1
|
Glasper ER, Hyer MM, Hunter TJ. Enduring Effects of Paternal Deprivation in California Mice ( Peromyscus californicus): Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival. Front Behav Neurosci 2018; 12:20. [PMID: 29487509 PMCID: PMC5816956 DOI: 10.3389/fnbeh.2018.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex-dependent. Together, these findings demonstrate that, in a species where paternal care is not only important for offspring survival, PD can also contribute to altered structural and functional neuroplasticity of the hippocampus. The mechanisms contributing to the observed sex-dependent alterations in new cell survival in the dentate gyrus should be further investigated.
Collapse
Affiliation(s)
- Erica R Glasper
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Molly M Hyer
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Terrence J Hunter
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
2
|
Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav 2012; 107:699-710. [PMID: 22429904 PMCID: PMC3532931 DOI: 10.1016/j.physbeh.2012.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/24/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.
Collapse
Affiliation(s)
- Mallory E Bowers
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | | | | |
Collapse
|
3
|
Sütt S, Raud S, Abramov U, Innos J, Luuk H, Plaas M, Kõks S, Zilmer K, Mahlapuu R, Zilmer M, Vasar E. Relation of exploratory behaviour to plasma corticosterone and Wfs1 gene expression in Wistar rats. J Psychopharmacol 2010; 24:905-13. [PMID: 19346280 DOI: 10.1177/0269881109102738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Male Wistar rats exhibit significant variations in exploratory behaviour in the elevated plus-maze (EPM) model of anxiety. We have now investigated the relation between exploratory behaviour and levels of corticosterone and systemic oxidative stress. Also, the expression levels of endocannabinoid-related and wolframin (Wfs1) genes were measured in the forebrain structures. The rats were divided into high, intermediate and low exploratory activity groups. Exposure to EPM significantly elevated the serum levels of corticosterone in all rats, but especially in the high exploratory group. Oxidative stress indices and expression of endocannabinoid-related genes were not significantly affected by exposure to EPM. Wfs1 mRNA level was highly dependent on exploratory behaviour of animals. In low exploratory activity rats, Wfs1 gene expression was reduced in the temporal lobe, whereas in high exploratory activity group it was reduced in the mesolimbic area and hippocampus. Altogether, present study indicates that in high exploratory activity rats, the activation of brain areas related to novelty seeking is apparent, whereas in low exploratory activity group the brain structures linked to anxiety are activated.
Collapse
Affiliation(s)
- S Sütt
- Department of Physiology, Biomedicum, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sherrin T, Todorovic C, Zeyda T, Tan CH, Wong PTH, Zhu YZ, Spiess J, Spiess J. Chronic stimulation of corticotropin-releasing factor receptor 1 enhances the anxiogenic response of the cholecystokinin system. Mol Psychiatry 2009; 14:291-307. [PMID: 18195718 DOI: 10.1038/sj.mp.4002121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corticotropin-releasing factor (CRF) and cholecystokinin (CCK), two highly colocalized neuropeptides, have been linked to the etiology of stress-related anxiety disorders. Recent evidence points to the possibility that some of the anxiogenic effects of the central CCK system take place through interplay with the CRF system. The aim of the present study was to examine the effects of chronic, mild activation of CRF receptor 1 (CRF(1)) on the central CCK system of the C57BL/6J mouse. As shown by in situ hybridization, real-Time PCR and immunohistochemistry, 5 days of intracerebroventricular (i.c.v.) injections of a subeffective dose (2.3 pmol) of cortagine, a CRF(1)-selective agonist, resulted in an increase in CCK mRNA levels and CCK(2) receptor immunoreactivity in several brain regions, such as amygdala and hippocampus, known to be involved in the regulation of anxiety. Mice with elevated endogenous central CCK tone exhibited significantly higher anxiety-like behaviors in the open-field task and elevated plus maze, and enhanced conditioned fear. These behavioral changes were reversed by i.c.v. administration of the CCK(2)-selective antagonist LY225910, after 5 days of priming with cortagine. Under the same conditions, the intraperitoneal administration of the CRF(1) antagonist antalarmin was ineffective. This result indicated that once the CCK system was sensitized by prior CRF(1) activation, it exhibited its anxiogenic effects, without influence by CRF(1), possibly because of its observed downregulation. In sum, our results provide a novel model for the interaction of the CRF and CCK systems contributing to the development of hypersensitive emotional circuitry.
