamics between infected and susceptible hosts, as well as the interplay between hosts. A better understanding of these mechanisms is thus necessary for predicting and preventing future outbreaks.
Collapse
Affiliation(s)
- Fitnat H Yildiz
- Department of Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
47
|
Abstract
Integrons are assembly platforms - DNA elements that acquire open reading frames embedded in exogenous gene cassettes and convert them to functional genes by ensuring their correct expression. They were first identified by virtue of their important role in the spread of antibiotic-resistance genes. More recently, our understanding of their importance in bacterial genome evolution has broadened with the discovery of larger integron structures, termed superintegrons. These DNA elements contain hundreds of accessory genes and constitute a significant fraction of the genomes of many bacterial species. Here, the basic biology of integrons and superintegrons, their evolutionary history and the evidence for the existence of a novel recombination pathway is reviewed.
Collapse
Affiliation(s)
- Didier Mazel
- Unité Plasticité du Génome Bactérien- CNRS URA 2171, Department Génomes et Génétique, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
48
|
Chen Z, Schneider TD. Comparative analysis of tandem T7-like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands. Nucleic Acids Res 2006; 34:1133-47. [PMID: 16493139 PMCID: PMC1380254 DOI: 10.1093/nar/gkj511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on molecular information theory, 10 T7-like promoter models were built for the T7 group of phages and used to scan their host genomes and closely related genomes. 38 genomes were scanned and 12 clusters of tandem promoters were identified in nine enteropathogens. Comparative analysis of these tandem promoter-bearing regions reveals that they are similar to each other, forming prophage-like islands of 4-13 kb. Each island appears to contain two or three tandem T7-like promoters within a stretch of 150-620 bases, but there are no corresponding RNA polymerase (RNAP) genes. The promoters would transcribe two to five putative phage-related proteins, but none of these resemble known phage structural proteins. An integrase belonging to the Int family of site-specific recombinases is encoded upstream of the tandem promoters. A direct repeat of 17-24 bases was found on the ends of all 12 islands. Comparative analysis of the islands shows that these islands appear to have recombined with each other. These results suggest that the islands could encode a group of satellite phages. Activation and function of the islands may depend on transcription by a T7-like RNAP after infection by a T7-like phage or foreign DNA that encodes a T7-like RNAP.
Collapse
Affiliation(s)
| | - Thomas D. Schneider
- To whom correspondence should be addressed. Tel: +1 301 846 5581; Fax: +1 301 846 5598;
| |
Collapse
|
49
|
Boucher Y, Nesbø CL, Joss MJ, Robinson A, Mabbutt BC, Gillings MR, Doolittle WF, Stokes HW. Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evol Biol 2006; 6:3. [PMID: 16417647 PMCID: PMC1382264 DOI: 10.1186/1471-2148-6-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 01/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be). Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains. RESULTS The complete Vibrio sp. DAT722 integron cassette array was determined through the streamlined approach described here. To place it in an evolutionary context, we compare the DAT722 array to known vibrio arrays and performed phylogenetic analyses for all of its components (integrase, 59-be sites, gene cassette encoded genes). It differs extensively in terms of genomic context as well as gene cassette content and organization. The phylogenetic tree of the 59-be sites collectively found in the Vibrio gene cassette pool suggests frequent transfer of cassettes within and between Vibrio species, with slower transfer rates between more phylogenetically distant relatives. We also identify multiple cases where non-integron chromosomal genes seem to have been assembled into gene cassettes and others where cassettes have been inserted into chromosomal locations outside integrons. CONCLUSION Our systematic approach greatly facilitates the isolation and annotation of large integrons gene cassette arrays. Comparative analysis of the Vibrio sp. DAT722 integron obtained through this approach to those found in other vibrios confirms the role of this genetic element in promoting lateral gene transfer and suggests a high rate of gene gain/loss relative to most other loci on vibrio chromosomes. We identify a relationship between the phylogenetic distance separating two species and the rate at which they exchange gene cassettes, interactions between the non-mobile portion of bacterial genomes and the vibrio gene cassette pool as well as intragenomic translocation events of integrons in vibrios.
Collapse
Affiliation(s)
- Yan Boucher
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Camilla L Nesbø
- Genome Atlantic, Dalhousie University, Halifax, Nova Scotia, 5859 University Avenue, B3H 4H7, Canada
| | - Michael J Joss
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Robinson
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Bridget C Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - W Ford Doolittle
- Genome Atlantic, Dalhousie University, Halifax, Nova Scotia, 5859 University Avenue, B3H 4H7, Canada
| | - HW Stokes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
50
|
Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 2005; 23:723-41. [PMID: 15585131 DOI: 10.1089/dna.2004.23.723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio cholerae, a Gram-negative bacterium belonging to the gamma-subdivision of the family Proteobacteriaceae is the etiologic agent of cholera, a devastating diarrheal disease which occurs frequently as epidemics. Any bacterial species encountering a broad spectrum of environments during the course of its life cycle is likely to develop complex regulatory systems and stress adaptation mechanisms to best survive in each environment encountered. Toxigenic V. cholerae, which has evolved from environmental nonpathogenic V. cholerae by acquisition of virulence genes, represents a paradigm for this process in that this organism naturally exists in an aquatic environment but infects human beings and cause cholera. The V. cholerae genome, which is comprised of two independent circular mega-replicons, carries the genetic determinants for the bacterium to survive both in an aquatic environment as well as in the human intestinal environment. Pathogenesis of V. cholerae involves coordinated expression of different sets of virulence associated genes, and the synergistic action of their gene products. Although the acquisition of major virulence genes and association between V. cholerae and its human host appears to be recent, and reflects a simple pathogenic strategy, the establishment of a productive infection involves the expression of many more genes that are crucial for survival and adaptation of the bacterium in the host, as well as for its onward transmission and epidemic spread. While a few of the virulence gene clusters involved directly with cholera pathogenesis have been characterized, the potential exists for identification of yet new genes which may influence the stress adaptation, pathogenesis, and epidemiological characteristics of V. cholerae. Coevolution of bacteria and mobile genetic elements (plasmids, transposons, pathogenicity islands, and phages) can determine environmental survival and pathogenic interactions between bacteria and their hosts. Besides horizontal gene transfer mediated by genetic elements and phages, the evolution of pathogenic V. cholerae involves a combination of selection mechanisms both in the host and in the environment. The occurrence of periodic epidemics of cholera in endemic areas appear to enhance this process.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh.
| | | | | |
Collapse
|