1
|
Ventriglia S, Kalcheim C. From neural tube to spinal cord: The dynamic journey of the dorsal neuroepithelium. Dev Biol 2024; 511:26-38. [PMID: 38580174 DOI: 10.1016/j.ydbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.
Collapse
Affiliation(s)
- Susanna Ventriglia
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| |
Collapse
|
2
|
Piacentino ML, Fasse AJ, Camacho-Avila A, Grabylnikov I, Bronner ME. SMPD3 expression is spatially regulated in the developing embryo by SOXE factors. Dev Biol 2024; 506:31-41. [PMID: 38052296 PMCID: PMC10872304 DOI: 10.1016/j.ydbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Aria J Fasse
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alexis Camacho-Avila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ilya Grabylnikov
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
3
|
Bayly RD, Brown CY, Agarwala S. A novel role for FOXA2 and SHH in organizing midbrain signaling centers. Dev Biol 2012; 369:32-42. [PMID: 22750257 DOI: 10.1016/j.ydbio.2012.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 06/06/2012] [Accepted: 06/20/2012] [Indexed: 02/04/2023]
Abstract
The floor plate (FP) is a midline signaling center, known to direct ventral cell fates and axon guidance in the neural tube. The recent identification of midbrain FP as a source of dopaminergic neurons has renewed interest in its specification and organization, which remain poorly understood. In this study, we have examined the chick midbrain and spinal FP and show that both can be partitioned into medial (MFP) and lateral (LFP) subdivisions. Although Hedgehog (HH) signaling is necessary and sufficient for LFP specification, it is not sufficient for MFP induction. By contrast, the transcription factor FOXA2 can execute the full midbrain and spinal cord FP program via HH-independent and dependent mechanisms. Interestingly, although HH-independent FOXA2 activity is necessary and sufficient for inducing MFP-specific gene expression (e.g., LMX1B, BMP7), it cannot confer ventral identity to midline cells without also turning on Sonic hedgehog (SHH). We also note that the signaling centers of the midbrain, the FP, roof plate (RP) and the midbrain-hindbrain boundary (MHB) are physically contiguous, with each expressing LMX1B and BMP7. Possibly as a result, SHH or FOXA2 misexpression can transform the MHB into FP and also suppress RP induction. Conversely, HH or FOXA2 knockdown expands the endogenous RP and transforms the MFP into a RP and/or MHB fate. Finally, combined HH blockade and FOXA2 misexpression in ventral midbrain induces LMX1B expression, which triggers the specification of the RP, rather than the MFP. Thus we identify HH-independent and dependent roles for FOXA2 in specifying the FP. In addition, we elucidate for the first time, a novel role for SHH in determining whether a midbrain signaling center will become the FP, MHB or RP.
Collapse
Affiliation(s)
- Roy D Bayly
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | |
Collapse
|
4
|
Tossell K, Andreae LC, Cudmore C, Lang E, Muthukrishnan U, Lumsden A, Gilthorpe JD, Irving C. Lrrn1 is required for formation of the midbrain-hindbrain boundary and organiser through regulation of affinity differences between midbrain and hindbrain cells in chick. Dev Biol 2011; 352:341-52. [PMID: 21315708 PMCID: PMC3084456 DOI: 10.1016/j.ydbio.2011.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 12/28/2022]
Abstract
The midbrain-hindbrain boundary (MHB) acts as an organiser/signalling centre to pattern tectal and cerebellar compartments. Cells in adjacent compartments must be distinct from each other for boundary formation to occur at the interface. Here we have identified the leucine-rich repeat (LRR) neuronal 1 (Lrrn1) protein as a key regulator of this process in chick. The Lrrn family is orthologous to the Drosophila tartan/capricious (trn/caps) family. Differential expression of trn/caps promotes an affinity difference and boundary formation between adjacent compartments in a number of contexts; for example, in the wing, leg and eye imaginal discs. Here we show that Lrrn1 is expressed in midbrain cells but not in anterior hindbrain cells. Lrrn1 is down-regulated in the anterior hindbrain by the organiser signalling molecule FGF8, thereby creating a differential affinity between these two compartments. Lrrn1 is required for the formation of MHB--loss of function leads to a loss of the morphological constriction and loss of Fgf8. Cells overexpressing Lrrn1 violate the boundary and result in a loss of cell restriction between midbrain and hindbrain compartments. Lrrn1 also regulates the glycosyltransferase Lunatic Fringe, a modulator of Notch signalling, maintaining its expression in midbrain cells which is instrumental in MHB boundary formation. Thus, Lrrn1 provides a link between cell affinity/compartment segregation, and cell signalling to specify boundary cell fate.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Laura C. Andreae
- MRC Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Chloe Cudmore
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Emily Lang
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Uma Muthukrishnan
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | | | - Carol Irving
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
5
|
Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 2011; 70:796-812. [PMID: 20683859 DOI: 10.1002/dneu.20826] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.
