1
|
Li Y, Huang Y, Kang M, Chen X, Liu L, Zhao H, Chen Z, Xiao M, Xu Y, Yi Q, Zhou M. Microsatellite markers for genotyping of Kodamaea ohmeri: Demonstrating outbreaks based on a multicenter surveillance study in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105547. [PMID: 38159712 DOI: 10.1016/j.meegid.2023.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Kodamaea ohmeri, an emerging human pathogen, caused both sporadic and nosocomial infections among immunocompromised people with high mortality. However, there is limited research on the molecular epidemiology of K. ohmeri. A total of fifty microsatellite loci were designed based on K. ohmeri type strain NRRL Y-1932 and three loci were finally selected for microsatellite analysis. Non-duplicated K. ohmeri isolates and strains of other species were collected across China as a part of CHIF-NET program for sensitivity and specificity verification. Antifungal susceptibility was determined using Sensititre YeastOne TM YO10. The three loci (P10, P11 and P26), with a cumulative discriminatory power of 0.98, exhibited a prospective specificity and reproducibility in the PCR of 92 K. ohmeri strains from different hospitals. A total of 54 microsatellite types (MT) were identified and most of them distributed sporadically. However, six strains of MT12 clustered in HZ hospital and were isolated in the same department within two months, indicating a potential outbreak. Of seven isolates exhibited MIC values of >8 mg/L for fluconazole, three isolates from LR hospital shared the same genotype of MT44. Herein, we established a set of microsatellite loci for K. ohmeri, as a rapid and specific tool for genotyping K. ohmeri, and identified several potential clusters. This study will help us better understand the molecular epidemiology of the emerging pathogen K. ohmeri.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuyan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Kang
- Department of Laboratory Medicine, West China hospital Sichuan University, China
| | - Xiangyang Chen
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), China
| | - Liwen Liu
- Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Qiaolian Yi
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| | - Menglan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| |
Collapse
|
2
|
Descorps-Declère S, Richard GF. Megasatellite formation and evolution in vertebrate genes. Cell Rep 2022; 40:111347. [PMID: 36103826 DOI: 10.1016/j.celrep.2022.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Since formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes. Two bursts occurred, one after the radiation between Agnatha and Gnathostomata fishes and the second one in therian mammals. Megasatellites are enriched in subtelomeric regions and frequently encoded in genes involved in transcription regulation, intracellular trafficking, and cell membrane metabolism, reminiscent of what is observed in fungus genomes. The presence of many introns within young megasatellites suggests that an exon-intron DNA segment is first duplicated and amplified before accumulation of mutations in intronic parts partially erases the megasatellite in such a way that it becomes detectable only in exons. Our results suggest that megasatellite formation and evolution is a dynamic and still ongoing process in vertebrate genomes.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25 rue du Dr Roux, 75015 Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Natural & Synthetic Genome Instabilities, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
3
|
The Potential of HTS Approaches for Accurate Genotyping in Grapevine ( Vitis vinifera L.). Genes (Basel) 2020; 11:genes11080917. [PMID: 32785184 PMCID: PMC7464945 DOI: 10.3390/genes11080917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
The main challenge associated with genotyping based on conventional length polymorphisms is the cross-laboratory standardization of allele sizes. This step requires the inclusion of standards and manual sizing to avoid false results. Capillary electrophoresis (CE) approaches limit the information to the length polymorphism and do not allow the determination of a complete marker sequence. As an alternative, high-throughput sequencing (HTS) offers complete information regarding marker sequences and their flanking regions. In this work, we investigated the suitability of a semi-quantitative sequencing approach for microsatellite genotyping using Illumina paired-end technology. Twelve microsatellite loci that are well established for grapevine CE typing were analysed on 96 grapevine samples from six different countries. We redesigned primers to the length of the amplicon for short sequencing (~100 bp). The primer pair was flanked with a 10 bp overhang for the introduction of barcodes on both sides of the amplicon to enable high multiplexing. The highest data peaks were determined as simple sequence repeat (SSR) alleles and compared with the CE dataset based on 12 reference samples. The comparison showed that HTS SSR genotyping can successfully replace the CE system in further experiments. We believe that, with next-generation sequencing, genotyping can be improved in terms of its speed, accuracy, and price.
