1
|
Wang X, Hu R, Wang T, Chang Y, Liu X, Li M, Gao Y, Liu S, Ming D. Resting-State Electroencephalographic Signatures Predict Treatment Efficacy of tACS for Refractory Auditory Hallucinations in Schizophrenic Patients. IEEE J Biomed Health Inform 2025; 29:1886-1896. [PMID: 40030555 DOI: 10.1109/jbhi.2024.3509438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Transcranial alternating current stimulation (tACS) has been reported to treat refractory auditory hallucinations in schizophrenia. Despite diligent efforts, it is imperative to underscore that tACS does not uniformly demonstrate efficacy across all patients as with all treatments currently employed in clinical practice. The study aims to find biomarkers predicting individual responses to tACS, guiding treatment decisions, and preventing healthcare resource wastage. We divided 17 schizophrenic patients with refractory auditory hallucinations into responsive(RE) and non-responsive(NR) groups based on their auditory hallucination symptom reduction rates after one month of tACS treatment. The pre-treatment resting-state electroencephalogram(rsEEG) was recorded and then computed absolute power spectral density (PSD), Hjorth parameters (HPs, Hjorth activity (HA), Hjorth mobility (HM), and Hjorth complexity (HC) included) from different frequency bands to portray the brain oscillations. The results demonstrated that statistically significant differences localized within the high gamma frequency bands of the right brain hemisphere. Immediately, we input the significant dissociable features into popular machine learning algorithms, the Cascade Forward Neural Network achieved the best recognition accuracy of 93.87%. These findings preliminarily imply that high gamma oscillations in the right brain hemisphere may be the main influencing factor leading to different responses to tACS treatment, and incorporating rsEEG signatures could improve personalized decisions for integrating tACS in clinical treatment.
Collapse
|
2
|
Lozupone M, Leccisotti I, Altamura M, Moretti MC, Bellomo A, Daniele A, Dibello V, Resta E, Panza F. Psychiatry and sensation: the epigenetic links. Epigenomics 2024; 16:1315-1327. [PMID: 39400085 PMCID: PMC11534141 DOI: 10.1080/17501911.2024.2410692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A complex interaction among sensory, social and epigenetic determinants in psychiatric conditions was described across all age strata. The high prevalence of mental disorders in individuals with sensory deficits might be attributed to the interaction among social isolation, cognitive functioning and sensory processing. The epigenetic implications of such interactions were examined: environmental and social factors can affect gene expression and impact the pathogenesis of psychiatric disorders also through sensory processing. This article discussed the role of social determinants, in other words, social isolation, loneliness and chronic stress, in promoting psychiatric disorders and, in a vicious circle, sensory deficits (vision, hearing, olfaction and somatosensation). We emphasized the importance of integrating social, sensory and epigenetic factors to target different treatments for psychiatric conditions.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine & Neuroscience “DiBraiN”, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Ivana Leccisotti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Maria Claudia Moretti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, 00147, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, 00147, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain & Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, 1105 1081 HV, the Netherlands
| | - Emanuela Resta
- Translational Medicine & Health System Management, Department of Economy, University of Foggia, Foggia, 71122, Italy
| | - Francesco Panza
- Department of Interdisciplinary Medicine, “Cesare Frugoni” Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
3
|
Li M, Lebois LAM, Ridgewell C, Palermo CA, Winternitz S, Liu H, Kaufman ML, Shinn AK. Functional Connectivity of the Auditory Cortex in Women With Trauma-Related Disorders Who Hear Voices. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1066-1074. [PMID: 38944384 PMCID: PMC11456382 DOI: 10.1016/j.bpsc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Voice hearing (VH) is a transdiagnostic experience that is common in trauma-related disorders. However, the neural substrates that underlie trauma-related VH remain largely unexplored. While auditory perceptual dysfunction is among the abnormalities implicated in VH in schizophrenia, whether VH in trauma-related disorders also involves auditory perceptual alterations is unknown. METHODS We investigated auditory cortex (AC)-related functional connectivity (FC) in 65 women with trauma-related disorders stemming from childhood abuse with varying severities of VH. Using a novel, computationally driven and individual-specific method of functionally parcellating the brain, we calculated the FC of 2 distinct AC subregions-Heschl's gyrus (corresponding to the primary AC) and lateral superior temporal gyrus (in the nonprimary AC)-with both the cerebrum and cerebellum. Then, we measured the association between VH severity and FC using leave-one-out cross-validation in the cerebrum and voxelwise multiple regression analyses in the cerebellum. RESULTS We found that VH severity was positively correlated with left lateral superior temporal gyrus-frontoparietal network FC, while it was negatively correlated with FC between the left lateral superior temporal gyrus and both cerebral and cerebellar representations of the default mode network. VH severity was not predicted by FC of the left Heschl's gyrus or right AC subregions. CONCLUSIONS Our findings point to altered interactions between auditory perceptual processing and higher-level processes related to self-reference and executive functioning. This is the first study to show alterations in auditory cortical connectivity in trauma-related VH. While VH in trauma-related disorders appears to be mediated by brain networks that are also implicated in VH in schizophrenia, the results suggest a unique mechanism that could distinguish VH in trauma-related disorders.