Collapse
Affiliation(s)
- T Sherrin
- Specialized Neuroscience Research Program, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Heberlein A, Bleich S, Kornhuber J, Hillemacher T. Neuroendocrine pathways in benzodiazepine dependence: new targets for research and therapy. Hum Psychopharmacol 2008; 23:171-81. [PMID: 18088080 DOI: 10.1002/hup.911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzodiazepines are known to modulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis by antagonizing the effects of corticotropin-releasing factor (CRH). Besides regulating the HPA axis CRH evolves properties of a neurotransmitter in the limbic system that is closely involved in the delivery of the emotional consequences of the stress response. At a superordinated level Neuropeptide Y (NPY) and Cholecystokinin (CCK) affect the release of CRH and modulate thereby the intensity of the physiological stress response. Benzodiazepine treatment interferes not only with the release of CRH but also with the release of NPY and CCK. Alterations in the intracortical ratio of NPY, CCK and CRH are correlated with behavioural changes like increased respectively decreased anxiety and subsequent alterations in the activity of the HPA axis. Recent research offers the possibility that the alterations of plasma levels of these neuropeptides are not only a secondary phenomenon due to drug intake, but that low levels of those neuropeptides that modulate anxiety and fear can possibly explain addiction to substances that counterbalance these deficits. Depending on the available results possible implications of NPY and CCK on benzodiazepine addiction and withdrawal symptoms are reviewed, thereby providing topics for further research.
Collapse
Affiliation(s)
- Annemarie Heberlein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Germany.
| | | | | | | |
Collapse
|
6
|
Nelovkov A, Areda T, Innos J, Kõks S, Vasar E. Rats displaying distinct exploratory activity also have different expression patterns of gamma-aminobutyric acid- and cholecystokinin-related genes in brain regions. Brain Res 2006; 1100:21-31. [PMID: 16769038 DOI: 10.1016/j.brainres.2006.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/24/2006] [Accepted: 05/03/2006] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to evaluate the expression of genes in relation to the exploratory activity of rats. Limbic system-associated membrane protein (LsAMP) gene, gamma-aminobutyric acid-(GABA)- and cholecystokinin-(CCK)-related genes were analyzed in the frontal cortex, amygdala and periaqueductal gray (PAG) after exposure of rats to exploratory challenge. Two groups of animals displaying low and high exploratory activity in the elevated plus-maze were selected for gene expression studies from the population of 43 male Wistar rats. Eight rats were taken randomly from the same cages as animals exposed to the plus-maze, but they were not subjected to the exploratory test. This home-cage control group was also used for gene expression analysis in order to explore a possible impact of the plus-maze exposure. Rats with low and high exploratory activity displayed clearly distinct profiles in gene expression. Most prominent alterations were established in the amygdala where almost all GABA-related and CCK receptor genes were two- to five-fold up-regulated in low exploratory activity rats compared to high exploratory activity and home-cage control group. The expression of several GABA-related genes was also increased in the PAG of animals displaying low exploratory activity compared to the other groups. Moreover, we found reduced expression of GABA- and CCK-related genes in all three brain regions in animals with high exploratory activity compared to the home-cage control group. In addition to these findings, we established a significantly increased expression of the LsAMP gene in the amygdala and PAG of low exploratory activity animals compared with the other groups. In conclusion, low and high exploratory activity rats differed not only by their exploratory activity but also displayed opposite gene expression patterns. Low exploratory activity of rats correlated with the up-regulation of LsAMP and GABA-related genes in the amygdala and PAG and with the up-regulation of CCK receptors in the amygdala. High exploratory activity of rats was related to a significant down-regulation of CCK receptor genes in the amygdala and PAG. These rats also displayed the reduced expression of GABA-related genes in the frontal cortex and PAG.