Collapse
|
4
|
Mosbach V, Viterbo D, Descorps-Declère S, Poggi L, Vaysse-Zinkhöfer W, Richard GF. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions. PLoS Genet 2020; 16:e1008924. [PMID: 32673314 PMCID: PMC7413560 DOI: 10.1371/journal.pgen.1008924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/07/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
Microsatellites are short tandem repeats, ubiquitous in all eukaryotes and represent ~2% of the human genome. Among them, trinucleotide repeats are responsible for more than two dozen neurological and developmental disorders. Targeting microsatellites with dedicated DNA endonucleases could become a viable option for patients affected with dramatic neurodegenerative disorders. Here, we used the Streptococcus pyogenes Cas9 to induce a double-strand break within the expanded CTG repeat involved in myotonic dystrophy type 1, integrated in a yeast chromosome. Repair of this double-strand break generated unexpected large chromosomal deletions around the repeat tract. These deletions depended on RAD50, RAD52, DNL4 and SAE2, and both non-homologous end-joining and single-strand annealing pathways were involved. Resection and repair of the double-strand break (DSB) were totally abolished in a rad50Δ strain, whereas they were impaired in a sae2Δ mutant, only on the DSB end containing most of the repeat tract. This observation demonstrates that Sae2 plays significant different roles in resecting a DSB end containing a repeated and structured sequence as compared to a non-repeated DSB end. In addition, we also discovered that gene conversion was less efficient when the DSB could be repaired using a homologous template, suggesting that the trinucleotide repeat may interfere with gene conversion too. Altogether, these data show that SpCas9 may not be the best choice when inducing a double-strand break at or near a microsatellite, especially in mammalian genomes that contain many more dispersed repeated elements than the yeast genome. With the discovery of highly specific DNA endonucleases such as TALEN and CRISPR-Cas systems, gene editing has become an attractive approach to address genetic disorders. Myotonic dystrophy type 1 (Steinert disease) is due to a large expansion of a CTG trinucleotide repeat in the DMPK gene. At the present time, despite numerous therapeutic attempts, this dramatic neurodegenerative disorder still has no cure. In the present work, we tried to use the Cas9 endonuclease to induce a double-strand break within the expanded CTG repeat of the DMPK gene integrated in the yeast genome. Surprisingly, this break induced chromosomal deletions around the repeat tract. These deletions were local and involved non-homologous joining of the two DNA ends, or more extensive involving homologous recombination between repeated elements upstream and downstream the break. Using yeast genetics, we investigated the genetic requirements for these deletions and found that the triplet repeat tract altered the capacity of the repair machinery to faithfully repair the double-strand break. These results have implications for future gene therapy approaches in human patients.
Collapse
Affiliation(s)
| | | | - Stéphane Descorps-Declère
- Institut Pasteur, CNRS, UMR3525, Paris, France
- Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Paris, France
| | - Lucie Poggi
- Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Universités, Collège doctoral, Paris, France
| | - Wilhelm Vaysse-Zinkhöfer
- Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Universités, Collège doctoral, Paris, France
| | | |
Collapse
|
5
|
Kwong M, Pemberton TJ. Sequence differences at orthologous microsatellites inflate estimates of human-chimpanzee differentiation. BMC Genomics 2014; 15:990. [PMID: 25407736 PMCID: PMC4253012 DOI: 10.1186/1471-2164-15-990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Microsatellites---contiguous arrays of 2–6 base-pair motifs---have formed the cornerstone of population-genetic studies for over two decades. Their genotype data typically takes the form of PCR fragment lengths obtained using locus-specific primer pairs to amplify the genomic region encompassing the microsatellite. Recently, we reported a dataset of 5,795 human and 84 chimpanzee individuals with genotypes at 246 human-derived autosomal microsatellites as a resource to facilitate interspecies comparisons. A major assumption underlying this dataset is that PCR amplicons at orthologous microsatellites are commensurable between species. Results We find this assumption to be frequently incorrect owing to discordance in microsatellite organization and variability, as well as nontrivial length imbalances caused by small species-specific indels in microsatellite flanking sequences. Converting PCR fragment lengths into the repeat numbers they represent at 138 microsatellites whose organization and variability was found to be highly similar in both species, we show that interspecies incommensurability among PCR amplicons can inflate FST and DPS estimates by up to 10.6%. Separate investigations of determinants of microsatellite variability in humans and chimpanzees uncover similar patterns with mean and maximum numbers of repeats, as well as numbers and ranges of distinct alleles, all important factors in predicting heterozygosity. In contrast, across microsatellites, numbers of repeats were significantly smaller in chimpanzees than in humans, while numbers and ranges of distinct alleles were instead larger. Conclusions Our findings have fundamental implications for interspecies comparisons using microsatellites and offer new opportunities for more accurate comparisons of patterns of human and chimpanzee genetic variation in numerous areas of application. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-990) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
New polymorphic microsatellite markers able to distinguish among Candida parapsilosis sensu stricto isolates. J Clin Microbiol 2010; 48:1677-82. [PMID: 20220157 DOI: 10.1128/jcm.02151-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the Candida species causing bloodstream infections, Candida parapsilosis is one of the most frequently isolated. The objective of the present work was the identification of new microsatellite loci able to distinguish among C. parapsilosis isolates. DNA sequences with trinucleotide repeats were selected from the C. parapsilosis genome database. PCR primer sets flanking the microsatellite repeats were designed and tested with 20 independent isolates. On the basis of the amplification efficiency, specificity, and observed polymorphism, four of the sequences were selected for strain typing. Two hundred thirty-three independent C. parapsilosis sensu stricto isolates were genotyped by using these markers. The polymorphic loci exhibited from 20 to 42 alleles and 39 to 92 genotypes. In a multiplex analysis, 192 genotypes were obtained and the combined discriminatory power of the four microsatellites was 0.99. Reproducibility was demonstrated by submission of subcultures of 4 isolates each, in triplicate, interspersed with unique numbers among a group of 30 isolates for blind testing. Comparison of the genotypes obtained by microsatellite analysis and those obtained by randomly amplified polymorphic DNA analysis, restriction fragment length polymorphism analysis, and internal transcribed sequence grouping was performed and showed that the microsatellite method could distinguish individual isolates; none of the other methods could do that. Related species, C. orthopsilosis and C. metapsilosis, were not confused with C. parapsilosis sensu stricto. These new microsatellites are a valuable tool for use for the differentiation of C. parapsilosis sensu stricto strains, vital in epidemiology to answer questions of strain relatedness and determine pathways of transmission.
