1
|
Li Y, Wang M, Yang M, Xiao Y, Jian Y, Shi D, Chen X, Ouyang Y, Kong L, Huang X, Bai J, Hu Y, Lin C, Song L. Nicotine-Induced ILF2 Facilitates Nuclear mRNA Export of Pluripotency Factors to Promote Stemness and Chemoresistance in Human Esophageal Cancer. Cancer Res 2021; 81:3525-3538. [PMID: 33975879 DOI: 10.1158/0008-5472.can-20-4160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Balancing mRNA nuclear export kinetics with its nuclear decay is critical for mRNA homeostasis control. How this equilibrium is aberrantly disrupted in esophageal cancer to acquire cancer stem cell properties remains unclear. Here we find that the RNA-binding protein interleukin enhancer binding factor 2 (ILF2) is robustly upregulated by nicotine, a major chemical component of tobacco smoke, via activation of JAK2/STAT3 signaling and significantly correlates with poor prognosis in heavy-smoking patients with esophageal cancer. ILF2 bound the THO complex protein THOC4 as a regulatory cofactor to induce selective interactions with pluripotency transcription factor mRNAs to promote their assembly into export-competent messenger ribonucleoprotein complexes. ILF2 facilitated nuclear mRNA export and inhibited hMTR4-mediated exosomal degradation to promote stabilization and expression of SOX2, NANOG, and SALL4, resulting in enhanced stemness and tumor-initiating capacity of esophageal cancer cells. Importantly, inducible depletion of ILF2 significantly increased the therapeutic efficiency of cisplatin and abrogated nicotine-induced chemoresistance in vitro and in vivo. These findings reveal a novel role of ILF2 in nuclear mRNA export and maintenance of cancer stem cells and open new avenues to overcome smoking-mediated chemoresistance in esophageal cancer. SIGNIFICANCE: This study defines a previously uncharacterized role of nicotine-regulated ILF2 in facilitating nuclear mRNA export to promote cancer stemness, suggesting a potential therapeutic strategy against nicotine-induced chemoresistance in esophageal cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meng Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunting Jian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiewen Bai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Cheng L, Han Y, Zhao X, Xu X, Wang J. Identifying pathway modules of tuberculosis in children by analyzing multiple different networks. Exp Ther Med 2017; 15:755-760. [PMID: 29399082 PMCID: PMC5769296 DOI: 10.3892/etm.2017.5434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/13/2017] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis (TB), which is caused by the mycobacterium TB, is the major cause of human death worldwide. The aim of this study was to identify the biomarkers involved in child TB. Gene expression data were obtained from the Array Express Archive of Functional Genomics Data. Gene expression data and protein-protein interaction (PPI) data were downloaded to construct differential gene co-expression networks (DCNs). The Benjamini-Hochberg algorithm was used to correct the P-value. In total, 3,820 edges (PPIs) and 1,359 nodes (genes) were obtained from the human-related PPIs data and gene expression data at the criteria of absolute value of Pearson's correlation coefficient >0.8. The DCNs were formed by these edges and nodes. Thirteen seed genes were obtained by ranging z-scores. Eight significant multiple different modules were identified from DCNs using the statistical significant test. In conclusion, the seed genes and significant modules constitute potential biomarkers that reveal the underlying mechanisms in child TB. The new identified biomarkers may contribute to an understanding of TB and provide a new therapeutic method for the treatment of TB.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Yuling Han
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Xiuxia Zhao
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Xiaoli Xu
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Jing Wang
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
3
|
Expression and Clinical Significance of ILF2 in Gastric Cancer. DISEASE MARKERS 2017; 2017:4387081. [PMID: 28831206 PMCID: PMC5555027 DOI: 10.1155/2017/4387081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023]
Abstract
The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.
Collapse
|
4
|
Cheng S, Jiang X, Ding C, Du C, Owusu-Ansah KG, Weng X, Hu W, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:1373. [PMID: 27556459 PMCID: PMC5000768 DOI: 10.3390/ijms17081373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| | - Xu Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaofeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chengli Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kwabena Gyabaah Owusu-Ansah
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xiaoyu Weng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wendi Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chuanhui Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhen Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Rongliang Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Heng Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
5
|
Parfitt DE, Shen MM. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0542. [PMID: 25349451 DOI: 10.1098/rstb.2013.0542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst-gastrula transition.