Collapse
Affiliation(s)
- Aleksei Nelovkov
- Department of Physiology, University of Tartu, Biomedicum, 19 Ravila Street, 51014 Tartu, Estonia
| | | | | | | | | |
Collapse
|
7
|
Chen Q, Nakajima A, Meacham C, Tang YP. Elevated cholecystokininergic tone constitutes an important molecular/neuronal mechanism for the expression of anxiety in the mouse. Proc Natl Acad Sci U S A 2006; 103:3881-6. [PMID: 16537459 PMCID: PMC1383652 DOI: 10.1073/pnas.0505407103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholecystokinin (CCK), one of the most abundant neuropeptides in the brain, plays an important role in anxiogenesis through the activation of CCK receptor-2 (CCKR-2). Accumulating evidence, however, has suggested this role depends on endogenous CCKergic "tone," which is largely determined by the expression level of the CCKR-2. Using the tTA/tetO-inducible transgenic (tg) approach, we show here that overexpression of the CCKR-2 in neurons of the forebrain significantly increases CCKR-2 binding capacity in tg mice compared with their littermate controls. Interestingly, these tg mice consistently exhibit increased fear responses, which are generally interpreted as anxiety-like behaviors in the rodent, in a battery of behavioral tests, which represented conflict situations or delivered stress to the subjects. The inhibition of transgene expression with doxycycline treatment completely diminished both increased receptor-binding activity and all behavioral phenotypes. Furthermore, treatment of tg mice with diazepam significantly attenuated these anxiety-like behaviors. Our results directly demonstrate that the elevated CCKergic tone via overexpression of the CCKR-2 in the brain may constitute an underlying molecular/neuronal mechanism for the expression of anxiety. In addition, our study has validated a robust genetic anxiety model in the mouse in terms of their face, constructive, and predictive validity.
Collapse
Affiliation(s)
- Qian Chen
- Department of Psychiatry, University of Chicago, 924 East 57th Street, Chicago, IL 60637
| | - Akira Nakajima
- Department of Psychiatry, University of Chicago, 924 East 57th Street, Chicago, IL 60637
| | - Corbin Meacham
- Department of Psychiatry, University of Chicago, 924 East 57th Street, Chicago, IL 60637
| | - Ya-Ping Tang
- Department of Psychiatry, University of Chicago, 924 East 57th Street, Chicago, IL 60637
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Raud S, Innos J, Abramov U, Reimets A, Kõks S, Soosaar A, Matsui T, Vasar E. Targeted invalidation of CCK2 receptor gene induces anxiolytic-like action in light-dark exploration, but not in fear conditioning test. Psychopharmacology (Berl) 2005; 181:347-57. [PMID: 15830228 DOI: 10.1007/s00213-005-2255-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Evidence suggests that gamma-aminobutyric acid (GABA) and cholecystokinin (CCK) have opposite roles in the regulation of anxiety. OBJECTIVES The aim of our work was to study the behaviour of CCK(2) receptor deficient mice in light-dark exploration and fear conditioning tests. Moreover, the action of diazepam and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), having the opposite effect on GABA(A) receptors, was evaluated on the exploratory behaviour in these mice. Expression levels of GABA(A) receptor subunit genes were also measured. METHODS Light-dark exploration and fear conditioning tests were used to determine changes in anxiety of mice. The action of diazepam (0.5-2 mg/kg i.p.) and DMCM (0.25-1 mg/kg i.p.) was studied in the light-dark box. The effect of DMCM was also evaluated in the motor activity test to demonstrate that its anti-exploratory action was not related to motor suppression. Expression levels of GABA(A) receptor subunit genes were determined by means of real-time polymerase chain reaction (qRT-PCR). RESULTS Female mice lacking CCK(2) receptors displayed increased exploratory activity in the light-dark box compared to their wild-type (+/+) littermates. Locomotor activity in the motility boxes and the intensity of freezing did not differ in wild-type (+/+) and homozygous (-/-) mice. Treatment with diazepam (0.5 mg/kg) increased the number of transitions in wild-type (+/+) animals, whereas in homozygous (-/-) mice diazepam (0.5-2 mg/kg) reduced exploratory activity. Administration of DMCM (0.25-1 mg/kg) induced an anxiogenic-like effect in homozygous (-/-) mice, but did not change their locomotor activity. Gene expression analysis established a 1.6-fold increase in the expression of the alpha2 subunit of GABA(A) receptors in the frontal cortex of homozygous (-/-) mice. CONCLUSION Genetic invalidation of CCK(2) receptors induced an anxiolytic-like action in exploratory, but not in conditioned models of anxiety. The observed reduction in anxiety in homozygous (-/-) mice is probably related to an increased function of GABAergic system in the brain.