Collapse
Affiliation(s)
- Meiling Li
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Lauren A M Lebois
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Caitlin Ridgewell
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Cori A Palermo
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Sherry Winternitz
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, China; Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Milissa L Kaufman
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ann K Shinn
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
4
|
Ye SY, Chen CN, Wei B, Zhan JQ, Li YH, Zhang C, Huang JJ, Yang YJ. The efficacy and safety of continuous theta burst stimulation for auditory hallucinations: a systematic review and meta-analysis of randomized controlled trials. Front Psychiatry 2024; 15:1446849. [PMID: 39224479 PMCID: PMC11366629 DOI: 10.3389/fpsyt.2024.1446849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Auditory hallucinations are the most frequently occurring psychotic symptom in schizophrenia. Continuous theta burst stimulation (cTBS) has been used as an adjuvant treatment for auditory hallucinations. This meta-analysis focused on randomized controlled clinical trials (RCTs) to assess the efficacy of adjuvant cTBS on auditory hallucinations in schizophrenia. Methods We performed a comprehensive search of four international databases from their inception to January 14, 2024, to identify relevant RCTs that assessed the effects of adjuvant cTBS on auditory hallucinations. The key words included "auditory hallucinations", "continuous theta burst stimulation" and "transcranial magnetic stimulation". Inclusion criteria included patients with auditory hallucinations in schizophrenia or schizoaffective disorder. The Revised Cochrane risk-of-bias tool for randomized trials (RoB1) were used to evaluate the risk of bias and the Review Manager Software Version 5.4 was employed to pool the data. Results A total of 4 RCTs involving 151 patients with auditory hallucinations were included in the analysis. The Cochrane risk of bias of these studies presented "low risk" in all items. Preliminary analysis showed no significant advantage of adjuvant cTBS over sham stimulation in reducing hallucinations [4 RCTs, n = 151; SMD: -0.45 (95%CI: -1.01, 0.12), P = 0.13; I2 = 61%]. Subgroup analysis revealed that patients treated with adjuvant cTBS for more than 10 stimulation sessions and total number of pulses more than 6000 [3 RCTs, n = 87; SMD: -4.43 (95%CI: -8.22, -0.63), P = 0.02; I2 = 47%] had a statistically significant improvement in hallucination symptoms. Moreover, the rates of adverse events and discontinuation did not show any significant difference between the cTBS and sham group. Conclusions Although preliminary analysis did not revealed a significant advantage of adjuvant cTBS over sham stimulation, subgroup analysis showed that specific parameters of cTBS appear to be effective in the treatment of auditory hallucinations in schizophrenia. Further large-scale studies are needed to determine the standard protocol of cTBS for treating auditory hallucinations. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024534045.