Collapse
Affiliation(s)
- David-Emlyn Parfitt
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
6
|
Ni T, Mao G, Xue Q, Liu Y, Chen B, Cui X, Lv L, Jia L, Wang Y, Ji L. Upregulated expression of ILF2 in non-small cell lung cancer is associated with tumor cell proliferation and poor prognosis. J Mol Histol 2015; 46:325-35. [DOI: 10.1007/s10735-015-9624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 01/13/2023]
|
7
|
Up-Regulation of NF45 Correlates with Schwann Cell Proliferation After Sciatic Nerve Crush. J Mol Neurosci 2015; 56:216-27. [DOI: 10.1007/s12031-014-0484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
8
|
Huang Q, He X, Qiu X, Liu X, Sun G, Guo J, Ding Z, Yang L, Ban N, Tao T, Wang D. Expression of NF45 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth. Tumour Biol 2014; 35:10149-57. [DOI: 10.1007/s13277-014-2310-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022] Open
|
9
|
Groh KJ, Schönenberger R, Eggen RIL, Segner H, Suter MJF. Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 2013; 193:210-20. [PMID: 23968773 DOI: 10.1016/j.ygcen.2013.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
García-López J, Hourcade JDD, Del Mazo J. Reprogramming of microRNAs by adenosine-to-inosine editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos. Nucleic Acids Res 2013; 41:5483-93. [PMID: 23571754 PMCID: PMC3664825 DOI: 10.1093/nar/gkt247] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenosine deaminases-acting-on-RNA (ADAR) proteins induce adenosine-to-inosine editing in double-stranded RNA molecules. This editing generates RNA diversity at the post-transcriptional level, and it has been implicated in the control of cell differentiation and development. The editing of microRNA (miRNA) precursors, along with Tudor-SN (Snd1) activity, could lead to the elimination of selected miRNAs and reprogram miRNA activity. Here, we report the dynamics of adenosine-to-inosine editing in miRNA precursors and their selected elimination during mouse preimplantation development. Adar1p110 and Snd1 were found to be strongly but differentially expressed in oocytes and zygotes with respect to later pre-implantation stages. When the biogenesis of miR-151 was assessed, the majority of miR-151 precursors was edited and subsequently eliminated during early development. Deep sequencing of this and other miRNAs confirmed that, in general, edited precursors were selectively eliminated at early post-zygotic stages. Moreover, in oocytes and throughout the zygote-to-blastocyst stages, Tudor-SN accumulated in newly discovered aggregates termed ‘T bodies’. These results provide new insight into how editing and Tudor-SN-mediated elimination of miRNA precursors is regulated during early development.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
11
|
The ortholog conjecture is untestable by the current gene ontology but is supported by RNA sequencing data. PLoS Comput Biol 2012; 8:e1002784. [PMID: 23209392 PMCID: PMC3510086 DOI: 10.1371/journal.pcbi.1002784] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/02/2012] [Indexed: 11/19/2022] Open
Abstract
The ortholog conjecture posits that orthologous genes are functionally more similar than paralogous genes. This conjecture is a cornerstone of phylogenomics and is used daily by both computational and experimental biologists in predicting, interpreting, and understanding gene functions. A recent study, however, challenged the ortholog conjecture on the basis of experimentally derived Gene Ontology (GO) annotations and microarray gene expression data in human and mouse. It instead proposed that the functional similarity of homologous genes is primarily determined by the cellular context in which the genes act, explaining why a greater functional similarity of (within-species) paralogs than (between-species) orthologs was observed. Here we show that GO-based functional similarity between human and mouse orthologs, relative to that between paralogs, has been increasing in the last five years. Further, compared with paralogs, orthologs are less likely to be included in the same study, causing an underestimation in their functional similarity. A close examination of functional studies of homologs with identical protein sequences reveals experimental biases, annotation errors, and homology-based functional inferences that are labeled in GO as experimental. These problems and the temporary nature of the GO-based finding make the current GO inappropriate for testing the ortholog conjecture. RNA sequencing (RNA-Seq) is known to be superior to microarray for comparing the expressions of different genes or in different species. Our analysis of a large RNA-Seq dataset of multiple tissues from eight mammals and the chicken shows that the expression similarity between orthologs is significantly higher than that between within-species paralogs, supporting the ortholog conjecture and refuting the cellular context hypothesis for gene expression. We conclude that the ortholog conjecture remains largely valid to the extent that it has been tested, but further scrutiny using more and better functional data is needed.