Collapse
Affiliation(s)
- Sirli Raud
- Department of Physiology, Biomedicum, University of Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang H, Wong PTH, Spiess J, Zhu YZ. Cholecystokinin-2 (CCK2) receptor-mediated anxiety-like behaviors in rats. Neurosci Biobehav Rev 2005; 29:1361-73. [PMID: 16120463 DOI: 10.1016/j.neubiorev.2005.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 05/01/2005] [Accepted: 05/01/2005] [Indexed: 11/27/2022]
Abstract
Cholecystokinin (CCK) is a neurotransmitter in the brain closely related to anxiety. Of the two CCK receptor subtypes, CCK(2) receptors are most implicated in the control of anxiety-related behavior. CCK(2) receptor activation causes anxiogenic effects while the blockade of this receptor has anxiolytic effects. This review focuses on the molecular mechanisms of CCK(2) receptors underlying anxiety-related behaviors of PVG hooded and Spraque-Dawley (SD) rats in two anxiety models (elevated plus-maze [EPM] and cat exposure test). PVG hooded rats showed prolonged freezing behavior in the cat exposure test while SD rats showed very low levels of freezing. A CCK(2) receptor antagonist (LY225910) attenuated freezing behavior in PVG hooded rats while a CCK(2) receptor agonist (CCK-4) increased freezing behavior in SD rats. In contrast, the two strains behaved similarly on the EPM. CCK-4 caused a pronounced anxiogenic effect in PVG hooded rats but only a slight effect in SD rats. CCK(2) antagonists also showed more pronounced anxiolytic effects in PVG hooded rats than in SD rats. CCK(2) receptor expression was greater in PVG hooded than in SD rats in the cortex and hippocampus. Genetic studies also demonstrated four differences in the DNA sequence of the CCK(2) receptor gene between the two rat strains.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore
| | | | | | | |
Collapse
|
10
|
Abramov U, Raud S, Kõks S, Innos J, Kurrikoff K, Matsui T, Vasar E. Targeted mutation of CCK(2) receptor gene antagonises behavioural changes induced by social isolation in female, but not in male mice. Behav Brain Res 2004; 155:1-11. [PMID: 15325774 DOI: 10.1016/j.bbr.2004.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/26/2004] [Accepted: 03/29/2004] [Indexed: 11/25/2022]
Abstract
Neuropeptide cholecystokinin (CCK) regulates the adaptation of rodents in the novel environment. In the present study we analysed the behavioural changes induced by the individual housing in mice, lacking CCK(2) receptors. The wild-type (+/+) and homozygous (-/-) CCK(2) receptor deficient mice of both gender were used throughout the study. The weight gain during the 21-day isolation period and changes in the locomotor activity following the social separation were measured. The elevated plus-maze and resident/intruder tests were also performed to test alterations in the emotional behaviour. Social isolation induced locomotor hyperactivity, reduced weight gain and increased aggressiveness in the wild-type (+/+) and homozygous (-/-) male mice. In the wild-type (+/+) female mice the significant reduction of exploratory activity in the plus-maze was evident. By contrast, in female mice, lacking CCK(2) receptors, the exploration of the plus-maze was not significantly affected by the individual housing. This finding demonstrates that the social isolation does not cause anxiety-like state in the CCK(2) receptor deficient mice. Moreover, the targeted invalidation of CCK(2) receptors increased in male mice the affinity of dopamine D(2) receptors in the sub-cortical structures, whereas in female mice the increased affinity of 5-hydroxytryptamine(2) (5-HT(2)) receptors in the frontal cortex was established. The increased affinity of 5-HT(2) receptors is probably the compensatory change to the lack of CCK(2) receptors in female mice and probably reflects the reduced sensitivity of these animals to the anxiogenic manipulations. In conclusion, targeted mutation of CCK(2) receptors selectively antagonised the behavioural changes induced by the individual housing in females, but not in male mice.