Collapse
Affiliation(s)
- Shi-Yi Ye
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The 3 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Clinical Medical College, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Bo Wei
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| | - Jin-Qiong Zhan
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| | - Yi-Heng Li
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jing Huang
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-Jian Yang
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| |
Collapse
|
5
|
Mehta DD, Siddiqui S, Ward HB, Steele VR, Pearlson GD, George TP. Functional and structural effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations in schizophrenia: A systematic review. Schizophr Res 2024; 267:86-98. [PMID: 38531161 PMCID: PMC11531343 DOI: 10.1016/j.schres.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a disabling symptom for people with schizophrenia (SCZ), and do not always respond to antipsychotics. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for medication-refractory AVH, though the underlying neural mechanisms by which rTMS produces these effects remain unclear. This systematic review evaluated the structural and functional impact of rTMS for AVH in SCZ, and its association with clinical outcomes. METHODS A systematic search was conducted in Medline, PsychINFO, and PubMed using terms for four key concepts: AVH, SCZ, rTMS, neuroimaging. Using PRISMA guidelines, 18 studies were identified that collected neuroimaging data of an rTMS intervention for AVH in SCZ. Risk of bias assessments was conducted. RESULTS Low frequency (<5 Hz) rTMS targeting left hemispheric language processing regions may normalize brain abnormalities in AVH patients at structural, functional, electrophysiological, and topological levels, with concurrent symptom improvement. Amelioration of aberrant neural activity in frontotemporal networks associated with speech and auditory processing was commonly observed, as well as in cerebellar and emotion regulation regions. Neuroimaging analyses identified neural substrates with direct correlations to post-rTMS AVH severity, propounding their use as therapeutic targets. DISCUSSION Combined rTMS-neuroimaging highlights the multidimensional alterations of rTMS on brain activity and structure in treatment-resistant AVH, which may be used to develop more efficacious therapies. Larger randomized, sham-controlled studies are needed. Future studies should explore alternate stimulation targets, investigate the neural effects of high-frequency rTMS and evaluate long-term neuroimaging outcomes.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Salsabil Siddiqui
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Heather B Ward
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vaughn R Steele
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Godfrey D Pearlson
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Tony P George
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
6
|
Ait Bentaleb K, Boisvert M, Tourjman V, Potvin S. A Meta-Analysis of Functional Neuroimaging Studies of Ketamine Administration in Healthy Volunteers. J Psychoactive Drugs 2024; 56:211-224. [PMID: 36921026 DOI: 10.1080/02791072.2023.2190758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Ketamine administration leads to a psychotomimetic state when taken in large bolus doses, making it a valid model of psychosis. Therefore, understanding ketamine's effects on brain functioning is particularly relevant. This meta-analysis focused on neuroimaging studies that examined ketamine-induced brain activation at rest and during a task. Included are 10 resting-state studies and 23 task-based studies, 9 of which were measuring executive functions. Using a stringent statistical threshold (TFCE <0.05), the results showed increased activity at rest in the dorsal anterior cingulate cortex (ACC), and increased activation of the right Heschl's gyrus during executive tasks, following ketamine administration. Uncorrected results showed increased activation at rest in the right (anterior) insula and the right-fusiform gyrus, as well as increased activation during executive tasks in the rostral ACC. Rest-state studies highlighted alterations in core hubs of the salience network, while task-based studies suggested an impact on task-irrelevant brain regions. Increased activation in the rostral ACC may indicate a failure to deactivate the default mode network during executive tasks following ketamine administration. The results are coherent with alterations found in schizophrenia, which confer external validity to the ketamine model of psychosis. Studies investigating the neural mechanisms of ketamine's antidepressant action are warranted.