Collapse
|
7
|
Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg NA. Sequence determinants of human microsatellite variability. BMC Genomics 2009; 10:612. [PMID: 20015383 PMCID: PMC2806349 DOI: 10.1186/1471-2164-10-612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. RESULTS Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length), under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. CONCLUSIONS These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
8
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
9
|
Schuller D, Pereira L, Alves H, Cambon B, Dequin S, Casal M. Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments. Yeast 2007; 24:625-36. [PMID: 17534867 DOI: 10.1002/yea.1496] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One hundred isolates of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 were recovered from spontaneous fermentations carried out with grapes collected from vineyards located close to wineries in the Vinho Verde wine region of Portugal. Isolates were differentiated based on their mitochondrial DNA restriction patterns and the evaluation of genetic polymorphisms was carried out by microsatellite analysis, interdelta sequence typing and pulsed-field gel electrophoresis (PFGE). Genetic patterns were compared to those obtained for 30 isolates of the original commercialized Zymaflore VL1 strain. Among the 100 recovered isolates we found a high percentage of chromosomal size variations, most evident for the smaller chromosomes III and VI. Complete loss of heterozygosity was observed for two isolates that had also lost chromosomal heteromorphism; their growth and fermentative capacity in a synthetic must medium was also affected. A considerably higher number of variant patterns for interdelta sequence amplifications was obtained for grape-derived strains compared to the original VL1 isolates. Our data show that the long-term presence of strain VL1 in natural grapevine environments induced genetic changes that can be detected using different fingerprinting methods. The observed genetic changes may reflect adaptive mechanisms to changed environmental conditions that yeast cells encounter during their existence in nature.
Collapse
Affiliation(s)
- Dorit Schuller
- Centro de Biologia (CB-UM), Departamento de Biologia, Universidade do Minho, Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
10
|
Mouhamadou B, Férandon C, Chazoule S, Barroso G. Unusual accumulation of polymorphic microsatellite loci in a specific region of the mitochondrial genome of two mushroom-forming Agrocybe species. FEMS Microbiol Lett 2007; 272:276-81. [PMID: 17559401 DOI: 10.1111/j.1574-6968.2007.00771.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cob/tRNA(Tyr) mitochondrial regions of Agrocybe aegerita and of the related species Agrocybe chaxingu display an unusual clustering of four microsatellite loci constituted by motifs of one to six nucleotides whose number of repeats varied from three to 18. In A. chaxingu, these microsatellite loci are followed by a small region bearing one additional microsatelite and one minisatellite locus constituted by an octanucleotide motif repeated 13-18 times. In A. aegerita, this latter region is deleted. This is the first evidence of such an accumulation of microsatellites in mitochondrial genomes. The analyses of the microsatellite loci in 11 A. aegerita and in four A. chaxingu wild strains have shown extensive intraspecific and interspecific variations in the number of tandem repeats (VNTRs), suggesting that these loci could represent powerful molecular markers for strain fingerprinting. Up to 23 different alleles were present in the 15 Agrocybe studied strains, allowing the definition of 12 different haplotypes.
Collapse
Affiliation(s)
- Bello Mouhamadou
- UMR 5234 CNRS--Université Victor Segalen Bordeaux 2, Département 1 Réplication et Expression Génétique des Génomes Eucaryotes, Bactériens et Viraux, Bordeaux, France
| | | | | | | |
Collapse
|
11
|
Walczak E, Czaplińska A, Barszczewski W, Wilgosz M, Wojtatowicz M, Robak M. RAPD with microsatellite as a tool for differentiation of Candida genus yeasts isolated in brewing. Food Microbiol 2007; 24:305-12. [PMID: 17188210 DOI: 10.1016/j.fm.2006.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/01/2006] [Accepted: 04/01/2006] [Indexed: 11/29/2022]
Abstract
Fifteen wild yeast strains were isolated in two factories of a lager brewing company in Poland. Their identification with API 32C system showed mainly the presence of Candida sake species (7/15). To differentiate the isolates, randomly amplified polymorphic DNA (RAPD) with (GTG)(5), (GAC)(5), (GACA)(4) microsatellite primers and M13 core sequence (5'-GAG GGT GGC GGT TCT-3') were chosen. The results of patterns similarity are presented as dendrograms for each RAPD analysis and for overall patterns. On the overall patterns, all isolates identified as C. sake, except Strain No. 1, were regrouped in one cluster. Collection strain C. sake CBS 617 was similar in 46% to the cluster with six isolates (Strain Nos. 3, 6, 8, 11, 13, 14). The second reference strain C. sake CBS 159 and the Strain No. 1 were regrouped with other Candida species (collection strains) showing, respectively, only 20% and 42% of similarity to other C. sake strains. The similarity based on the overall dendrogram between isolate Nos. 3, 6, 8, 11, 13, 14 and C. sake CBS 617 was 49%. Between those strains and other Candida, the similarity was only 37%.