Collapse
|
12
|
Groh KJ, Nesatyy VJ, Segner H, Eggen RIL, Suter MJF. Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:619-647. [PMID: 21229308 PMCID: PMC3146978 DOI: 10.1007/s10695-010-9464-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/17/2010] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms controlling sex determination and differentiation in zebrafish (Danio rerio) are largely unknown. A genome-wide analysis may provide comprehensive insights into the processes involved. The mRNA expression in zebrafish gonads has been fairly well studied, but much less data on the corresponding protein expression are available, although the proteins are considered to be more relevant markers of gene function. Because mRNA and protein abundances rarely correlate well, mRNA profiles need to be complemented with the information on protein expression. The work presented here analyzed the proteomes of adult zebrafish gonads by a multidimensional protein identification technology, generating the to-date most populated lists of proteins expressed in mature zebrafish gonads. The acquired proteomics data partially confirmed existing transcriptomics information for several genes, including several novel transcripts. However, disagreements between mRNA and protein abundances were often observed, further stressing the necessity to assess the expression on different levels before drawing conclusions on a certain gene's expression and function. Several gene groups expressed in a sexually dimorphic way in zebrafish gonads were identified. Their potential importance for gonad development and function is discussed. The data gained in the current study provide a basis for further work on elucidating processes occurring during zebrafish development with use of high-throughput proteomics.
Collapse
Affiliation(s)
- Ksenia J. Groh
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Victor J. Nesatyy
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
- Present Address: EPFL, Station 15, 1015 Lausanne, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, Postbox 8466, 3001 Bern, Switzerland
| | - Rik I. L. Eggen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Marc J.-F. Suter
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| |
Collapse
|
13
|
Paliwal P, Sharma A, Sahoo J, Ammini AC. An unusual association of hypospadias with partial deletion of chromosome 1q. Fertil Steril 2010; 93:2413.e11-3. [PMID: 20079893 DOI: 10.1016/j.fertnstert.2009.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/23/2009] [Accepted: 12/01/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To report an unusual finding of chromosome 1q deletion in a man with failed multiple hypospadias repair. DESIGN Case report and discussion. SETTING An academic tertiary care hospital. PATIENT(S) A 32-year-old man with failed multiple hypospadias repair. INTERVENTION(S) Clinical, hormonal, cytogenetic evaluation, fluorescent in situ hybridization (FISH), and ultrasonography. MAIN OUTCOME MEASURE(S) Serum gonadotropin and testosterone levels, and karyotype showing structural abnormality of long arm of chromosome 1. RESULT(S) Ultrasonography showed the absence of the left testis and a hypoechoic right testis. Serum luteinizing hormone and follicular stimulating hormone levels were raised, but testosterone and prolactin levels were within the normal range for adult men. Karyotype analysis revealed an interstitial deletion of the long arm of chromosome 1, which was confirmed by FISH. CONCLUSION(S) Chromosome 1 may harbor a critical domain that is essential for male fertility.
Collapse
Affiliation(s)
- Preeti Paliwal
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
14
|
Galetzka D, Weis E, Kohlschmidt N, Bitz O, Stein R, Haaf T. Expression of somatic DNA repair genes in human testes. J Cell Biochem 2007; 100:1232-9. [PMID: 17177185 DOI: 10.1002/jcb.21113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Meiosis is the key process for recombination and reduction of the diploid chromosome set to a haploid one. Many genes that have been found in yeast or mouse models to play a role in meiosis are also important for the repair of DNA damage in somatic cells. To study the DNA repair gene transcriptome during male germ cell development, we have developed a specialized cDNA microarray with 181 human genes which are involved in different somatic DNA repair pathways and/or cell cycle control and 45 control house-keeping genes. This DNA repair gene chip was used to quantify the mRNA expression levels in three human testes samples versus a fibroblast RNA pool. Two hundred twenty genes on the chip (including house-keeping genes) showed detectable expression levels in adult testes. Sixty-four DNA repair- and cell cycle-associated genes showed higher expression levels in testicular cells than in mitotically dividing fibroblasts and, therefore, are likely to be implicated in meiosis. The microarray results of 17 genes with increased expression levels were validated with reverse Northern blots or real-time quantitative RT PCR. Systematic analyses of the meiotic DNA repair gene transcriptome may provide new insights into the genetics of male (in)fertility.