Collapse
Affiliation(s)
- Karim Ait Bentaleb
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Mélanie Boisvert
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Valérie Tourjman
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| |
Collapse
|
7
|
Aldhafeeri FM. Altered brain responses to emotional auditory stimuli in AVH subjects: an fMRI study. Int J Neurosci 2024; 134:333-340. [PMID: 35849653 DOI: 10.1080/00207454.2022.2102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Purpose: Auditory verbal hallucinations (AVH) are a frequently occurring phenomenon in which subjects hear verbal sounds in the absence of any external stimuli. The prevalence of auditory hallucinations in schizophrenia has been revealed in many studies. Healthy subjects may also experience auditory hallucinations without accompanying psychological or neurological disorders, and in rare cases they seek clinical assistance for this emotionally disturbing condition. The aim of this study was to investigate the neural basis of emotional disturbance in auditory hallucinating subjects who do not suffer from any psychological or neurological disorder. Materials and Methods: Fourteen subjects suffering from auditory hallucinations and 15 age- and sex-matched healthy controls were recruited in this study. All participants underwent fMRI in two experimental sessions. In the first experimental session, all participants from both groups listened to pleasant auditory stimuli. In the second session, both groups listened to unpleasant auditory stimuli. The auditory stimuli were obtained from the International Affective Digitized Sounds (IADS). Results: Compared with the healthy control group, AVH subjects exhibited significantly increased activation in limbic, auditory, and frontal regions. Conclusion: Current results suggest that AVH may induce functional reorganization in emotion-related brain regions.
Collapse
Affiliation(s)
- Faten Mane Aldhafeeri
- Department of Radiology, College of Applied Medical Sciences, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| |
Collapse
|
8
|
Salisbury DF, Seebold D, Longenecker JM, Coffman BA, Yeh FC. White matter tracts differentially associated with auditory hallucinations in first-episode psychosis: A correlational tractography diffusion spectrum imaging study. Schizophr Res 2024; 265:4-13. [PMID: 37321880 PMCID: PMC10719419 DOI: 10.1016/j.schres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Auditory hallucinations (AH) are a debilitating symptom in psychosis, impacting cognition and real world functioning. Recent thought conceptualizes AH as a consequence of long-range brain communication dysfunction, or circuitopathy, within the auditory sensory/perceptual, language, and cognitive control systems. Recently we showed in first-episode psychosis (FEP) that, despite overall intact white matter integrity in the cortical-cortical and cortical-subcortical language tracts and the callosal tracts connecting auditory cortices, the severity of AH correlated inversely with white matter integrity. However, that hypothesis-driven isolation of specific tracts likely missed important white matter concomitants of AH. In this report, we used a whole-brain data-driven dimensional approach using correlational tractography to associate AH severity with white matter integrity in a sample of 175 individuals. Diffusion Spectrum Imaging (DSI) was used to image diffusion distribution. Quantitative Anisotropy (QA) in three tracts was greater with increased AH severity (FDR < 0.001) and QA in three tracts was lower with increased AH severity (FDR < 0.01). White matter tracts showing associations between QA and AH were generally associated with frontal-parietal-temporal connectivity (tracts with known relevance for cognitive control and the language system), in the cingulum bundle, and in prefrontal inter-hemispheric connectivity. The results of this whole brain data-driven analysis suggest that subtle white matter alterations connecting frontal, parietal, and temporal lobes in the service of sensory-perceptual, language/semantic, and cognitive control processes impact the expression of auditory hallucination in FEP. Disentangling the distributed neural circuits involved in AH should help to develop novel interventions, such as non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julia M Longenecker
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; VISN 4 Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang-Chen Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Lerosier B, Simon G, Takerkart S, Auzias G, Dollfus S. Sulcal pits of the superior temporal sulcus in schizophrenia patients with auditory verbal hallucinations. AIMS Neurosci 2024; 11:25-38. [PMID: 38617038 PMCID: PMC11007407 DOI: 10.3934/neuroscience.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/16/2024] Open
Abstract
Auditory verbal hallucinations (AVHs) are among the most common and disabling symptoms of schizophrenia. They involve the superior temporal sulcus (STS), which is associated with language processing; specific STS patterns may reflect vulnerability to auditory hallucinations in schizophrenia. STS sulcal pits are the deepest points of the folds in this region and were investigated here as an anatomical landmark of AVHs. This study included 53 patients diagnosed with schizophrenia and past or present AVHs, as well as 100 healthy control volunteers. All participants underwent a 3-T magnetic resonance imaging T1 brain scan, and sulcal pit differences were compared between the two groups. Compared with controls, patients with AVHs had a significantly different distributions for the number of sulcal pits in the left STS, indicating a less complex morphological pattern. The association of STS sulcal morphology with AVH suggests an early neurodevelopmental process in the pathophysiology of schizophrenia with AVHs.