Collapse
Affiliation(s)
- Shlomo Krispin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
6
|
Chou SJ, Hermesz E, Hatta T, Feltner D, El-Hodiri HM, Jamrich M, Mahon K. Conserved regulatory elements establish the dynamic expression of Rpx/HesxI in early vertebrate development. Dev Biol 2006; 292:533-45. [PMID: 16527264 DOI: 10.1016/j.ydbio.2005.12.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/06/2005] [Accepted: 12/23/2005] [Indexed: 10/24/2022]
Abstract
TheRpx/Hesx1 homeobox gene is expressed during gastrulation in the anterior visceral and definitive endoderm and the cephalic neural plate. At later stages of development, its expression is restricted to Rathke's pouch, the primordium of the pituitary gland. This expression pattern suggests the presence of at least two distinct regulatory regions that control early and late Rpx transcription. Using transgenic mice, we have demonstrated that regulatory sequences in the 5' upstream region of Rpx are important for early expression in the anterior endoderm and neural plate and regulatory elements in the 3' region are required for late expression in Rathke's pouch. We have found that the genetically required LIM homeodomain-containing proteins Lim1/Lhx1 and Lhx3 are directly involved in the regulation of Rpx transcription. They bind two LIM protein-binding sites in the 5' upstream region of Rpx, which are required for Rpx promoter activity in both mice and Xenopus. Furthermore, we have found that a conserved enhancer in the 3' regulatory sequences of Rpx is not only required, but is also sufficient for the expression of Rpx transgenes in the developing Rathke's pouch.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Embryo, Mammalian/cytology
- Embryo, Nonmammalian
- Endoderm/cytology
- Gastrula
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Genes, Reporter
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hypothalamus/embryology
- Hypothalamus/metabolism
- Lac Operon
- Luciferases/metabolism
- Mice
- Mice, Transgenic
- Models, Biological
- Point Mutation
- Promoter Regions, Genetic
- Protein Binding
- Regulatory Sequences, Nucleic Acid/genetics
- Transgenes
- Vertebrates/embryology
- Xenopus
Collapse
Affiliation(s)
- Shen-Ju Chou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Basch ML, García-Castro MI, Bronner-Fraser M. Molecular mechanisms of neural crest induction. ACTA ACUST UNITED AC 2005; 72:109-23. [PMID: 15269886 DOI: 10.1002/bdrc.20015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The neural crest is an embryonic cell population that originates at the border between the neural plate and the prospective epidermis. Around the time of neural tube closure, neural crest cells emigrate from the neural tube, migrate along defined paths in the embryo and differentiate into a wealth of derivatives. Most of the craniofacial skeleton, the peripheral nervous system, and the pigment cells of the body originate from neural crest cells. This cell type has important clinical relevance, since many of the most common craniofacial birth defects are a consequence of abnormal neural crest development. Whereas the migration and differentiation of the neural crest have been extensively studied, we are just beginning to understand how this tissue originates. The formation of the neural crest has been described as a classic example of embryonic induction, in which specific tissue interactions and the concerted action of signaling pathways converge to induce a multipotent population of neural crest precursor cells. In this review, we summarize the current status of knowledge on neural crest induction. We place particular emphasis on the signaling molecules and tissue interactions involved, and the relationship between neural crest induction, the formation of the neural plate and neural plate border, and the genes that are upregulated as a consequence of the inductive events.