Collapse
Affiliation(s)
- Urho Abramov
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
11
|
Nelovkov A, Philips MA, Kõks S, Vasar E. Rats with low exploratory activity in the elevated plus-maze have the increased expression of limbic system-associated membrane protein gene in the periaqueductal grey. Neurosci Lett 2003; 352:179-82. [PMID: 14625014 DOI: 10.1016/j.neulet.2003.08.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of a present study was to analyse the gene expression profiles in the periaqueductal grey (PAG) of rats related to their exploratory activity in the elevated plus-maze model of anxiety. Animals were divided into the groups according to their exploratory activity in the plus-maze as follows: rats with low activity ('anxious'), moderate activity ('intermediate') and high activity ('non-anxious'). Control animals were not exposed to the elevated plus-maze. The differential expression of genes was analysed using the cDNA representational difference analysis (RDA) in combination with the sequencing and database search. Reverse transcription-polymerase chain reaction with specific primers was applied to confirm the differences found by the RDA. We established that animals displaying the different exploratory activity have also the different gene expression profiles in the PAG. Among the identified genes, we were able to confirm the increased expression of limbic system-associated membrane protein (LSAMP) in animals having the reduced exploratory activity in the elevated plus-maze. 'Anxious' group of rats had 1.6-fold higher expression of LSAMP gene compared to 'non-anxious' animals. By contrast, 'home-cage' control rats and 'intermediate' group did not differ significantly by their LSAMP gene expression level. In conclusion, it is likely that LSAMP plays a role in the regulation of exploratory behaviour of rats in the novel aversive environment.
Collapse
Affiliation(s)
- Aleksei Nelovkov
- Department of Physiology, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | | | | | | |
Collapse
|
12
|
Rünkorg K, Veraksits A, Kurrikoff K, Luuk H, Raud S, Abramov U, Matsui T, Bourin M, Kõks S, Vasar E. Distinct changes in the behavioural effects of morphine and naloxone in CCK2 receptor-deficient mice. Behav Brain Res 2003; 144:125-35. [PMID: 12946603 DOI: 10.1016/s0166-4328(03)00070-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of morphine, mu-opioid receptor agonist, and naloxone, a non-selective opioid receptor antagonist, in the locomotor activity and place conditioning tests were studied in the CCK(2) receptor-deficient male mice. The exposure of mice to the motility boxes for 3 consecutive days induced a significant inhibition of locomotor activity in the wild-type (+/+) mice compared to homozygous (-/-) animals. The administration of naloxone (10 mg/kg i.p.) to animals, adapted to the motility boxes, induced a significant reduction of locomotor activity in the homozygous (-/-), but not in the wild-type (+/+) mice. Treatment of habituated mice with morphine (10 mg/kg i.p.) caused a stronger increase of locomotor activity in the wild-type (+/+) mice compared to the homozygous (-/-) littermates. In the place preference test the pairing of the preferred side with naloxone (1 and 10 mg/kg i.p.) induced a dose-dependent place aversion in the wild-type (+/+) mice. The treatment with naloxone was less effective in the homozygous (-/-) mice, because the high dose of naloxone (10 mg/kg) tended to shift the preference. The pairing of morphine (3 mg/kg i.p.) injections with the non-preferred side induced a significant place preference both in the wild-type (+/+) and homozygous (-/-) mice. The increased density of opioid receptors was established in the striatum of homozygous (-/-) mice, but not in the other forebrain structures. In conclusion, the targeted invalidation of CCK(2) receptors induces a dissociation of behavioural effects of morphine and naloxone. Morphine-induced place preference remained unchanged, whereas hyper-locomotion was less pronounced in the mutant mice compared to the wild-type (+/+) littermates. By contrast, naloxone-induced place aversion was weaker, but naloxone caused a stronger inhibition of locomotor activity in the homozygous (-/-) mice than in the wild-type (+/+) animals. These behavioural alterations can be explained in the light of data that the targeted mutation of CCK(2) receptors induces distinct changes in the properties of opioid receptors in various brain structures.
