1
|
Li Y, Li Y, Huang B, Zhang R, He J, Luo L, Yang Y. Long-term labelling and tracing of endodermal cells using a perpetual cycling Gal4-UAS system. Development 2025; 152:dev204289. [PMID: 40116142 PMCID: PMC11959616 DOI: 10.1242/dev.204289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Cell labelling and lineage tracing are indispensable tools in developmental biology, offering powerful means with which to visualise and understand the complex dynamics of cell populations during embryogenesis. Traditional cell labelling relies heavily on signal stability, promoter strength and stage specificity, limiting its application in long-term tracing. In this report, we optimise and reconfigure a perpetual cycling Gal4-UAS system employing a previously unreported Gal4 fusion protein and the autoregulatory Gal4 expression loop. As validated through heat-shock induction, this configuration ensures sustained transcription of reporter genes in target cells and their descendant cells while minimising cytotoxicity, thereby achieving long-term labelling and tracing. Further exploiting this system, we generate zebrafish transgenic lines with continuous fluorescent labelling specific to the endoderm, and demonstrate its effectiveness in long-term tracing by showing the progression of endoderm development from embryo to adult, providing visualisation of endodermal cells and their derived tissues. This continuous labelling and tracing strategy can span the entire process of endodermal differentiation, from progenitor cells to mature functional cells, and is applicable to studying endoderm patterning and organogenesis.
Collapse
Affiliation(s)
- Yanfeng Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - You Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Bangzhuo Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Ruhao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| |
Collapse
|
2
|
Escot S, Hassanein Y, Elouin A, Torres-Paz J, Mellottee L, Ignace A, David NB. Nance-Horan-syndrome-like 1b controls mesodermal cell migration by regulating protrusion and actin dynamics during zebrafish gastrulation. Commun Biol 2025; 8:328. [PMID: 40021913 PMCID: PMC11871229 DOI: 10.1038/s42003-025-07689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
Cell migrations are crucial for embryonic development, wound healing, the immune response, as well as for cancer progression. During mesenchymal cell migration, the Rac1-WAVE-Arp2/3 signalling pathway induces branched actin polymerisation, which protrudes the membrane and allows migration. Fine-tuning the activity of the Rac1-WAVE-Arp2/3 pathway modulates protrusion lifetime and migration persistence. Recently, NHSL1, a novel interactor of the Scar/WAVE complex has been identified as a negative regulator of cell migration in vitro. We here analysed its function in vivo, during zebrafish gastrulation, when nhsl1b is expressed in migrating mesodermal cells. Loss and gain of function experiments revealed that nhsl1b is required for the proper migration of the mesoderm, controlling cell speed and migration persistence. Nhsl1b localises to the tip of actin-rich protrusions where it controls protrusion dynamics, its loss of function reducing the length and lifetime of protrusions, whereas overexpression has the opposite effect. Within the protrusion, Nhsl1b knockdown increases F-actin assembly rate and retrograde flow. These results identify Nhsl1b as a cell type specific regulator of cell migration and highlight the importance of analysing the function of regulators of actin dynamics in physiological contexts.
Collapse
Affiliation(s)
- Sophie Escot
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| | - Yara Hassanein
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Amélie Elouin
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400, Saclay, France
| | - Lucille Mellottee
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Amandine Ignace
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Nicolas B David
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Hong T, Park J, An G, Song J, Song G, Lim W. Evaluation of organ developmental toxicity of environmental toxicants using zebrafish embryos. Mol Cells 2024; 47:100144. [PMID: 39489379 PMCID: PMC11635654 DOI: 10.1016/j.mocell.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
There is increasing global concern about environmental pollutants, such as heavy metals, plastics, pharmaceuticals, personal care products, and pesticides, which have been detected in a variety of environments and are likely to be exposed to nontarget organisms, including humans. Various animal models have been utilized for toxicity assessment, and zebrafish are particularly valuable for studying the toxicity of various compounds owing to their similarity to other aquatic organisms and 70% genetic similarity to humans. Their development is easy to observe, and transgenic models for organs such as the heart, liver, blood vessels, and nervous system enable efficient studies of organ-specific toxicity. This suggests that zebrafish are a valuable tool for evaluating toxicity in specific organs and forecasting the potential impacts on other nontarget species. This review describes organ toxicity caused by various toxic substances and their mechanisms in zebrafish.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Hu B, Pinzour J, Patel A, Rooney F, Zerwic A, Gao Y, Nguyen NT, Xie H, Ye D, Lin F. Gα13 controls pharyngeal endoderm convergence by regulating E-cadherin expression and RhoA activation. Development 2024; 151:dev202597. [PMID: 39258889 PMCID: PMC11463957 DOI: 10.1242/dev.202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our previous work implicates Gα13/RhoA-mediated signaling in regulating this process, but the underlying mechanisms remain unclear. Here, we have used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity and undergo actomyosin-driven apical constriction, which are processes that require Gα13. Additionally, we found that Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify crucial cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways - modulating RhoA activation and regulating E-cadherin expression - thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua Pinzour
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Asmi Patel
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Faith Rooney
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amie Zerwic
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nhan T. Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Shah MA, Xie X, Rodina M, Stundl J, Braasch I, Šindelka R, Rzepkowska M, Saito T, Pšenička M. Sturgeon gut development: a unique yolk utilization strategy among vertebrates. Front Cell Dev Biol 2024; 12:1358702. [PMID: 38872929 PMCID: PMC11169612 DOI: 10.3389/fcell.2024.1358702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.
Collapse
Affiliation(s)
- Mujahid Ali Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Marek Rodina
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Jan Stundl
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Małgorzata Rzepkowska
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
- South Ehime Fisheries Research Centre, Ehime University, Matsuyama, Japan
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| |
Collapse
|
6
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
7
|
Unterweger IA, Klepstad J, Hannezo E, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biol 2023; 21:e3002315. [PMID: 37792696 PMCID: PMC10550115 DOI: 10.1371/journal.pbio.3002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.
Collapse
Affiliation(s)
- Iris. A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Julie Klepstad
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Andalusian Center for Developmental Biology, CSIC, University Pablo de Olavide, Seville, Spain
| | - Edouard Hannezo
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Pia R. Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| |
Collapse
|
8
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
9
|
Frommelt J, Liu E, Bhaidani A, Hu B, Gao Y, Ye D, Lin F. Flat mount preparation for whole-mount fluorescent imaging of zebrafish embryos. Biol Open 2023; 12:bio060048. [PMID: 37746815 PMCID: PMC10373579 DOI: 10.1242/bio.060048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 09/26/2023] Open
Abstract
The zebrafish is a widely used model organism for biomedical research due to its ease of maintenance, external fertilization of embryos, rapid embryonic development, and availability of established genetic tools. One notable advantage of using zebrafish is the transparency of the embryos, which enables high-resolution imaging of specific cells, tissues, and structures through the use of transgenic and knock-in lines. However, as the embryo develops, multiple layers of tissue wrap around the lipid-enriched yolk, which can create a challenge to image tissues located deep within the embryo. While various methods are available, such as two-photon imaging, cryosectioning, vibratome sectioning, and micro-surgery, each of these has limitations. In this study, we present a novel deyolking method that allows for high-quality imaging of tissues that are obscured by other tissues and the yolk. Embryos are lightly fixed in 1% PFA to remove the yolk without damaging embryonic tissues and are then refixed in 4% PFA and mounted on custom-made bridged slides. This method offers a simple way to prepare imaging samples that can be subjected to further preparation, such as immunostaining. Furthermore, the bridged slides described in this study can be used for imaging tissue and organ preparations from various model organisms.