Collapse
Affiliation(s)
- Martín L Basch
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
8
|
Chizhikov VV, Millen KJ. Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci 2004; 24:5694-703. [PMID: 15215291 PMCID: PMC6729212 DOI: 10.1523/jneurosci.0758-04.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have identified the roof plate as an important signaling center controlling dorsal interneuron specification and differentiation in the developing spinal cord. Currently, the molecular pathways of roof plate formation and function are poorly understood. We determined that the LIM-homeodomain transcription factor Lmx1b is sufficient to induce functional roof plate in the early chick developing spinal cord. In the chick, Lmx1b acts upstream of Lmx1a in the roof plate developmental program. Once the roof plate forms, we show that Bmp and Wnt signaling are the major components of Lmx1a/b-dependent roof plate dorsal patterning activity. The roof plate function of Lmx1b is not conserved across vertebrates because Lmx1b is not expressed in mouse roof plate progenitors. Instead, mouse caudal CNS roof plate formation relies entirely on Lmx1a. Lmx1b can, however, partially rescue roof plate development in dreher (Lmx1a-/-) mice, indicating that Lmx1b has some functional redundancy to Lmx1a. Furthermore, we demonstrate that the roof plate-inducing activity of Lmx1b can be suppressed by Mash1 (Cash1), which is normally expressed in intermediate neural tube in both chick and mouse. Our data identify Lmx1b as a key regulator of spinal cord roof plate induction and function.
Collapse
Affiliation(s)
- Victor V Chizhikov
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
9
|
Liu Y, Helms AW, Johnson JE. Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 2004; 131:1017-28. [PMID: 14973289 DOI: 10.1242/dev.00994] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patterning of the dorsal neural tube involves Bmp signaling, which results in activation of multiple pathways leading to the formation of neural crest,roof plate and dorsal interneuron cell types. We show that constitutive activation of Bmp signaling at early stages (HH10-12) of chick neural tube development induces roof-plate cell fate, accompanied by an increase of programmed cell death and a repression of neuronal differentiation. These activities are mimicked by the overexpression of the homeodomain transcription factor Msx1, a factor known to be induced by Bmp signaling. By contrast, the closely related factor, Msx3, does not have these activities. At later stages of neural tube development (HH14-16), dorsal progenitor cells lose their competence to generate roof-plate cells in response to Bmp signaling and instead generate dorsal interneurons. This aspect of Bmp signaling is phenocopied by the overexpression of Msx3 but not Msx1. Taken together, these results suggest that these two different Msx family members can mediate distinct aspects of Bmp signaling during neural tube development.
Collapse
Affiliation(s)
- Ying Liu
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|
10
|
|
11
|
Holmes G, Crooijmans R, Groenen M, Niswander L. ALC (adjacent to LMX1 in chick) is a novel dorsal limb mesenchyme marker. Gene Expr Patterns 2003; 3:735-41. [PMID: 14643681 DOI: 10.1016/s1567-133x(03)00139-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During dorsal-ventral (DV) patterning of the vertebrate limb, WNT7A is expressed in dorsal limb ectoderm and activates the expression of LMX1 (in chick; Lmx1b in mouse) in dorsal limb mesenchyme, resulting in the appropriate development of dorsal cell fates. These two genes are the only known factors involved in directing dorsal patterning and the molecular events that link these two factors or that occur downstream of LMX1/1b are unknown. We have isolated a novel chick transcript, ALC (adjacent to LMX1 in chick). ALC is located 5.3 kb from the 5' end of LMX1 and is transcribed in the opposite direction. It is expressed in a sub-set of tissues expressing LMX1, most notably in the dorsal mesenchyme of the limb, and thus is the second gene discovered with such a distribution in the limb. Misexpression studies with viral constructs show that ALC is downstream of WNT7A but not of LMX1. ALC shows no homology to known genes and its function remains to be determined. However, similarly placed transcripts occur in the human and mouse genomes, and we demonstrate that a mouse transcript is also expressed in dorsal limb mesenchyme.