Collapse
Affiliation(s)
- Danuta Galetzka
- Institute for Human Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Wang HJ, Shao JZ, Xiang LX, Shen J. Molecular Cloning, Characterization and Expression Analysis of an ILF2 Homologue from Tetraodon nigroviridis. BMB Rep 2006; 39:686-95. [PMID: 17129403 DOI: 10.5483/bmbrep.2006.39.6.686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-2 enhancer binding factor 2 (ILF2) was reported to regulate transcription of interleukin-2 (IL-2), a central cytokine in the regulation of T-cell responses. This property of ILF2 was well characterized in human and mammals, but little is known in bony fish. In this paper, an ILF2 homologue was cloned and well characterized from Tetraodon nigrovirid is for the further investigation of the function of ILF2 in bony fish. The full-length Tetraodon ILF2 cDNA was 1380 bp in size and contained an open reading frame (ORF) of 1164 bp that translates into a 387 amino-acid peptide with a molecular weight of 42.9 kDa, a 5' untranslated region (UTR) of 57 bp, and a 3' UTR of 159 bp containing a poly A tail. The deduced peptide of Tetraodon ILF2 shared an overall identity of 58%~93% with other known ILF2 sequences, and contained two Nglycosylation sites, two N-myristoylation sites, one RGD cell attachment sequence, six protein kinase C phosphorylation sites, one amino-terminal RGG-rich single-stranded RNAbinding domain, and a DZF zinc-finger nucleic acid binding domain, most of which were highly conserved through species compared. Constitutive expression of Tetraodon ILF2 was observed in all tissues examined, including gill, gut, head kidney, spleen, liver, brain and heart. The highest expression was detected in heart, followed by liver, head kidney and brain. Stimulation with LPS did not significantly alter the expression of Tetraodon ILF2. Gene organization analysis showed that the Tetraodon ILF2 gene have fifteen exons, one more than other known ILF2 genes in human and mouse. Genes upand down-stream from the Tetraodon ILF2 were Rpa12, Peroxin-11b, Smad4, Snapap and Txnip homologue, which were different from that in human and mouse.
Collapse
Affiliation(s)
- Hui-Ju Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Lin HF, Shao JZ, Xiang LX, Wang HJ. Molecular cloning, characterization and expression analysis of grass carp (Ctenopharyngodon idellus) NF45 (ILF2) cDNA, a subunit of the nuclear factor of activated T-cells (NF-AT). FISH & SHELLFISH IMMUNOLOGY 2006; 21:385-92. [PMID: 16533607 DOI: 10.1016/j.fsi.2006.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 05/07/2023]
Abstract
NF45 (ILF2) and NF90 (ILF3) regulate the IL-2 gene transcription via interaction with the antigen receptor response element. Much work on NF45 has been done in human and mammals while little in fish. In the present study, we have cloned and characterized the full-length cDNA of NF45 in grass carp (Ctenopharyngodon idellus). The grass carp NF45 cDNA of 1563bp contains a short 5'UTR of 24bp, a 3'UTR of 375bp and an open reading frame of 1164bp coding for a protein of 387 aa with a predicted molecular mass of 42.8kDa. The encoded protein shares 86.3-96.7% identities to other homologues. RT-PCR was optimized to estimate the expression level of NF45 in grass carp. The results showed that NF45 is constitutively expressed in most selected tissues, including head kidney, spleen, heart, brain, liver, and gill, although low levels were observed in spleen, liver and gill. The ubiquitous expression of NF45 is consistent with a postulated role in gene regulation at the level of transcription. Stimulating the fish with PHA significantly up-regulated the expression of NF45 in most tissues examined, which potentially indicated that NF45 was involved in the immune responses triggered by PHA.
Collapse
Affiliation(s)
- Hui-Fang Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Abstract
AIM: To elucidate the molecular mechanisms of the inhibitory effects of IFN-α on tumor growth and metastasis in MHCC97 xenografts.
METHODS: Three thousand international units per milliliter of IFN-α-treated and -untreated MHCC97 cells were enrolled for gene expression analysis using cDNA microarray. The mRNA levels of several differentially expressed genes in cDNA microarray were further identified by Northern blot and RT-PCR.
RESULTS: A total of 190 differentially expressed genes including 151 IFN-α-repressed and 39 -stimulated genes or expressed sequence tags from 8 464 known human genes were found to be regulated by IFN-α in MHCC97. With a few exceptions, mRNA levels of the selected genes in RT-PCR and Northern blot were in good agreement with those in cDNA microarray.