Collapse
Affiliation(s)
- Joseph Frommelt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emily Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Afraz Bhaidani
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
10
|
Zhang Z, Yang C, Wang Z, Guo L, Xu Y, Gao C, Sun Y, Zhang Z, Peng J, Hu M, Jan Lo L, Ma Z, Chen J. Wdr5-mediated H3K4me3 coordinately regulates cell differentiation, proliferation termination, and survival in digestive organogenesis. Cell Death Discov 2023; 9:227. [PMID: 37407577 DOI: 10.1038/s41420-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of β-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.
Collapse
Affiliation(s)
- Zhe Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixu Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liwei Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongpan Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhipeng Ma
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou, 310016, China.
| |
Collapse
|
11
|
Zhu Y, Hu J, Zeng S, Gao M, Guo S, Wang M, Hong Y, Zhao G. L-selenomethionine affects liver development and glucolipid metabolism by inhibiting autophagy in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114589. [PMID: 36724712 DOI: 10.1016/j.ecoenv.2023.114589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Selenium plays a vital role in cancer prevention, antioxidation, and the growth of humans and other vertebrates. Excessive selenium can cause liver injury and metabolic disorders, which can lead to hepatic disease, but few studies have shown the effects of excessive selenium on liver development and its mechanism in zebrafish embryos. In this study, liver development and glucolipid metabolism were investigated in selenium-stressed zebrafish embryos. Under selenium treatment, transgenic fabp10a-eGFP zebrafish embryos showed reduced liver size, and wild-type zebrafish embryos exhibited steatosis and altered lipid metabolism-related indexes and glucose metabolism-related enzyme activities. In addition, selenium-stressed embryos exhibited damaged mitochondria and inhibited autophagy in the liver. An autophagy inducer (rapamycin) alleviated selenium-induced liver injury and restored the expression of some genes related to liver development and glucolipid metabolism. In summary, our research evaluated liver developmental toxicity and metabolic disorders under selenium stress, and confirmed that autophagy and oxidative stress might involve in the selenium-induced hepatic defects.
Collapse
Affiliation(s)
- Yuejie Zhu
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Jun Hu
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Shumin Zeng
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Meng Gao
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Shujie Guo
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Mengnan Wang
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China
| | - Yijiang Hong
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China.
| | - Guang Zhao
- Nanchang University Modern Agriculture Research Institute, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, School of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Sun S, Li X, Zhang L, Zhong Z, Chen C, Zuo Y, Chen Y, Hu H, Liu F, Xiong G, Lu H, Chen J, Dai J. Hexafluoropropylene oxide trimer acid (HFPO-TA) disturbs embryonic liver and biliary system development in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160087. [PMID: 36372181 DOI: 10.1016/j.scitotenv.2022.160087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has emerged as a potential environmental pollutant. Here, to investigate the toxic effects of HFPO-TA on liver and biliary system development, zebrafish embryos were exposed to 0, 50, 100, or 200 mg/L HFPO-TA from 6 to 120 h post-fertilization (hpf). Results showed that the 50 % lethal concentration (LC50) of HFPO-TA was 231 mg/L at 120 hpf, lower than that of PFOA. HFPO-TA exposure decreased embryonic hatching, survival, and body length. Furthermore, HFPO-TA exerted higher toxicity at the specification stage than during the differentiation and maturation stages, leading to small-sized livers in Tg(fabp10a: DsRed) transgenic larvae and histopathological changes. Significant decreases in the mRNA expression of genes related to liver formation were observed. Alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL) levels were significantly increased. HFPO-TA decreased total cholesterol (TCHO) and triglyceride (TG) activities, disturbed lipid metabolism through the peroxisome proliferator-activated receptor (PPAR) pathway, and induced an inflammatory response. Furthermore, HFPO-TA inhibited intrahepatic biliary development in Tg(Tp1:eGFP) transgenic larvae and interfered with transcription of genes associated with biliary duct development. HFPO-TA reduced bile acid synthesis but increased bile acid transport, resulting in disruption of bile acid metabolism. Therefore, HFPO-TA influenced embryonic liver and biliary system morphogenesis, caused liver injury, and may be an unsafe alternative for PFOA.
Collapse
Affiliation(s)
- Sujie Sun
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xue Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Li Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Chao Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuhua Zuo
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yu Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Hongmei Hu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
13
|
Monteiro B, Venâncio C, Francisco R, Sousa ACA, Lopes I. Contributions towards the hazard evaluation of two widely used cytostatic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15641-15654. [PMID: 36169838 DOI: 10.1007/s11356-022-23120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cytostatic drugs are one of the most important therapeutic options for cancer, a disease that is expected to affect 29 million individuals by 2040. After being excreted, cytostatics reach wastewater treatment plants (WWTPs), which are unable to efficiently remove them, and consequently, they will be released into the aquatic environment. Due to the highly toxic properties of cytostatics, it is particularly relevant to evaluate their potential ecological risk. Yet, cytostatics toxicity data is still not available for various species. In this work, the ecotoxicity of two widely consumed cytostatics, cyclophosphamide (CYP-as a model cytostatic) and mycophenolic acid (MPA-as a priority cytostatic), was evaluated on three freshwater species-Raphidocelis subcapitata, Brachionus calyciflorus, and Danio rerio, and the risk quotient (RQ) was assessed. Both drugs significantly affected the yield and growth inhibition of the microalgae, while for rotifers, the least sensitive species, only significant effects were registered for CYP. These drugs also caused significant effects on the mortality and morphological abnormalities on zebrafish. The estimation of the RQ discloses that CYP seems to pose a low risk to aquatic biota while MPA poses a very high risk. Altogether, these results emphasize the need for more complete environmental risk assessments, to properly prioritize and rank cytostatics according to their potentially toxic effects on the environment and aquatic biota.