Collapse
Affiliation(s)
- Ewa Walczak
- Department of Biotechnology and Food Microbiology, Faculty of Food Science Agricultural University of Wrocław, Norwida 25, 50-375 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Lasker BA, Butler G, Lott TJ. Molecular genotyping of Candida parapsilosis group I clinical isolates by analysis of polymorphic microsatellite markers. J Clin Microbiol 2006; 44:750-9. [PMID: 16517850 PMCID: PMC1393075 DOI: 10.1128/jcm.44.3.750-759.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida parapsilosis, a pathogenic yeast, is composed of three newly designated genomic species that are physiologically and morphologically indistinguishable. Nosocomial infections caused by group I C. parapsilosis are often associated with the breakdown of infection control practices and the contamination of medical devices, solutions, and indwelling catheters. Due to the low levels of nucleotide sequence variation that are observed, an investigation of the size polymorphisms in loci harboring microsatellite repeat sequences was applied for the typing of C. parapsilosis group I isolates. PCR primer sets that flank the microsatellite repeats for seven loci were designed. Following amplification by PCR, the size of each amplification product was determined automatically by capillary electrophoresis. A total of 42 C. parapsilosis group I isolates were typed by microsatellite analysis, and their profiles were compared to the hybridization profiles obtained by use of the Cp3-13 DNA probe. A high degree of discrimination (discriminatory power = 0.971) was observed by microsatellite analysis. The number of different alleles per locus ranged from 14 for locus B to 5 for locus C. Microsatellite analysis detected 30 different microsatellite genotypes, with 24 genotypes represented by a single isolate. Comparison of the genotypes obtained by microsatellite analysis and those obtained by analysis of the Cp3-13 hybridization profiles showed that they were similar, and these methods were able to identify related and unrelated isolates. Some discrepancies were observed between the methods and may be due to higher mutation rates and/or homoplasy by microsatellite markers. Identical results were observed between microsatellite analysis and Cp3-13 DNA hybridization profile analysis for C. parapsilosis isolates obtained from two patients, demonstrating the reproducibilities of the methods in vivo. Identical microsatellite profiles were observed for isolates displaying different phenotypic switching morphologies. Indistinguishable Cp3-13 DNA hybridization profiles were observed for six epidemiologically related isolates; however, only three of six primary isolates had identical microsatellite profiles. Size variation at a single locus was observed for three of six isolates obtained either after the outbreak period or from a different body site, suggesting the potential of the method to detect microevolutionary events. Interestingly, for most loci a single allele per strain was observed; in contrast, two alleles per locus were observed for some strains, and consistent with the findings for natural isolates, some isolates may be aneuploid. Due to the potential for high throughput, reproducibility, and discrimination, microsatellite analysis may provide a robust and efficient method for the genotyping of large numbers of C. parapsilosis group I isolates.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333.
| | | | | |
Collapse
|
13
|
Masneuf-Pomarède I, Le Jeune C, Durrens P, Lollier M, Aigle M, Dubourdieu D. Molecular typing of wine yeast strains Saccharomyces bayanus var. uvarum using microsatellite markers. Syst Appl Microbiol 2006; 30:75-82. [PMID: 16621402 DOI: 10.1016/j.syapm.2006.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Indexed: 11/20/2022]
Abstract
The Saccharomyces bayanus var. uvarum yeasts are associated with spontaneous fermentation of must. Some strains were shown to be enological yeasts of interest in different winemaking processes. The molecular typing of S. bayanus var. uvarum at the strain level has become significant for wine microbiologists. Four microsatellite loci were defined from the exploration of genomic DNA sequence of S. bayanus var. uvarum. The 40 strains studied were homozygote for the locus considered. The discriminating capacity of the microsatellite method was found to be equal to that of karyotypes analysis. Links between 37 indigenous strains with the same geographic origin could be established through the analysis of microsatellite patterns. The analysis of microsatellite polymorphism is a reliable method for wine S. bayanus var. uvarum strains and their hybrids with Saccharomyces cerevisiae identification in taxonomic, ecological studies and winemaking applications.