Collapse
Affiliation(s)
- Greg Holmes
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Inner ear induction, like induction of other tissues examined in recent years, is likely to be comprised of several stages. The process begins during gastrulation when the ectoderm is competent to respond to induction. It appears that a signal from the endomesoderm underlying the otic area during gastrulation initiates induction complemented by a signal from presumptive neural tissue. By the neural plate stage, a region of ectoderm outside the neural plate is "biased" toward ear formation; this process may be part of a more general "placodal" bias shared by several sensory tissues. Induction continues during neurulation when a signal from neural tissue (possibly augmented by mesoderm underlying the otic area) results in ectoderm committed to otic vesicle formation at the time of neural tube closure. Studies on several gene families implicate them in the ear determination process. Fibroblast Growth Factor (FGF) family members are clearly involved in induction: FGFs are appropriately expressed for such a role, and have been shown to be essential for inner ear development. FGFs also have inductive activity, although it is not clear if they are sufficient for ear induction. Activation of transcription factors in the otic ectoderm, for example, by Pax gene family members, provides evidence for important changes in the responding ectoderm beginning during gastrulation and continuing through specification at the end of neurulation, although few functional tests have defined the role of these genes in determination. The challenge remains to merge embryologic data with gene function studies to develop a clear model for the molecular basis of inner ear induction.
Collapse
Affiliation(s)
- Selina Noramly
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
13
|
Failli V, Bachy I, Rétaux S. Expression of the LIM-homeodomain gene Lmx1a (dreher) during development of the mouse nervous system. Mech Dev 2002; 118:225-8. [PMID: 12351192 DOI: 10.1016/s0925-4773(02)00254-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The expression pattern of Lmx1a, a LIM-homeodomain gene disrupted in the dreher mouse neurological mutant, is described during development. Lmx1a is predominantly expressed in the developing nervous system from embryonic day E8.5 to adulthood, in restricted areas. Major expression domains include the dorsal midline (roof plate) of the neural tube, the cortical hem, the otic vesicles, the developing cerebellum and the notochord. The Lmx1a expression pattern is therefore well correlated with the various aspects of the phenotype of the dreher mutant mice.
Collapse
Affiliation(s)
- Vieri Failli
- UPR 2197, Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred FESSARD, C.N.R.S., Avenue de la Terrasse, 91198 GIF-sur-YVETTE cedex, France
| | | | | |
Collapse
|
14
|
Fernández-Garre P, Rodríguez-Gallardo L, Gallego-Díaz V, Alvarez IS, Puelles L. Fate map of the chicken neural plate at stage 4. Development 2002; 129:2807-22. [PMID: 12050131 DOI: 10.1242/dev.129.12.2807] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A detailed fate map was obtained for the early chick neural plate (stages 3d/4). Numerous overlapping plug grafts were performed upon New-cultured chick embryos, using fixable carboxyfluorescein diacetate succinimidyl ester to label donor chick tissue. The specimens were harvested 24 hours after grafting and reached in most cases stages 9-11 (early neural tube). The label was detected immunocytochemically in wholemounts, and cross-sections were later obtained. The positions of the graft-derived cells were classified first into sets of purely neural, purely non-neural and mixed grafts. Comparisons between these sets established the neural plate boundary at stages 3d/4. Further analysis categorized graft contributions to anteroposterior and dorsoventral subdivisions of the early neural tube, including data on the floor plate and the eye field. The rostral boundary of the neural plate was contained within the earliest expression domain of the Ganf gene, and the overall shape of the neural plate was contrasted and discussed with regard to the expression patterns of the genes Plato, Sox2, Otx2 and Dlx5 (and others reported in the literature) at stages 3d/4.