Collapse
Affiliation(s)
- Bruna Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cátia Venâncio
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Rafael Francisco
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Isabel Lopes
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
15
|
Economou AD, Guglielmi L, East P, Hill CS. Nodal signaling establishes a competency window for stochastic cell fate switching. Dev Cell 2022; 57:2604-2622.e5. [PMID: 36473458 PMCID: PMC7615190 DOI: 10.1016/j.devcel.2022.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
Specification of the germ layers by Nodal signaling has long been regarded as an archetype of how graded morphogens induce different cell fates. However, this deterministic model cannot explain why only a subset of cells at the early zebrafish embryo margin adopt the endodermal fate, whereas their immediate neighbours, experiencing a similar signaling environment, become mesoderm. Combining pharmacology, quantitative imaging and single cell transcriptomics, we demonstrate that sustained Nodal signaling establishes a bipotential progenitor state from which cells can switch to an endodermal fate or differentiate into mesoderm. Switching is a random event, the likelihood of which is modulated by Fgf signaling. This inherently imprecise mechanism nevertheless leads to robust endoderm formation because of buffering at later stages. Thus, in contrast to previous deterministic models of morphogen action, Nodal signaling establishes a temporal window when cells are competent to undergo a stochastic cell fate switch, rather than determining fate itself.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
16
|
Duan M, Guo X, Chen X, Guo M, Zhang M, Xu H, Wang C, Yang Y. Transcriptome analysis reveals hepatotoxicity in zebrafish induced by cyhalofop‑butyl. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106322. [PMID: 36240591 DOI: 10.1016/j.aquatox.2022.106322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Cyhalofop‑butyl is a highly effective aryloxyphenoxypropionate herbicide and widely used for weed control in paddy fields. With the increasing residue of cyhalofop‑butyl, it poses a threat to the survival of aquatic organisms. Here, we investigated the effect of cyhalofop‑butyl on zebrafish to explore its potential hepatotoxic mechanism. The results showed that cyhalofop‑butyl induced hepatocyte degeneration, vacuolation and necrosis of larvae after embryonic exposure for 4 days and caused liver atrophy after 5 days. Meanwhile, the activities of enzymes related to liver function were significantly increased by 0.2 mg/L cyhalofop‑butyl and higher, such as alanine transaminase (ALT) and aspartate transaminase (AST). And the contents of triglyceride (TG) involved in lipid metabolism were significantly decreased by 0.4 mg/L cyhalofop-buty. The expression of genes related to liver development was also significantly down-regulated. Furthermore, transcriptome results showed that the pathways involved in metabolism, immune system and endocrine system were significantly impacted, which may be related to hepatoxicity. To sum up, the present study demonstrated the hepatoxicity caused by cyhalofop-buty and its underlying mechanism. The results may provide new insights for the risk of cyhalofop‑butyl to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuanjun Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
17
|
Gao Y, Jin Q, Gao C, Chen Y, Sun Z, Guo G, Peng J. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 2022; 11:3290. [PMID: 36291156 PMCID: PMC9600436 DOI: 10.3390/cells11203290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm. Great effort has been devoted to deciphering the molecular mechanisms controlling the specification and development of the zebrafish intestine and liver; however, genome-wide comparison of the transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of extensive identification of feature genes marking specific cell types in the zebrafish intestine and liver at 5 days post-fertilization, when the larval fish starts food intake. In this report, through RNA sequencing and single-cell RNA sequencing of intestines and livers separately dissected from wild-type zebrafish larvae at 5 days post-fertilization, together with the experimental validation of 47 genes through RNA whole-mount in situ hybridization, we identified not only distinctive transcriptomes for the larval intestine and liver, but also a considerable number of feature genes for marking the intestinal bulb, mid-intestine and hindgut, and for marking hepatocytes and cholangiocytes. Meanwhile, we identified 135 intestine- and 97 liver-enriched transcription factor genes in zebrafish larvae at 5 days post-fertilization. Our findings provide rich molecular and cellular resources for studying cell patterning and specification during the early development of the zebrafish intestine and liver.
Collapse
Affiliation(s)
- Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Jin
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev Biol 2022; 489:146-160. [PMID: 35752299 DOI: 10.1016/j.ydbio.2022.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.
Collapse
|
19
|
Csenki Z, Risa A, Sárkány D, Garai E, Bata-Vidács I, Baka E, Szekeres A, Varga M, Ács A, Griffitts J, Bakos K, Bock I, Szabó I, Kriszt B, Urbányi B, Kukolya J. Comparison Evaluation of the Biological Effects of Sterigmatocystin and Aflatoxin B1 Utilizing SOS-Chromotest and a Novel Zebrafish (Danio rerio) Embryo Microinjection Method. Toxins (Basel) 2022; 14:toxins14040252. [PMID: 35448861 PMCID: PMC9027791 DOI: 10.3390/toxins14040252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent mycotoxin and natural carcinogen. The primary producers of AFB1 are Aspergillus flavus and A. parasiticus. Sterigmatocystin (STC), another mycotoxin, shares its biosynthetic pathway with aflatoxins. While there are abundant data on the biological effects of AFB1, STC is not well characterised. According to published data, AFB1 is more harmful to biological systems than STC. It has been suggested that STC is about one-tenth as potent a mutagen as AFB1 as measured by the Ames test. In this research, the biological effects of S9 rat liver homogenate-activated and non-activated STC and AFB1 were compared using two different biomonitoring systems, SOS-Chromotest and a recently developed microinjection zebrafish embryo method. When comparing the treatments, activated STC caused the highest mortality and number of DNA strand breaks across all injected volumes. Based on the E. coli SOS-Chromotest, the two toxins exerted the same genotoxicities. Moreover, according to the newly developed zebrafish microinjection method, STC appeared more toxic than AFB1. The scarce information correlating AFB1 and STC toxicity suggests that AFB1 is a more potent genotoxin than STC. Our findings contradict this assumption and illustrate the need for more complex biomonitoring systems for mycotoxin risk assessment.
Collapse
Affiliation(s)
- Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
- Correspondence:
| | - Anita Risa
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
| | - Dorottya Sárkány
- Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences,1022 Budapest, Hungary; (D.S.); (I.B.-V.); (J.K.)
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Edina Garai
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
| | - Ildikó Bata-Vidács
- Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences,1022 Budapest, Hungary; (D.S.); (I.B.-V.); (J.K.)
| | - Erzsébet Baka
- Department of Ecotoxicology, Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Science, 1022 Budapest, Hungary;
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (A.S.); (M.V.)
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (A.S.); (M.V.)
| | - András Ács
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Jeffrey Griffitts
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
| | - Katalin Bakos
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (A.R.); (E.G.); (J.G.); (K.B.); (I.B.); (I.S.)
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - József Kukolya
- Research Group for Food Biotechnology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences,1022 Budapest, Hungary; (D.S.); (I.B.-V.); (J.K.)
| |
Collapse
|
20
|
Castranova D, Samasa B, Venero Galanternik M, Gore AV, Goldstein AE, Park JS, Weinstein BM. Long-term imaging of living adult zebrafish. Development 2022; 149:274463. [PMID: 35142351 PMCID: PMC8918778 DOI: 10.1242/dev.199667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
The zebrafish has become a widely used animal model due, in large part, to its accessibility to and usefulness for high-resolution optical imaging. Although zebrafish research has historically focused mostly on early development, in recent years the fish has increasingly been used to study regeneration, cancer metastasis, behavior and other processes taking place in juvenile and adult animals. However, imaging of live adult zebrafish is extremely challenging, with survival of adult fish limited to a few tens of minutes using standard imaging methods developed for zebrafish embryos and larvae. Here, we describe a new method for imaging intubated adult zebrafish using a specially designed 3D printed chamber for long-term imaging of adult zebrafish on inverted microscope systems. We demonstrate the utility of this new system by nearly day-long observation of neutrophil recruitment to a wound area in living double-transgenic adult casper zebrafish with fluorescently labeled neutrophils and lymphatic vessels, as well as intubating and imaging the same fish repeatedly. We also show that Mexican cavefish can be intubated and imaged in the same way, demonstrating this method can be used for long-term imaging of adult animals from diverse aquatic species.