Collapse
Affiliation(s)
- I Masneuf-Pomarède
- ENITA de Bordeaux, 1 Cours du Général de Gaulle, BP 201, CS 40201, 33175 Gradignan cedex, France.
| | | | | | | | | | | |
Collapse
|
14
|
Posteraro B, Sanguinetti M, Romano L, Torelli R, Novarese L, Fadda G. Molecular tools for differentiating probiotic and clinical strains of Saccharomyces cerevisiae. Int J Food Microbiol 2005; 103:295-304. [PMID: 16099314 DOI: 10.1016/j.ijfoodmicro.2004.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 12/09/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022]
Abstract
The subtype of the Saccharomyces cerevisiae yeast species known as S. cerevisiae Hansen CBS 5926 was formerly believed to be a separate species, Saccharomyces boulardii. It is widely considered non-pathogenic and is used as a probiotic agent for treatment and prevention of diarrhea. The biological properties of Saccharomyces spp. show considerable intraspecies variability and the beneficial properties of probiotic yeasts are considered strain-specific. Septicemia and fungemia caused by S. boulardii have recently been described in both immunocompromised and immunocompetent patients receiving biotherapy with this yeast. It cannot be distinguished from other S. cerevisiae strains by phenotypic criteria, so identification of these infections requires molecular typing. To identify the most effective approach for distinguishing S. boulardii, we typed 35 isolates of S. cerevisiae, of which 27 were from various clinical specimens and 8 were isolates of S. boulardii (6 obtained from probiotic preparations and 2 from clinical specimens) using four different molecular methods, two based on PCR-restriction enzyme analysis or sequencing of rDNA spacer regions, the third based on microsatellite polymorphism analysis of the S. cerevisiae genes YKL139w and YLR177w, and the last based on hybridization analysis with retrotransposon Ty917. Several clinical isolates appeared to be identical to one or more other isolates with the first three methods used, whereas with the Ty917 hybridization method all of the isolates tested appeared to be very heterogeneous. The eight S. boulardii isolates were clearly distinguishable from the clinical S. cerevisiae isolates only with Ty917 hybridization and microsatellite DNA analyses. In the latter method, the eight S. boulardii isolates exhibited an allelic variant at one of loci tested that was not shared with any other strain. Our results suggest that microsatellite polymorphism analysis of the YKL139w and YLR177w genes, as well as the analysis by Ty917 hybridization, are the most useful tools for a correct identification of S. boulardii strains.
Collapse
Affiliation(s)
- Brunella Posteraro
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Largo F. Vito, 1-00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Miller JH. Perspective on mutagenesis and repair: the standard model and alternate modes of mutagenesis. Crit Rev Biochem Mol Biol 2005; 40:155-79. [PMID: 15917398 DOI: 10.1080/10409230590954153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The basic ideas of replication, mutagenesis, and repair have outlined a picture of how point mutations occur that has provided a valuable framework for theory and experiment, much as the Standard Model of particle physics has done for our concept of fundamental particles. However, alternative modes of mutagenesis are being defined that are changing our perspective of the "Standard Model" of mutagenesis, requiring an expanded model. The genome is now envisioned as being in dynamic equilibrium between a multitude of forces for mutational change and forces that counteract such change. By maintaining a delicate balance between these forces, cells avoid unwanted or excessive mutations. Yet, cells allow mutagenesis to occur under certain conditions. We can define an emerging paradigm. Namely, mechanisms exist that can direct point mutations to specific designated genes or regions of genes. In some cases, this is achieved by specific enzymes, and in other cases high mutability is programmed into the sequence of certain genes to help generate diversity. In yet additional cases, general mutability is increased under stress, and selective forces allow the recovery of favorable mutants.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Abstract
Minisatellites are DNA tandem repeats exhibiting size polymorphism among individuals of a population. This polymorphism is generated by two different mechanisms, both in human and yeast cells, "replication slippage" during S-phase DNA synthesis and "repair slippage" associated to meiotic gene conversion. The Saccharomyces cerevisiae genome contains numerous natural minisatellites. They are located on all chromosomes without any obvious distribution bias. Minisatellites found in protein-coding genes have longer repeat units and on the average more repeat units than minisatellites in noncoding regions. They show an excess of cytosines on the coding strand, as compared to guanines (negative GC skew). They are always multiples of three, encode serine- and threonine-rich amino acid repeats, and are found preferably within genes encoding cell wall proteins, suggesting that they are positively selected in this particular class of genes. Genome-wide, there is no statistically significant association between minisatellites and meiotic recombination hot spots. In addition, minisatellites that are located in the vicinity of a meiotic hot spot are not more polymorphic than minisatellites located far from any hot spot. This suggests that minisatellites, in S. cerevisiae, evolve probably by strand slippage during replication or mitotic recombination. Finally, evolution of minisatellites among hemiascomycetous yeasts shows that even though many minisatellite-containing genes are conserved, most of the time the minisatellite itself is not conserved. The diversity of minisatellite sequences found in orthologous genes of different species suggests that minisatellites are differentially acquired and lost during evolution of hemiascomycetous yeasts at a pace faster than the genes containing them.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Unité de Génétique Moléculaire des Levures, Université Pierre et Marie Curie, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
17
|
Karaca M, Bilgen M, Onus AN, Ince AG, Elmasulu SY. Exact tandem repeats analyzer (E-TRA): a new program for DNA sequence mining. J Genet 2005; 84:49-54. [PMID: 15876583 DOI: 10.1007/bf02715889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exact Tandem Repeats Analyzer 1.0 (E-TRA) combines sequence motif searches with keywords such as 'organs', 'tissues', 'cell lines' and 'development stages' for finding simple exact tandem repeats as well as non-simple repeats. E-TRA has several advanced repeat search parameters/options compared to other repeat finder programs as it not only accepts GenBank, FASTA and expressed sequence tags (EST) sequence files, but also does analysis of multiple files with multiple sequences. The minimum and maximum tandem repeat motif lengths that E-TRA finds vary from one to one thousand. Advanced user defined parameters/options let the researchers use different minimum motif repeats search criteria for varying motif lengths simultaneously. One of the most interesting features of genomes is the presence of relatively short tandem repeats (TRs). These repeated DNA sequences are found in both prokaryotes and eukaryotes, distributed almost at random throughout the genome. Some of the tandem repeats play important roles in the regulation of gene expression whereas others do not have any known biological function as yet. Nevertheless, they have proven to be very beneficial in DNA profiling and genetic linkage analysis studies. To demonstrate the use of E-TRA, we used 5,465,605 human EST sequences derived from 18,814,550 GenBank EST sequences. Our results indicated that 12.44% (679,800) of the human EST sequences contained simple and non-simple repeat string patterns varying from one to 126 nucleotides in length. The results also revealed that human organs, tissues, cell lines and different developmental stages differed in number of repeats as well as repeat composition, indicating that the distribution of expressed tandem repeats among tissues or organs are not random, thus differing from the un-transcribed repeats found in genomes.