Collapse
Affiliation(s)
- Kertu Rünkorg
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Raud S, Rünkorg K, Veraksits A, Reimets A, Nelovkov A, Abramov U, Matsui T, Bourin M, Volke V, Kõks S, Vasar E. Targeted mutation of CCK2 receptor gene modifies the behavioural effects of diazepam in female mice. Psychopharmacology (Berl) 2003; 168:417-25. [PMID: 12709779 DOI: 10.1007/s00213-003-1453-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 03/04/2003] [Indexed: 10/26/2022]
Abstract
RATIONALE Evidence suggests that GABA and CCK have opposite roles in the regulation of anxiety. OBJECTIVE The aim of the present work was to study diazepam-induced anxiolytic-like action and impairment of motor co-ordination, and the parameters of benzodiazepine receptors in mice lacking CCK2 receptors. METHODS The action of diazepam (0.5-3 mg/kg i.p.) was studied in the elevated plus-maze model of anxiety and rotarod test using mice lacking CCK2 receptors. The parameters of benzodiazepine receptors were analysed using [3H]-flunitrazepam binding. RESULTS In the plus-maze test, the exploratory activity of the homozygous (-/-) mice was significantly higher compared to their wild-type (+/+) littermates. However, the wild-type (+/+) mice displayed higher sensitivity to the anxiolytic-like action of diazepam. Even the lowest dose of diazepam (0.5 mg/kg) induced a significant increase of open arm entries in the wild-type (+/+) mice. A similar effect in the homozygous (-/-) mice was established after the administration of diazepam 1 mg/kg. The highest dose of diazepam (3 mg/kg) caused a prominent anxiolytic-like effect in the wild-type (+/+) mice, whereas in the homozygous (-/-) animals suppression of locomotor activity was evident. The performance of the homozygous (-/-) mice in the rotarod test did not differ from that of the wild-type (+/+) littermates. However, a difference between the wild-type (+/+) and homozygous (-/-) animals became evident after treatment with diazepam. Diazepam (0.5 and 3 mg/kg) induced significantly stronger impairment of motor co-ordination in the homozygous (-/-) mice compared to their wild-type (+/+) littermates. The density of benzodiazepine binding sites was increased in the cerebellum, but not in the cerebral cortex and hippocampus, of the homozygous (-/-) mice. CONCLUSIONS Female mice lacking CCK2 receptors are less anxious than their wild-type (+/+) littermates. The reduced anxiety in homozygous (-/-) mice probably explains why the administration of a higher dose of diazepam is necessary to induce an anxiolytic-like action in these animals. The highest dose of diazepam (3 mg/kg) induced significantly stronger suppression of locomotor activity and impairment of motor co-ordination in the homozygous (-/-) mice compared to the wild-type (+/+) littermates. The increase in the action of diazepam is probably related to the elevated density of benzodiazepine receptors in the cerebellum of homozygous (-/-) mice. The present study seems to be in favour of increased tone of the GABAergic system in mice without CCK2 receptors.