Collapse
|
21
|
Guglielmi L, Heliot C, Kumar S, Alexandrov Y, Gori I, Papaleonidopoulou F, Barrington C, East P, Economou AD, French PMW, McGinty J, Hill CS. Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nat Commun 2021; 12:6374. [PMID: 34737283 PMCID: PMC8569018 DOI: 10.1038/s41467-021-26486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional effector SMAD4 is a core component of the TGF-β family signaling pathways. However, its role in vertebrate embryo development remains unresolved. To address this, we deleted Smad4 in zebrafish and investigated the consequences of this on signaling by the TGF-β family morphogens, BMPs and Nodal. We demonstrate that in the absence of Smad4, dorsal/ventral embryo patterning is disrupted due to the loss of BMP signaling. However, unexpectedly, Nodal signaling is maintained, but lacks robustness. This Smad4-independent Nodal signaling is sufficient for mesoderm specification, but not for optimal endoderm specification. Furthermore, using Optical Projection Tomography in combination with 3D embryo morphometry, we have generated a BMP morphospace and demonstrate that Smad4 mutants are morphologically indistinguishable from embryos in which BMP signaling has been genetically/pharmacologically perturbed. Smad4 is thus differentially required for signaling by different TGF-β family ligands, which has implications for diseases where Smad4 is mutated or deleted.
Collapse
Affiliation(s)
- Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Claire Heliot
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sunil Kumar
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yuriy Alexandrov
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul M W French
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - James McGinty
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
22
|
Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc 2021; 97:414-447. [PMID: 34647411 PMCID: PMC9293187 DOI: 10.1111/brv.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
23
|
Li X, Song G, Zhao Y, Ren J, Li Q, Cui Z. Functions of SMC2 in the Development of Zebrafish Liver. Biomedicines 2021; 9:biomedicines9091240. [PMID: 34572426 PMCID: PMC8465584 DOI: 10.3390/biomedicines9091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
SMC2 (structural maintenance of chromosomes 2) is the core subunit of condensins, which play a central role in chromosome organization and segregation. However, the functions of SMC2 in embryonic development remain poorly understood, due to the embryonic lethality of homozygous SMC2−/− mice. Herein, we explored the roles of SMC2 in the liver development of zebrafish. The depletion of SMC2, with the CRISPR/Cas9-dependent gene knockout approach, led to a small liver phenotype. The specification of hepatoblasts was unaffected. Mechanistically, extensive apoptosis occurred in the liver of SMC2 mutants, which was mainly associated with the activation of the p53-dependent apoptotic pathway. Moreover, an aberrant activation of a series of apoptotic pathways in SMC2 mutants was involved in the defective chromosome segregation and subsequent DNA damage. Therefore, our findings demonstrate that SMC2 is necessary for zebrafish liver development.
Collapse
Affiliation(s)
- Xixi Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
| | - Guili Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
| | - Yasong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ren
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
| | - Qing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.L.); (J.R.)
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (G.S.); (Y.Z.); (Q.L.)
- Correspondence: ; Tel.: +86-020-87137656
| |
Collapse
|
24
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
25
|
Balaraju AK, Hu B, Rodriguez JJ, Murry M, Lin F. Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development 2021; 148:dev199421. [PMID: 34131730 PMCID: PMC8313861 DOI: 10.1242/dev.199421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that, during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost and intercalation is impaired in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased as a result of impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants. These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing the localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Cheng YC, Wu TS, Huang YT, Chang Y, Yang JJ, Yu FY, Liu BH. Aflatoxin B1 interferes with embryonic liver development: Involvement of p53 signaling and apoptosis in zebrafish. Toxicology 2021; 458:152844. [PMID: 34214637 DOI: 10.1016/j.tox.2021.152844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Aflatoxin B1 (AFB1), a naturally occurring mycotoxin, is present in human placenta and cord blood. AFB1 at concentrations found in contaminated food commodities (0.25 and 0.5 μM) did not alter the spontaneous movement, heart rate, hatchability, or morphology of embryonic zebrafish. However, around 86 % of 0.25 μM AFB1-treated embryos had livers of reduced size, and AFB1 disrupted the hepatocyte structures, according to histological analysis. Additionally, AFB1 treatment that begins at any stage before 72 h post-fertilization (hpf) effectively reduced the size of embryonic livers. In hepatic areas, AFB1 suppressed the expression of Hhex and Prox1, which are two critical transcriptional factors for initiating hepatoblast specification. KEGG analysis based on transcriptome profiling indicated that p53 signaling and apoptosis are the only observed pathways in AFB1-treated embryos. AFB1 at 0.5 μM significantly activated the expression of tp53, mdm2, puma, noxa, pidd1, and gadd45aa genes that are related to the p53 pathway and also that of baxa, casp 8 and casp 3a in the apoptotic process. TUNEL staining demonstrated that AFB1 triggered the apoptosis of embryonic hepatocytes in a dose-dependent manner. These results indicate that the deficiency of both hhex and prox1 as well as hepatocyte apoptosis via the p53-Puma/Noxa-Bax axis may contribute to the embryonic liver shrinkage that is caused by AFB1.
Collapse
Affiliation(s)
- Ya-Chih Cheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Marelli F, Rurale G, Persani L. From Endoderm to Progenitors: An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish. Front Endocrinol (Lausanne) 2021; 12:664557. [PMID: 34149617 PMCID: PMC8213386 DOI: 10.3389/fendo.2021.664557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying thyroid gland development have a central interest in biology and this review is aimed to provide an update on the recent advancements on the early steps of thyroid differentiation that were obtained in the zebrafish, because this teleost fish revealed to be a suitable organism to study the early developmental stages. Physiologically, the thyroid precursors fate is delineated by the appearance among the endoderm cells of the foregut of a restricted cell population expressing specific transcription factors, including pax2a, nkx2.4b, and hhex. The committed thyroid primordium first appears as a thickening of the pharyngeal floor of the anterior endoderm, that subsequently detaches from the floor and migrates to its final location where it gives rise to the thyroid hormone-producing follicles. At variance with mammalian models, thyroid precursor differentiation in zebrafish occurs early during the developmental process before the dislocation to the eutopic positioning of thyroid follicles. Several pathways have been implicated in these early events and nowadays there is evidence of a complex crosstalk between intrinsic (coming from the endoderm and thyroid precursors) and extrinsic factors (coming from surrounding tissues, as the cardiac mesoderm) whose organization in time and space is probably required for the proper thyroid development. In particular, Notch, Shh, Fgf, Bmp, and Wnt signaling seems to be required for the commitment of endodermal cells to a thyroid fate at specific developmental windows of zebrafish embryo. Here, we summarize the recent findings produced in the various zebrafish experimental models with the aim to define a comprehensive picture of such complicated puzzle.
Collapse
Affiliation(s)
- Federica Marelli
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| | - Giuditta Rurale
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| |
Collapse
|
28
|
Korzh S, Winata CL, Gong Z, Korzh V. The development of zebrafish pancreas affected by deficiency of Hedgehog signaling. Gene Expr Patterns 2021; 41:119185. [PMID: 34087472 DOI: 10.1016/j.gep.2021.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.