Collapse
Affiliation(s)
- Mehmet Karaca
- Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey.
| | | | | | | | | |
Collapse
|
18
|
Lasker BA, Ran Y. Analysis of polymorphic microsatellite markers for typing Penicillium marneffei isolates. J Clin Microbiol 2004; 42:1483-90. [PMID: 15070993 PMCID: PMC387604 DOI: 10.1128/jcm.42.4.1483-1490.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillium marneffei is an emerging opportunistic dimorphic fungal pathogen that is endemic in Southeast Asia. A typing method based on the analysis of size polymorphisms in microsatellite loci was investigated. Three loci available from the GenBank database were identified to harbor microsatellites. PCR primers flanking the microsatellite repeats were designed with one primer in the set fluorescently labeled. PCR products were then sized by automated capillary electrophoresis. As expected for a haploid fungus, a single band was observed for each microsatellite locus for all isolates. Polymorphic microsatellite marker (PMM) analysis detected a total of 22 different allelic types for 35 isolates of P. marneffei with a high discriminatory power (D = 0.956). Microsatellites I, II, and III detected 14, 10, and 7 alleles, respectively. The reproducibility of length polymorphisms was confirmed by using different DNA preparations from the same isolate or by repeated runs from the same DNA preparation. PMM profiles for eight isolates passaged in vitro for 7 to 8 weeks were identical to the original culture, demonstrating short-term stability and reproducibility. PCR products were not observed for other dimorphic fungi or human DNA. Comparison of allelic frequencies in isolates obtained from China and Thailand identified distinct allele combinations, suggesting the potential geographic isolation of populations. Due to the high discriminatory power, reproducibility, and potential for high throughput, PMM analysis may provide a good typing method for epidemiologic and surveillance investigations of P. marneffei.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | |
Collapse
|
19
|
Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol 2004; 24:4049-64. [PMID: 15082797 PMCID: PMC387768 DOI: 10.1128/mcb.24.9.4049-4064.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a central component of Okazaki fragment maturation in eukaryotes. Genetic analysis of Saccharomyces cerevisiae FEN1 (RAD27) also reveals its important role in preventing trinucleotide repeat (TNR) expansion. In humans such expansion is associated with neurodegenerative diseases. In vitro, FEN1 can inhibit TNR expansion by employing its endonuclease activity to compete with DNA ligase I. Here we employed two yeast FEN1 nuclease mutants, rad27-G67S and rad27-G240D, to further define the mechanism by which FEN1 prevents TNR expansion. Using a yeast artificial chromosome system that can detect both TNR instability and fragility, we demonstrate that the G240D but not the G67S mutation increases both the expansion and fragility of a CTG tract in vivo. In vitro, the G240D nuclease is proficient in cleaving a fixed nonrepeat double flap; however, it exhibits severely impaired cleavage of both nonrepeat and CTG-containing equilibrating flaps. In contrast, wild-type FEN1 and the G67S mutant exhibit more efficient cleavage on an equilibrating flap than on a fixed CTG flap. The degree of TNR expansion and the amount of chromosome fragility observed in the mutant strains correlate with the severity of defective flap cleavage in vitro. We present a model to explain how flap equilibration and the unique tracking mechanism of FEN1 can collaborate to remove TNR flaps and prevent repeat expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642,USA
| | | | | | | | | |
Collapse
|
20
|
Richard GF, Cyncynatus C, Dujon B. Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism. J Mol Biol 2003; 326:769-82. [PMID: 12581639 DOI: 10.1016/s0022-2836(02)01405-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CAG/CTG trinucleotide repeat tracts expand and contract at a high rate during gene conversion in Saccharomyces cerevisiae. In order to characterize the mechanism responsible for such rearrangements, we built an experimental system based on the use of the rare cutter endonuclease I-SceI, to study the fate of trinucleotide repeat tracts during meiotic or mitotic (allelic or ectopic) gene conversion. After double-strand break (DSB) induced meiotic recombination, (CAG)(98) and (CAG)(255) are rearranged in 5% and 52% of the gene conversions, respectively, with similar proportions of contractions and expansions. No evidence of a meiotic hot spot activity associated with trinucleotide repeats could be found. When gene conversion is induced by a DSB during mitotic growth of the cells, no rearrangement of the repeat tracts is detected when the donor sequence is allelic to the recipient site of the DSB. However, when the donor sequence is at an ectopic location, frequent contractions and expansions of the repeat tract are found. No crossing-over associated with gene conversion could be detected. Mutants for the MUS81 gene, involved in the resolution of recombination intermediates, show a frequency of rearrangements identical with that of the wild-type strain. We concluded that trinucleotide repeat rearrangements occur frequently during ectopic but not during allelic recombination, by a mechanism that does not require crossover formation.