CONCLUSION: IFN-α might exert its complicated anti-tumor effects on MHCC97 xenografts by regulating the expression of functional genes involved in cell metabolism, proliferation, morphogenesis, angiogenesis, and signaling.
Collapse
Affiliation(s)
- Wei-Zhong Wu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
18
|
Zhao G, Shi L, Qiu D, Hu H, Kao PN. NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Exp Cell Res 2005; 305:312-23. [PMID: 15817156 DOI: 10.1016/j.yexcr.2004.12.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 11/30/2022]
Abstract
NF45/ILF2 associates with NF90/ILF3 in the nucleus and regulates IL-2 gene transcription at the antigen receptor response element (ARRE)/NF-AT DNA target sequence (P.N. Kao, L. Chen, G. Brock, J. Ng, A.J. Smith, B. Corthesy, J. Biol. Chem. 269 (1994) 20691-20699). NF45 is widely expressed in normal tissues, especially testis, brain, and kidney, with a predominantly nuclear distribution. NF45 mRNA expression is increased in lymphoma and leukemia cell lines. The human and murine NF45 proteins differ only by substitution of valine by isoleucine at amino acid 142. Fluorescence in situ hybridization localized the human NF45 gene to chromosome 1q21.3, and mouse NF45 gene to chromosome 3F1. Promoter analysis of 2.5 kB of the murine NF45 gene reveals that significant activation is conferred by factors, possible including NF-Y, that bind to the CCAAT-box sequence. The function of human NF45 in regulating IL-2 gene expression was characterized in Jurkat T-cells stably transfected with plasmids directing expression of NF45 cDNA in sense or antisense orientations. NF45 sense expression increased IL-2 luciferase reporter gene activity 120-fold, and IL-2 protein expression 2-fold compared to control cells. NF45 is a highly conserved, regulated transcriptional activator, and one target gene is IL-2.
Collapse
Affiliation(s)
- Guohua Zhao
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5236, USA
| | | | | | | | | |
Collapse
|
19
|
Bache I, Assche EV, Cingoz S, Bugge M, Tümer Z, Hjorth M, Lundsteen C, Lespinasse J, Winther K, Niebuhr A, Kalscheuer V, Liebaers I, Bonduelle M, Tournaye H, Ayuso C, Barbi G, Blennow E, Bourrouillou G, Brondum-Nielsen K, Bruun-Petersen G, Croquette MF, Dahoun S, Dallapiccola B, Davison V, Delobel B, Duba HC, Duprez L, Ferguson-Smith M, Fitzpatrick DR, Grace E, Hansmann I, Hultén M, Jensen PK, Jonveaux P, Kristoffersson U, Lopez-Pajares I, McGowan-Jordan J, Murken J, Orera M, Parkin T, Passarge E, Ramos C, Rasmussen K, Schempp W, Schubert R, Schwinger E, Shabtai F, Smith K, Stallings R, Stefanova M, Tranebjerg L, Turleau C, van der Hagen CB, Vekemans M, Vokac NK, Wagner K, Wahlstroem J, Zelante L, Tommerup N. An excess of chromosome 1 breakpoints in male infertility. Eur J Hum Genet 2004; 12:993-1000. [PMID: 15367911 DOI: 10.1038/sj.ejhg.5201263] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a search for potential infertility loci, which might be revealed by clustering of chromosomal breakpoints, we compiled 464 infertile males with a balanced rearrangement from Mendelian Cytogenetics Network database (MCNdb) and compared their karyotypes with those of a Danish nation-wide cohort. We excluded Robertsonian translocations, rearrangements involving sex chromosomes and common variants. We identified 10 autosomal bands, five of which were on chromosome 1, with a large excess of breakpoints in the infertility group. Some of these could potentially harbour a male-specific infertility locus. However, a general excess of breakpoints almost everywhere on chromosome 1 was observed among the infertile males: 26.5 versus 14.5% in the cohort. This excess was observed both for translocation and inversion carriers, especially pericentric inversions, both for published and unpublished cases, and was significantly associated with azoospermia. The largest number of breakpoints was reported in 1q21; FISH mapping of four of these breakpoints revealed that they did not involve the same region at the molecular level. We suggest that chromosome 1 harbours a critical domain whose integrity is essential for male fertility.
Collapse
Affiliation(s)
- Iben Bache
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|