Collapse
Affiliation(s)
- Svitlana Korzh
- -Department of Biological Sciences, National University of Singapore, Singapore
| | - Cecilia L Winata
- -International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Zhiyuan Gong
- -Department of Biological Sciences, National University of Singapore, Singapore.
| | - Vladimir Korzh
- -International Institute of Molecular and Cell Biology in Warsaw, Poland; -Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
29
|
Figiel DM, Elsayed R, Nelson AC. Investigating the molecular guts of endoderm formation using zebrafish. Brief Funct Genomics 2021:elab013. [PMID: 33754635 DOI: 10.1093/bfgp/elab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate endoderm makes major contributions to the respiratory and gastrointestinal tracts and all associated organs. Zebrafish and humans share a high degree of genetic homology and strikingly similar endodermal organ systems. Combined with a multitude of experimental advantages, zebrafish are an attractive model organism to study endoderm development and disease. Recent functional genomics studies have shed considerable light on the gene regulatory programs governing early zebrafish endoderm development, while advances in biological and technological approaches stand to further revolutionize our ability to investigate endoderm formation, function and disease. Here, we discuss the present understanding of endoderm specification in zebrafish compared to other vertebrates, how current and emerging methods will allow refined and enhanced analysis of endoderm formation, and how integration with human data will allow modeling of the link between non-coding sequence variants and human disease.
Collapse
Affiliation(s)
- Daniela M Figiel
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | - Randa Elsayed
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | | |
Collapse
|
30
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
31
|
Mawed SA, Zhang J, Ren F, He Y, Mei J. atg7 and beclin1 are essential for energy metabolism and survival during the larval-to-juvenile transition stage of zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Corsini M, Ravelli C, Grillo E, Dell'Era P, Presta M, Mitola S. Simultaneously characterization of tumoral angiogenesis and vasculogenesis in stem cell-derived teratomas. Exp Cell Res 2021; 400:112490. [PMID: 33484747 DOI: 10.1016/j.yexcr.2021.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Tumor neovascularization may occur via both angiogenic and vasculogenic events. In order to investigate the vessel formation during tumor growth, we developed a novel experimental model that takes into account the differentiative and tumorigenic properties of Embryonic Stem cells (ESCs). Leukemia Inhibitory Factor-deprived murine ESCs were grafted on the top of the chick embryo chorionallantoic membrane (CAM) in ovo. Cell grafts progressively grew, forming a vascularized mass within 10 days. At this stage, the grafts are formed by cells with differentiative features representative of all three germ layers, thus originating teratomas, a germinal cell tumor. In addition, ESC supports neovascular events by recruiting host capillaries from surrounding tissue that infiltrates the tumor mass. Moreover, immunofluorescence studies demonstrate that perfused active blood vessels within the tumor are of both avian and murine origin because of the simultaneous occurrence of angiogenic and vasculogenic events. In conclusion, the chick embryo ESC/CAM-derived teratoma model may represent a useful approach to investigate both vasculogenic and angiogenic events during tumor growth and for the study of natural and synthetic modulators of the two processes.
Collapse
Affiliation(s)
- Michela Corsini
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; cFRU Lab, Università degli Studi di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy.
| |
Collapse
|
33
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
35
|
Dalgin G, Prince VE. Midline morphogenesis of zebrafish foregut endoderm is dependent on Hoxb5b. Dev Biol 2020; 471:1-9. [PMID: 33290819 DOI: 10.1016/j.ydbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
During vertebrate embryonic development complex morphogenetic events drive the formation of internal organs associated with the developing digestive tract. The foregut organs derive from hepatopancreatic precursor cells that originate bilaterally within the endoderm monolayer, and subsequently converge toward the midline where they coalesce to produce the gut tube from which the liver and pancreas form. The progenitor cells of these internal organs are influenced by the lateral plate mesoderm (LPM), which helps direct them towards their specific fates. However, it is not completely understood how the bilateral organ precursors move toward the embryonic midline and ultimately coalesce to form functional organs. Here we demonstrate that the zebrafish homeobox gene hoxb5b regulates morphogenesis of the foregut endoderm at the midline. At early segmentation stages, hoxb5b is expressed in the LPM adjacent to the developing foregut endoderm. By 24 hpf hoxb5b is expressed directly in the endoderm cells of the developing gut tube. When Hoxb5b function is disrupted, either by morpholino knockdown or sgRNA/Cas9 somatic disruption, the process of foregut morphogenesis is disrupted, resulting in a bifurcated foregut. By contrast, knockdown of the paralogous hoxb5a gene does not alter gut morphology. Further analysis has indicated that Hoxb5b knockdown specimens produce endocrine pancreas cell types, but liver cells are absent. Finally, cell transplantation experiments revealed that Hoxb5b function in the endoderm is not needed for proper coalescence of the foregut at the midline. Together, our findings imply that midline morphogenesis of foregut endoderm is guided by a hoxb5b-mediated mechanism that functions extrinsically, likely within the LPM. Loss of hoxb5b function prevents normal coalescence of endoderm cells at the midline and thus disrupts gut morphogenesis.
Collapse
Affiliation(s)
- Gökhan Dalgin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, 60637, USA
| | - Victoria E Prince
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
36
|
Abstract
Abstract
Background
Alpha-mangostin has potential as a chemopreventive agent but there is little information on its toxicological profile and developmental toxicity.
Objective
We evaluated the effects of α-mangostin on embryonic development and hepatogenesis in zebrafish.
Result
Exposure of embryos to 0.25–4 μM α-mangostin from 4–120 h post-fertilization (hpf) caused mortality of embryos with LC50 1.48 ± 0.29 μM. The compound also caused deformities, including head malformation, pericardial oedema, absence of swim bladder, yolk oedema, and bent tail. Exposure of zebrafish embryos to α-mangostin during early hepatogenesis (16–72 hpf) decreased the transcript expression levels of liver fatty acid-binding protein 10a (Fabp10a), but increased gene markers of inflammation, oxidative stress, and apoptosis. In Fabp10a:DsRed transgenic zebrafish, the intensity and the area of fluorescence in the liver of the treated group were decreased (non-significantly) relative to controls.
Conclusion
These effects were more marked during early hepatogenesis (16–72 hpf) than during post-hepatogenesis (72–120 hpf).
Collapse
|
37
|
Annunziato KM, Doherty J, Lee J, Clark JM, Liang W, Clark CW, Nguyen M, Roy MA, Timme-Laragy AR. Chemical Characterization of a Legacy Aqueous Film-Forming Foam Sample and Developmental Toxicity in Zebrafish ( Danio rerio). ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97006. [PMID: 32966100 PMCID: PMC7510953 DOI: 10.1289/ehp6470] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drinking water contamination related to the use of aqueous film-forming foam (AFFF) has been documented at hundreds of military bases, airports, and firefighter training facilities. AFFF has historically contained high levels of long-chain per- and polyfluoroalkyl substances (PFAS), which pose serious health concerns. However, the composition and toxicity of legacy AFFF mixtures are unknown, presenting great uncertainties in risk assessment and affected communities. OBJECTIVES This study aimed to determine the fluorinated and nonfluorinated chemical composition of a legacy AFFF sample and its toxicity in zebrafish embryos. METHODS A sample of legacy AFFF (3% application formulation, manufactured before 2001) was provided by the Massachusetts Department of Environmental Protection. High resolution mass spectrometry (HRMS) was used to identify PFAS and nonfluorinated compounds, and a commercial laboratory measured 24 PFAS by a modified U.S. EPA Method 537.1. AFFF toxicity was assessed in zebrafish embryos in comparison with four major constituents: perfluorooctanesulfonic acid (PFOS); perfluorohexanesulfonic acid (PFHxS); sodium dodecyl sulfate (SDS); and sodium tetradecyl sulfate (TDS). End points included LC 50 values, and sublethal effects on growth, yolk utilization, and pancreas and liver development. RESULTS We identified more than 100 PFAS. Of the PFAS detected, PFOS was measured at the highest concentration (9,410 mg / L ) followed by PFHxS (1,500 mg / L ). Fourteen nonfluorinated compounds were identified with dodecyl sulfate and tetradecyl sulfate the most abundant at 547.8 and 496.4 mg / L , respectively. An LC 50 of 7.41 × 10 - 4 % AFFF was calculated, representing a dilution of the 3% formulation. TDS was the most toxic of the constituents tested but could not predict the AFFF phenotype in larval zebrafish. PFOS exposure recapitulated the reduction in length but could not predict effects on development of the liver, which was the tissue most sensitive to AFFF. DISCUSSION To our knowledge, this research is the first characterization of the chemical composition and toxicity of legacy AFFF, which has important implications for regulatory toxicology. https://doi.org/10.1289/EHP6470.