Collapse
Affiliation(s)
- Guy Franck Richard
- Unité de Génétique Moléculaire des Levures (URA 2171 CNRS and UFR 927 Univ. Pierre et Marie Curie), Department Structure and Dynamics of Genomes, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
21
|
Pérez MA, Gallego FJ, Martínez I, Hidalgo P. Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers. Lett Appl Microbiol 2001; 33:461-6. [PMID: 11737632 DOI: 10.1046/j.1472-765x.2001.01032.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this work was the selection of six polymorphic microsatellite loci for their use as molecular markers in the identification, typification and genetic differentiation of S. cerevisiae strains. METHODS AND RESULTS The selection was undertaken following a search of the genomic DNA database of Saccharomyces cerevisiae for simple tandem repeat sequences (microsatellites) of di- and trinucleotides. The genetic variability generated by these markers was evaluated in 51 isolates. The discriminatory power produced by combining the information obtained by the six microsatellites was very high. A total of 57 alleles, which generated 44 genotypes, were found. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY The multiple analysis of microsatellites proved to be a powerful and agile tool for analysing the genome of S. cerevisiae populations.
Collapse
Affiliation(s)
- M A Pérez
- Instituto Madrileño de Investigación Agraria y Alimentaria (IMIA.), Comunidad de Madrid, Finca El Encín, Apdo. 127, 28800 Alcalá de Henares, Madrid. Spain
| | | | | | | |
Collapse
|
22
|
Botterel F, Desterke C, Costa C, Bretagne S. Analysis of microsatellite markers of Candida albicans used for rapid typing. J Clin Microbiol 2001; 39:4076-81. [PMID: 11682532 PMCID: PMC88489 DOI: 10.1128/jcm.39.11.4076-4081.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To obtain a rapid genotyping method of Candida albicans, three polymorphic microsatellite markers were investigated by multiplex PCR. The three loci, called CDC3, EF3, and HIS3, were chosen because they are on different chromosomes so as to improve the chances of finding polymorphisms. One set of primers was designed for each locus, and one primer of each set was dye-labeled to read PCR signals by using an automatic sequencer. Amplifications were performed directly from the colonies harvested on the agar plate without a sophisticated DNA extraction step. At total of 27 reference strains and 73 clinical independent isolates were tested. The numbers of allelic associations were 10, 22, and 25 for the loci CDC3, EF3, and HIS3, respectively. The combined discriminatory power of the three microsatellites markers was 0.97. The markers were stable after 25 subcultures, and the amplifications were specific for C. albicans. An initial study of 17 clinical isolate pairs, including blood culture and peripheral sites, showed a similar genotype for 15 of them, confirming that candidemia usually originates from the colonizing isolate. Therefore, microsatellite marker analysis with multiplex PCR and automated procedures has a high throughput and should be suitable for large epidemiologic studies of C. albicans.
Collapse
Affiliation(s)
- F Botterel
- Laboratoire de Parasitologie-Mycologie, Hôpital H. Mondor et Université Paris XII, 94010 Créteil, France
| | | | | | | |
Collapse
|
23
|
Hennequin C, Thierry A, Richard GF, Lecointre G, Nguyen HV, Gaillardin C, Dujon B. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J Clin Microbiol 2001; 39:551-9. [PMID: 11158105 PMCID: PMC87774 DOI: 10.1128/jcm.39.2.551-559.2001] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since Saccharomyces cerevisiae appears to be an emerging pathogen, there is a need for a valuable molecular marker able to distinguish among strains. In this work, we investigated the potential value of microsatellite length polymorphism with a panel of 91 isolates, including 41 clinical isolates, 14 laboratory strains, and 28 strains with industrial relevance. Testing seven polymorphic regions (five trinucleotide repeats and two dinucleotide repeats) in a subgroup of 58 unrelated strains identified a total of 69 alleles (6 to 13 per locus) giving 52 different patterns with a discriminatory power of 99.03%. We found a cluster of clinical isolates sharing their genotype with a bakery strain, suggesting a digestive colonization following ingestion of this strain with diet. With the exception of this cluster of isolates and isolates collected from the same patient or from patients treated with Saccharomyces boulardii, all clinical isolates gave different and unique patterns. The genotypes are stable, and the method is reproducible. The possibility to make the method portable is of great interest for further studies using this technique. This work shows the possibility to readily identify S. boulardii (a strain increasingly isolated from invasive infections) using a unique and specific microsatellite allele.