Collapse
Affiliation(s)
- Sirli Raud
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Veraksits A, Rünkorg K, Kurrikoff K, Raud S, Abramov U, Matsui T, Bourin M, Kõks S, Vasar E. Altered pain sensitivity and morphine-induced anti-nociception in mice lacking CCK2 receptors. Psychopharmacology (Berl) 2003; 166:168-75. [PMID: 12545332 DOI: 10.1007/s00213-002-1333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2002] [Accepted: 10/18/2002] [Indexed: 11/30/2022]
Abstract
RATIONALE Cholecystokinin (CCK) interacts with the endopioid system in the regulation of various physiological functions, including the control of pain sensitivity, motor activity and emotional behaviour. OBJECTIVE The aim of the present work was to study the pain sensitivity, morphine-induced antinociception and density of opioid receptors in mice lacking CCK(2) receptors. METHODS Plantar analgesia and hotplate tests were used to evaluate pain sensitivity and morphine-induced antinociception. The parameters of opioid receptors were analysed by using [(3)H]-diprenorphine binding. RESULTS In the plantar analgesia test the latency of hind paw withdrawal was significantly increased in CCK(2) receptor deficient mice compared to wild-type (+/+) littermates. The treatment with saline reversed the reduced pain sensitivity in heterozygous (+/-) and homozygous (-/-) mice. The administration of morphine (1 mg/kg) induced a significantly stronger antinociceptive effect in homozygous (-/-) mice compared with wild-type (+/+) animals. In the hotplate test, only homozygous (-/-) mutant mice displayed the delayed latency of hind paw licking/shaking in comparison with wild-type (+/+) mice. The injection of saline and isolation of mice for 30 min reversed the delayed response in homozygous (-/-) mice. However, in this test, the anti-nociceptive action of morphine (5-10 mg/kg) in mutant mice did not differ from that in wild-type (+/+) littermates. By contrast, the jump latency was decreased in both homozygous (-/-) and heterozygous (+/-) mice in the hotplate test. The increased density of opioid receptors was established in the striatum of homozygous (-/-) mice. CONCLUSION It is apparent that the targeted mutagenesis of the CCK(2) receptor gene has different effects on the sensitivity of opioid receptors in various brain structures. This is a probable reason for the altered pain sensitivity and morphine-induced antinociception in mutant mice compared to wild-type (+/+) littermates.
Collapse
Affiliation(s)
- Alar Veraksits
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kõks S, Abramov U, Veraksits A, Bourin M, Matsui T, Vasar E. CCK2 receptor-deficient mice have increased sensitivity of dopamine D2 receptors. Neuropeptides 2003; 37:25-9. [PMID: 12637032 DOI: 10.1016/s0143-4179(02)00137-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study supports a role of CCK(2) receptors in the regulation of dopamine neurones. In pharmacological studies conducted on male CCK(2) receptor-deficient mice the changes in the activity of dopamine system were established. A low dose of dopamine agonist apomorphine (0.1 mg/kg), stimulating the pre-synaptic dopamine receptors, induced significantly stronger suppression of locomotor activity in mutant mice (-/-) compared to their wild-type littermates (+/+). The administration of amphetamine (3-6 mg/kg), a drug increasing dopamine release, caused a dose-dependent stimulation of locomotor activity in wild-type mice. In mice lacking CCK(2) receptors, a lower dose of amphetamine (3 mg/kg) tended to suppress the motor activity, whereas the higher dose (6 mg/kg) induced the significantly stronger motor stimulation in mutant mice. Moreover, in the CCK(2) receptor-deficient mice the affinity of dopamine D(2) receptors, but not 5-HT(2) receptors, was increased. Altogether, the targeted genetic suppression of CCK(2) receptors increased the sensitivity of pre- and post-synaptic dopamine D(2) receptors.
Collapse
Affiliation(s)
- S Kõks
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|