Collapse
Affiliation(s)
- Kate M. Annunziato
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - John M. Clark
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Christopher W. Clark
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Malina Nguyen
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Monika A. Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
38
|
Gao C, Huang W, Gao Y, Lo LJ, Luo L, Huang H, Chen J, Peng J. Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1. J Mol Cell Biol 2020; 11:448-462. [PMID: 30428031 PMCID: PMC6604603 DOI: 10.1093/jmcb/mjy068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
The hepatopancreatic duct (HPD) system links the liver and pancreas to the intestinal tube and is composed of the extrahepatic biliary duct, gallbladder, and pancreatic duct. Haematopoietically expressed-homeobox (Hhex) protein plays an essential role in the establishment of HPD; however, the molecular mechanism remains elusive. Here, we show that zebrafish hhex-null mutants fail to develop the HPD system characterized by lacking the biliary marker Annexin A4 and the HPD marker sox9b. The hepatobiliary duct part of the mutant HPD system is replaced by an intrahepatic intestinal tube characterized by expressing the intestinal marker fatty acid-binding protein 2a (fabp2a). Cell lineage analysis showed that this intrahepatic intestinal tube is not originated from hepatocytes or cholangiocytes. Further analysis revealed that cdx1b and pdx1 are expressed ectopically in the intrahepatic intestinal tube and knockdown of cdx1b and pdx1 could restore the expression of sox9b in the mutant. Chromatin-immunoprecipitation analysis showed that Hhex binds to the promoters of pdx1 and cdx1b genes to repress their expression. We therefore propose that Hhex, Cdx1b, Pdx1, and Sox9b form a genetic network governing the patterning and morphogenesis of the HPD and digestive tract systems in zebrafish.
Collapse
Affiliation(s)
- Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Weidong Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Lingfei Luo
- College of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- College of Life Sciences, Southwest University, Chongqing, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China
| |
Collapse
|
39
|
Expression patterns of activating transcription factor 5 (atf5a and atf5b) in zebrafish. Gene Expr Patterns 2020; 37:119126. [PMID: 32663618 DOI: 10.1016/j.gep.2020.119126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The Activating Transcription Factor 5 (ATF5) is a basic leucine-zipper (bZIP) transcription factor (TF) with proposed stress-protective, anti-apoptotic and oncogenic roles which were all established in cell systems. In whole animals, Atf5 function seems highly context dependent. Atf5 is strongly expressed in the rodent nose and mice knockout (KO) pups have defective olfactory sensory neurons (OSNs), smaller olfactory bulbs (OB), while adults are smell deficient. It was therefore proposed that Atf5 plays an important role in maturation and maintenance of OSNs. Atf5 expression was also described in murine liver and bones where it appears to promote differentiation of progenitor cells. By contrast in the rodent brain, Atf5 was first described as uniquely expressed in neuroprogenitors and thus, proposed to drive their proliferation and inhibit their differentiation. However, it was later also found in mature neurons stressing the need for additional work in whole animals. ATF5 is well conserved with two paralogs, atf5a and atf5b in zebrafish. Here, we present the expression patterns for both from 6 h (hpf) to 5day post-fertilization (dpf). We found early expression for both genes, and from 1dpf onwards overlapping expression patterns in the inner ear and the developing liver. In the brain, at 24hpf both atf5a and atf5b were expressed in the forebrain, midbrain, and hindbrain. However, from 2dpf and onwards we only detected atf5a expression namely in the olfactory bulbs, the mesencephalon, and the metencephalon. We further evidenced additional differential expression for atf5a in the sensory neurons of the olfactory organs, and for atf5b in the neuromasts, that form the superficial sensory organ called the lateral line (LL). Our results establish the basis for future functional analyses in this lower vertebrate.
Collapse
|
40
|
Garland MA, Geier MC, Bugel SM, Shankar P, Dunham CL, Brown JM, Tilton SC, Tanguay RL. Aryl Hydrocarbon Receptor Mediates Larval Zebrafish Fin Duplication Following Exposure to Benzofluoranthenes. Toxicol Sci 2020; 176:46-64. [PMID: 32384158 PMCID: PMC7357178 DOI: 10.1093/toxsci/kfaa063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates developmental toxicity of several xenobiotic classes including polycyclic aromatic hydrocarbons. Using embryonic zebrafish, we previously identified 4 polycyclic aromatic hydrocarbons that caused a novel phenotype among AHR ligands-growth of a lateral, duplicate caudal fin fold. The window of sensitivity to the most potent inducer of this phenotype, benzo[k]fluoranthene (BkF), was prior to 36 h postfertilization (hpf), although the phenotype was not manifest until 60 hpf. AHR dependency via Ahr2 was demonstrated using morpholino knockdown. Hepatocyte ablation demonstrated that hepatic metabolism of BkF was not required for the phenotype, nor was it responsible for the window of sensitivity. RNA sequencing performed on caudal trunk tissue from BkF-exposed animals collected at 48, 60, 72, and 96 hpf showed upregulation of genes associated with AHR activation, appendage development, and tissue patterning. Genes encoding fibroblast growth factor and bone morphogenic protein ligands, along with retinaldehyde dehydrogenase, were prominently upregulated. Gene Ontology term analysis revealed that upregulated genes were enriched for mesoderm development and fin regeneration, whereas downregulated genes were enriched for Wnt signaling and neuronal development. MetaCore (Clarivate Analytics) systems analysis of orthologous human genes predicted that R-SMADs, AP-1, and LEF1 regulated the expression of an enriched number of gene targets across all time points. Our results demonstrate a novel aspect of AHR activity with implications for developmental processes conserved across vertebrate species.
Collapse
Affiliation(s)
- Michael A Garland
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA 95817
| | - Mitra C Geier
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95814
| | - Sean M Bugel
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Prarthana Shankar
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Cheryl L Dunham
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Joseph M Brown
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratories, Richland, Washington 99352
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Susan C Tilton
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| |
Collapse
|
41
|
Zielińska KA, Grealy M, Dockery P. A stereological study of developmental changes in hepatocyte ultrastructure of zebrafish (Danio rerio). J Anat 2020; 236:996-1003. [PMID: 32056204 DOI: 10.1111/joa.13165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 11/28/2022] Open
Abstract
Histopathology can reveal toxicant-induced changes in the structure of a tissue or organ. A prerequisite for histopathological studies is a sound knowledge of the morphology of the anatomical structure in the normal or healthy state. Zebrafish larvae can provide a tool for studies focused on hepatotoxicity at early stages of development; therefore, the fine structure of the organ should be well characterised. To date, liver structure at 72 and 120 hr post-fertilisation (hpf) has not been reported in detail and this study aimed to fill this scientific gap. A stereological approach allowed for quantitative description of the liver and revealed ultrastructural alterations occurring with time of development. These included a significant increase in the absolute volume of hepatocytes, mitochondria and rough endoplasmic reticulum (rER) during the period of study. The surface area of rER, and of outer and inner mitochondrial membranes also increased. There was no change in the absolute volume of the nuclei. This study provides a quantitative spatial and temporal framework for future research aiming to detect early developmental changes in the liver.