Collapse
Affiliation(s)
- C Hennequin
- Service de Parasitologie-Mycologie et Médecine des Voyages, CHU Amiens, F-80054 Amiens, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Having the complete genome sequence of Saccharomyces cerevisiae makes us aware of the ultimate goal of yeast molecular biology: the 'solution' of the cell, that is, an understanding of the function of all approximately 6000 proteins (and a few RNAs) and how they interact with each other and the environment. The recent development of 'genomic' approaches for studying gene function makes this goal seem reachable in the foreseeable future. When this is accomplished, we will have entered a Golden Age, when we will have the information necessary for designing truly incisive experiments to reveal biological function.
Collapse
Affiliation(s)
- M Johnston
- Department of Genetics, Box 8232, Washington University School of Medicine, 660 Euclid Avenue, St Louis, Missouri 63113, USA.
| |
Collapse
|
25
|
Barroso G, Sonnenberg AS, Van Griensven LJ, Labarère J. Molecular cloning of a widely distributed microsatellite core sequence from the cultivated mushroom Agaricus bisporus. Fungal Genet Biol 2000; 31:115-23. [PMID: 11170741 DOI: 10.1006/fgbi.2000.1239] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An Agaricus bisporus microsatellite with the tetranucleotide motif TATG tandemly repeated was isolated from an A. bisporus library enriched in repeated sequences. The use of the 16-mer oligonucleotide (TATG)4 indicates that many loci contain nearby copies of the microsatellite in opposite orientations. The wide distribution of the microsatellite in the A. bisporus genome was assessed (i) by polyacrylamide gel electrophoresis of the products generated by directed amplification of microsatellite-region DNA (DAMD) and (ii) by hybridization of these products with A. bisporus chromosomes separated by pulsed-field gel electrophoresis. This is, to our knowledge, the first microsatellite reported in the cultivated edible mushrooms. DAMD-PCR products were generated using DNA of three Pleurotus species (P. pulmonarius, P. sajor-caju, and P. florida), indicating that (TATG)4 repeats are also present in these cultivated species. The variability found within closely related strains indicates that such microsatellites are useful in fingerprinting and studying genetic variability in wild and commercial mushrooms.
Collapse
Affiliation(s)
- G Barroso
- Laboratory of Molecular Genetics and Breeding of Cultivated Mushrooms, University Victor Segalen Bordeaux 2, Villenave d'Ornon Cédex, 33883, France
| | | | | | | |
Collapse
|
26
|
Richard GF, Pâques F. Mini- and microsatellite expansions: the recombination connection. EMBO Rep 2000; 1:122-6. [PMID: 11265750 PMCID: PMC1084263 DOI: 10.1093/embo-reports/kvd031] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Revised: 06/21/2000] [Accepted: 06/28/2000] [Indexed: 11/14/2022] Open
Abstract
It is widely accepted that the large trinucleotide repeat expansions observed in many neurological diseases occur during replication. However, genetic recombination has emerged as a major source of instability for tandem repeats, including minisatellites, and recent studies raise the possibility that it may also be responsible for trinucleotide repeat expansions. We will review data connecting tandem repeat rearrangements and recombination in humans and in eukaryotic model organisms, and discuss the possible role of recombination in trinucleotide repeat expansions in human neurological disorders.
Collapse
Affiliation(s)
- G F Richard
- Unité de Génétique Moléculaire des Levures, URA 2171 CNRS, Paris, France.
| | | |
Collapse
|
27
|
Richard GF, Goellner GM, McMurray CT, Haber JE. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J 2000; 19:2381-90. [PMID: 10811629 PMCID: PMC384364 DOI: 10.1093/emboj/19.10.2381] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recombination induced by double-strand breaks (DSBs) in yeast leads to a higher proportion of expansions to contractions than does replication-associated tract length changes. Expansions are apparently dependent on the property of the repeat array to form hairpins, since DSB repair of a CAA(87) repeat induces only contractions of the repeat sequence. DSB-repair efficiency is reduced by 40% when DNA synthesis must traverse a CAG(98) array, as compared with a CAA(87) array. These data indicate that repair- associated DNA synthesis is inhibited by secondary structures formed by CAG(98) and that these structures promote repeat expansions during DSB repair. Overexpression of Mre11p or Rad50p suppresses the inhibition of DSB repair by CAG(98) and significantly increases the average size of expansions found at the recipient locus. Both effects are dependent on the integrity of the Mre11p-Rad50p-Xrs2p complex. The Mre11 complex thus appears to be directly involved in removing CAG or CTG hairpins that arise frequently during DNA synthesis accompanying gene conversion of these trinucleotide repeats.
Collapse
Affiliation(s)
- G F Richard
- Rosenstiel Center and Department of Biology, MS029, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|