Collapse
Affiliation(s)
- Pedro Fernández-Garre
- Department of Morphological Sciences, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | | | | | | | | |
Collapse
|
15
|
Abstract
Transplantation studies performed in chicken embryos indicated that early anterior/posterior patterning of the vertebrate midbrain and cerebellum might be regulated by an organizing center at the junction between the midbrain and hindbrain. More than a decade of molecular and genetic studies have shown that such an organizer is indeed central to development of the midbrain and anterior hindbrain. Furthermore, a complicated molecular network that includes multiple positive and negative feedback loops underlies the establishment and refinement of a mid/hindbrain organizer, as well as the subsequent function of the organizer. In this review, we first introduce the expression patterns of the genes known to be involved in this patterning process and the quail-chick transplantation experiments that have provided the foundation for understanding the genetic pathways regulating mid/hindbrain patterning. Subsequently, we discuss the molecular genetic studies that have revealed the roles for many genes in normal early patterning of this region. Finally, some of the remaining questions and future directions are discussed.
Collapse
Affiliation(s)
- A Liu
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
16
|
Yuan S, Schoenwolf GC. Islet-1 marks the early heart rudiments and is asymmetrically expressed during early rotation of the foregut in the chick embryo. THE ANATOMICAL RECORD 2000; 260:204-7. [PMID: 10993956 DOI: 10.1002/1097-0185(20001001)260:2<204::aid-ar90>3.0.co;2-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Islet-1 (Isl-1), the LIM domain homeobox gene, is a well-known early marker of neuronal specification. Here, we show its spatial and temporal patterns of expression during early heart and gut development in the chick embryo. Isl-1 transcripts are first detected in the early cardiac progenitors and underlying endoderm at late stage 4. By stages 5-6, it is also expressed in the prechordal plate. From stage 6 onward, transcripts are also detected in the endoderm forming the anterior intestinal portal and floor of the caudal foregut. With progressive rostrocaudal fusion of the paired cardiac rudiments, Isl-1 expression is maintained in the cardiac mesoderm and associated endoderm. By the onset of heart beating, transcripts become restricted to the dorsal mesocardium and more caudal medial splanchnic mesoderm flanking the open gut. Within the foregut, Isl-1 is expressed in the endoderm of the oral membrane, thyroid rudiment, and second pharyngeal pouches, as well as within the second branchial grooves adjacent to the secondary pouches. Interestingly, with the onset of gut rotation, Isl-1 expression is detected unilaterally in the splanchnic mesodermal wall of the future greater curvature of the caudal stomach/rostral duodenum. Thus, Isl-1 is a novel and useful marker of the early cardiac rudiments and of the original left side of the rotating foregut. During early organogenesis, Isl-1 is also expressed in several other discrete domains as reported previously. Additionally, it is expressed at the interface between the hind limbs and trunk.
Collapse
Affiliation(s)
- S Yuan
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
17
|
Lawson A, Colas JF, Schoenwolf GC. Ectodermal markers delineate the neural fold interface during avian neurulation. THE ANATOMICAL RECORD 2000; 260:106-9. [PMID: 10967542 DOI: 10.1002/1097-0185(20000901)260:1<106::aid-ar120>3.0.co;2-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The formation and morphogenesis of the neural folds are important processes underlying neurulation. We showed previously that these processes comprise four key events in avian embryos: epithelial ridging, kinking, delamination, and apposition. Collectively, these events establish the paired, bilaminar neural folds, which fuse in the dorsal midline during late neurulation to close the neural groove and to establish the neural tube. Here, we use an antisense riboprobe for a new gene called Plato, as well as an antibody for a previously cloned transcription factor, AP-2, as markers to identify critical subpopulations of ectodermal cells during the formation and morphogenesis of the avian neural folds. Plato antisense riboprobe marks the cranial neural ectoderm and premigratory cranial neural crest cells, whereas AP-2 antibody marks the epidermal ectoderm and the early migratory neural crest. We show that subpopulations of ectodermal cells at the forebrain and midbrain levels undergo considerable rearrangement within the neural fold transition zone, which redistributes incipient neural crest cells from the neural ectodermal side of the forming neural fold interface to the epidermal ectodermal side. Additionally, we show that Plato and AP-2 provide useful markers for delineating the incipient neural fold interface.
Collapse
Affiliation(s)
- A Lawson
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|