Collapse
Affiliation(s)
| | - Maura Grealy
- Department of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- Department of Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
42
|
Faisal Z, Garai E, Csepregi R, Bakos K, Fliszár-Nyúl E, Szente L, Balázs A, Cserháti M, Kőszegi T, Urbányi B, Csenki Z, Poór M. Protective effects of beta-cyclodextrins vs. zearalenone-induced toxicity in HeLa cells and Tg(vtg1:mCherry) zebrafish embryos. CHEMOSPHERE 2020; 240:124948. [PMID: 31726616 DOI: 10.1016/j.chemosphere.2019.124948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Zearalenone is a xenoestrogenic mycotoxin produced by Fusarium species. High exposure with zearalenone induces reproductive disorders worldwide. Cyclodextrins are ring-shaped host molecules built up from glucose units. The apolar cavity of cyclodextrins can entrap so-called guest molecules. The formation of highly stable host-guest type complexes with cyclodextrins can decrease the biological effect of the guest molecule. Therefore, cyclodextrins may be suitable to decrease the toxicity of some xenobiotics even after the exposure. In this study, the protective effect of beta-cyclodextrins against zearalenone-induced toxicity was investigated in HeLa cells and zebrafish embryos. Fluorescence spectroscopic studies demonstrated the formation of stable complexes of zearalenone with sulfobutyl-, methyl-, and succinyl-methyl-substituted beta-cyclodextrins at pH 7.4 (K = 1.4-4.7 × 104 L/mol). These chemically modified cyclodextrins considerably decreased or even abolished the zearalenone-induced loss of cell viability in HeLa cells and mortality in zebrafish embryos. Furthermore, the sublethal effects of zearalenone were also significantly alleviated by the co-treatment with beta-cyclodextrins. To test the estrogenic effect of the mycotoxin, a transgenic bioindicator zebrafish model (Tg(vtg1:mCherry)) was also applied. Our results suggest that the zearalenone-induced vitellogenin production is partly suppressed by the hepatotoxicity of zearalenone in zebrafish. This study demonstrates that the formation of stable zearalenone-cyclodextrin complexes can strongly decrease or even abolish the zearalenone-induced toxicity, both in vitro and in vivo. Therefore, cyclodextrins appear as promising new mycotoxin binders.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Edina Garai
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Rita Csepregi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Katalin Bakos
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097, Budapest, Hungary.
| | - Adrienn Balázs
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Zsolt Csenki
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
43
|
Wu Y, Li W, Yuan M, Liu X. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134870. [PMID: 31726413 DOI: 10.1016/j.scitotenv.2019.134870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DM) is a widely used insecticide and reveals neural, cardiovascular and reproductive toxicity to various aquatic organisms. It has been known that DM negatively affects motion of zebrafish (Danio rerio). However, little is known in relation to the impacts of DM on development of swim bladder, which is a key organ for motion. In the present study, zebrafish embryos were exposed to 20 and 40 µg/L DM. The changes of swim bladder morphology were observed and transcription levels of key genes were compared between DM treatments and the control. The results showed that DM treatments significantly blocked the formation of progenitor and tissue layers in swim bladder of zebrafish embryos, leading to failed inflation of swim bladder. Compared with the control, the key genes (pbx1, foxA3, mnx1, has2, anxa5b, hprt1l and elovl1a) responsible for swim bladder development also showed decreased levels in response to DM treatments, suggesting that DM might specifically affect swim bladder development. Moreover, transcription levels of genes in the Wnt (wnt5b, tcf3a, wnt1, wnt9b, fzd1, fzd3 and fzd5) and Hedgehog (ihhb, ptc1 and ptc2) signaling pathways all decreased significantly in response to DM treatments, compared with the control. Considering the importance of Wnt and Hedgehog pathways in development of swim bladder, these results suggested that DM might affect swim bladder development through inhibiting the Wnt and Hedgehog pathways. Overall, the present study reported that swim bladder might be a potential target organ of DM toxicity in zebrafish, which contributed more information to the evaluation of DM's environmental risks.
Collapse
Affiliation(s)
- Yaqin Wu
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenhua Li
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mingrui Yuan
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Provincial Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
44
|
Economou AD, Hill CS. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr Top Dev Biol 2019; 137:363-389. [PMID: 32143749 DOI: 10.1016/bs.ctdb.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most powerful ideas in developmental biology has been that of the morphogen gradient. In the classical view, a signaling molecule is produced at a local source from where it diffuses, resulting in graded levels across the tissue. This gradient provides positional information, with thresholds in the level of the morphogen determining the position of different cell fates. While experimental studies have uncovered numerous potential morphogens in biological systems, it is becoming increasingly apparent that one important feature, not captured in the simple model, is the role of time in both the formation and interpretation of morphogen gradients. We will focus on two members of the transforming growth factor-β family that are known to play a vital role as morphogens in early vertebrate development: the Nodals and the bone morphogenetic proteins (BMPs). Primarily drawing on the early zebrafish embryo, we will show how recent studies have demonstrated the importance of feedback and other interactions that evolve through time, in shaping morphogen gradients. We will further show how rather than simply reading out levels of a morphogen, the duration of ligand exposure can be a crucial determinant of how cells interpret morphogens, in particular through the unfolding of downstream transcriptional events and in their interactions with other pathways.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
45
|
Mullapudi ST, Boezio GLM, Rossi A, Marass M, Matsuoka RL, Matsuda H, Helker CSM, Yang YHC, Stainier DYR. Disruption of the pancreatic vasculature in zebrafish affects islet architecture and function. Development 2019; 146:dev.173674. [PMID: 31597659 DOI: 10.1242/dev.173674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Abstract
A dense local vascular network is crucial for pancreatic endocrine cells to sense metabolites and secrete hormones, and understanding the interactions between the vasculature and the islets may allow for therapeutic modulation in disease conditions. Using live imaging in two models of vascular disruption in zebrafish, we identified two distinct roles for the pancreatic vasculature. At larval stages, expression of a dominant negative version of Vegfaa (dnVegfaa) in β-cells led to vascular and endocrine cell disruption with a minor impairment in β-cell function. In contrast, expression of a soluble isoform of Vegf receptor 1 (sFlt1) in β-cells blocked the formation of the pancreatic vasculature and drastically stunted glucose response, although islet architecture was not affected. Notably, these effects of dnVegfaa or sFlt1 were not observed in animals lacking vegfaa, vegfab, kdrl, kdr or flt1 function, indicating that they interfere with multiple ligands and/or receptors. In adults, disrupted islet architecture persisted in dnVegfaa-expressing animals, whereas sFlt1-expressing animals displayed large sheets of β-cells along their pancreatic ducts, accompanied by impaired glucose tolerance in both models. Thus, our study reveals novel roles for the vasculature in patterning and function of the islet.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
46
|
Abstract
PURPOSE OF THE REVIEW Here, we review recent findings in the field of generating insulin-producing cells by pancreatic transcription factor (pTF)-induced liver transdifferentiation (TD). TD is the direct conversion of functional cell types from one lineage to another without passing through an intermediate stage of pluripotency. We address potential reasons for the restricted efficiency of TD and suggest modalities to overcome these challenges, to bring TD closer to its clinical implementation in autologous cell replacement therapy for insulin-dependent diabetes. RECENT FINDINGS Liver to pancreas TD is restricted to cells that are a priori predisposed to undergo the developmental process. In vivo, the predisposition of liver cells is affected by liver zonation and hepatic regeneration. The TD propensity of liver cells is related to permissive epigenome which could be extended to TD-resistant cells by specific soluble factors. An obligatory role for active Wnt signaling in continuously maintaining a "permissive" epigenome is suggested. Moreover, the restoration of the pancreatic niche and vasculature promotes the maturation of TD cells along the β cell function. Future studies on liver to pancreas TD should include the maturation of TD cells by 3D culture, the restoration of vasculature and the pancreatic niche, and the extension of TD propensity to TD-resistant cells by epigenetic modifications. Liver to pancreas TD is expected to result in the generation of custom-made "self" surrogate β cells for curing diabetes.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, 56261, Tel-Hashomer, Israel
- Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania
| | - Sarah Ferber
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, 56261, Tel-Hashomer, Israel.
- Dia-Cure, Institute of Medical Scientific Research Acad. Nicolae Cajal, University Titu Maiorescu, Bucharest, Romania.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
47
|
Coupling Genome-wide Transcriptomics and Developmental Toxicity Profiles in Zebrafish to Characterize Polycyclic Aromatic Hydrocarbon (PAH) Hazard. Int J Mol Sci 2019; 20:ijms20102570. [PMID: 31130617 PMCID: PMC6566387 DOI: 10.3390/ijms20102570] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023] Open
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are diverse environmental pollutants associated with adverse human health effects. Many studies focus on the carcinogenic effects of a limited number of PAHs and there is an increasing need to understand mechanisms of developmental toxicity of more varied yet environmentally relevant PAHs. A previous study characterized the developmental toxicity of 123 PAHs in zebrafish. Based on phenotypic responses ranging from complete inactivity to acute mortality, we classified these PAHs into eight bins, selected 16 representative PAHs, and exposed developing zebrafish to the concentration of each PAH that induced 80% phenotypic effect. We conducted RNA sequencing at 48 h post fertilization to identify gene expression changes as a result of PAH exposure. Using the Context Likelihood of Relatedness algorithm, we inferred a network that links the PAHs based on coordinated gene responses to PAH exposure. The 16 PAHs formed two broad clusters: Cluster A was transcriptionally more similar to the controls, while Cluster B consisted of PAHs that were generally more developmentally toxic, significantly elevated cyp1a transcript levels, and induced Ahr2-dependent Cyp1a protein expression in the skin confirmed by gene-silencing studies. We found that cyp1a transcript levels were associated with transcriptomic response, but not with PAH developmental toxicity. While all cluster B PAHs predominantly activated Ahr2, they also each enriched unique pathways like ion transport signaling, which likely points to differing molecular events between the PAHs downstream of Ahr2. Thus, using a systems biology approach, we have begun to evaluate, classify, and define mechanisms of PAH toxicity.
Collapse
|
48
|
Li L, Ning G, Yang S, Yan Y, Cao Y, Wang Q. BMP signaling is required for nkx2.3-positive pharyngeal pouch progenitor specification in zebrafish. PLoS Genet 2019; 15:e1007996. [PMID: 30763319 PMCID: PMC6392332 DOI: 10.1371/journal.pgen.1007996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/27/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pharyngeal pouches, a series of outpocketings that bud from the foregut endoderm, are essential to the formation of craniofacial skeleton as well as several important structures like parathyroid and thymus. However, whether pharyngeal pouch progenitors exist in the developing gut tube remains unknown. Here, taking advantage of cell lineage tracing and transgenic ablation technologies, we identified a population of nkx2.3+ pouch progenitors in zebrafish embryos and demonstrated an essential requirement of ectodermal BMP2b for their specification. At early somite stages, nkx2.3+ cells located at lateral region of pharyngeal endoderm give rise to the pouch epithelium except a subpopulation expressing pdgfαa rather than nkx2.3. A small-scale screen of chemical inhibitors reveals that BMP signaling is necessary to specify these progenitors. Loss-of-function analyses show that BMP2b, expressed in the pharyngeal ectoderm, actives Smad effectors in endodermal cells to induce nkx2.3+ progenitors. Collectively, our study provides in vivo evidence for the existence of pouch progenitors and highlights the importance of BMP2b signaling in progenitor specification. Pharyngeal pouches are essential to the formation of craniofacial skeleton as well as several important structures like parathyroid and thymus, but whether their progenitors exist in the developing gut tube remains unknown. Our study provide in vivo evidence that, in the early somite stages, nkx2.3+ cells are present in the lateral pharyngeal endoderm and give rise to the pouch epithelium. We further reveal that ectodermal BMP2b is essential for the activation of Smad effectors in endodermal cells, thereby facilitating pouch progenitor specification. Collectively, our discoveries shed new light on the cellular and molecular mechanisms of pharyngeal pouch development.
Collapse
Affiliation(s)
- Linwei Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yifang Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Cheng C, Lu J, Cao X, Yang FY, Liu JY, Song LN, Shen H, Liu C, Zhu XR, Zhou JB, Yang JK. Identification of Rfx6 target genes involved in pancreas development and insulin translation by ChIP-seq. Biochem Biophys Res Commun 2019; 508:556-562. [DOI: 10.1016/j.bbrc.2018.11.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
50
|
From mRNA Expression of Drug Disposition Genes to In Vivo Assessment of CYP-Mediated Biotransformation during Zebrafish Embryonic and Larval Development. Int J Mol Sci 2018; 19:ijms19123976. [PMID: 30544719 PMCID: PMC6321216 DOI: 10.3390/ijms19123976] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish (Danio rerio) embryo is currently explored as an alternative for developmental toxicity testing. As maternal metabolism is lacking in this model, knowledge of the disposition of xenobiotics during zebrafish organogenesis is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this study was to assess cytochrome P450 (CYP) activity in zebrafish embryos and larvae until 14 d post-fertilization (dpf) by using a non-specific CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR) and a CYP1-specific substrate, i.e., 7-ethoxyresorufin (ER). Moreover, the constitutive mRNA expression of CYP1A, CYP1B1, CYP1C1, CYP1C2, CYP2K6, CYP3A65, CYP3C1, phase II enzymes uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and sulfotransferase 1st1 (SULT1ST1), and an ATP-binding cassette (ABC) drug transporter, i.e., abcb4, was assessed during zebrafish development until 32 dpf by means of quantitative PCR (qPCR). The present study showed that trancripts and/or the activity of these proteins involved in disposition of xenobiotics are generally low to undetectable before 72 h post-fertilization (hpf), which has to be taken into account in teratogenicity testing. Full capacity appears to be reached by the end of organogenesis (i.e., 120 hpf), although CYP1-except CYP1A-and SULT1ST1 were shown to be already mature in early embryonic development.
Collapse
|