Collapse
Affiliation(s)
| | - Gregory Simon
- Normandie Univ, UNICAEN, ISTS, EA 7466, 14000 Caen, France
| | - Sylvain Takerkart
- Aix Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Guillaume Auzias
- Aix Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Sonia Dollfus
- Normandie Univ, UNICAEN, ISTS, EA 7466, 14000 Caen, France
- CHU de Caen, Service de Psychiatrie, 14000 Caen, France
- Normandie Univ, UNICAEN, UFR santé, 14000 Caen, France
- Fédération Hospitalo-Universitaire (FHU-AMP), Normandie Univ, UNICAEN, UFR santé, 14000 Caen, France
| |
Collapse
|
10
|
Ohshima S, Koeda M, Kawai W, Saito H, Niioka K, Okuno K, Naganawa S, Hama T, Kyutoku Y, Dan I. Cerebral response to emotional working memory based on vocal cues: an fNIRS study. Front Hum Neurosci 2023; 17:1160392. [PMID: 38222093 PMCID: PMC10785654 DOI: 10.3389/fnhum.2023.1160392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/28/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Humans mainly utilize visual and auditory information as a cue to infer others' emotions. Previous neuroimaging studies have shown the neural basis of memory processing based on facial expression, but few studies have examined it based on vocal cues. Thus, we aimed to investigate brain regions associated with emotional judgment based on vocal cues using an N-back task paradigm. Methods Thirty participants performed N-back tasks requiring them to judge emotion or gender from voices that contained both emotion and gender information. During these tasks, cerebral hemodynamic response was measured using functional near-infrared spectroscopy (fNIRS). Results The results revealed that during the Emotion 2-back task there was significant activation in the frontal area, including the right precentral and inferior frontal gyri, possibly reflecting the function of an attentional network with auditory top-down processing. In addition, there was significant activation in the ventrolateral prefrontal cortex, which is known to be a major part of the working memory center. Discussion These results suggest that, compared to judging the gender of voice stimuli, when judging emotional information, attention is directed more deeply and demands for higher-order cognition, including working memory, are greater. We have revealed for the first time the specific neural basis for emotional judgments based on vocal cues compared to that for gender judgments based on vocal cues.
Collapse
Affiliation(s)
- Saori Ohshima
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Bunkyo, Japan
- Department of Mental Health, Nippon Medical School Tama Nagayama Hospital, Tama, Japan
| | - Wakana Kawai
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Hikaru Saito
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Kiyomitsu Niioka
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Koki Okuno
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Sho Naganawa
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Tomoko Hama
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Iyo-gun, Japan
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Yasushi Kyutoku
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| | - Ippeita Dan
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Bunkyo, Japan
| |
Collapse
|
11
|
Li S, Hu R, Yan H, Chu L, Qiu Y, Gao Y, Li M, Li J. 40-Hz auditory steady-state response deficits are correlated with the severity of persistent auditory verbal hallucination in patients with schizophrenia. Psychiatry Res Neuroimaging 2023; 336:111748. [PMID: 37984158 DOI: 10.1016/j.pscychresns.2023.111748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Abnormal 40 Hz auditory steady-state response (ASSR) has been observed in some psychiatric disorders. Nevertheless, the role of 40 Hz ASSR in persistent auditory verbal hallucinations (pAVHs) schizophrenia (SCZ) is still unknown. This study aims to investigate whether the 40 Hz ASSR impairment is related to pAVHs and can detect pAVHs severity. METHODS We analyzed high-density electroencephalography data that from 43 pAVHs patients (pAVH group), 20 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Event-related spectral perturbation and inter-trial phase coherence (ITPC) were calculated to quantify dynamic changes of the 40 Hz ASSR power and ITPC, respectively. RESULTS Frontal-central, the 40 Hz ASSR power, and ITPC were significantly lower in the pAVH group than in the non-AVH group; There was no significant difference between the pAVH and mid-AVH group. The 40 Hz ASSR was significantly negatively correlated with the severity of pAVHs. The 40 Hz ASSR power, and ITPC could be used as a combinational marker to detect SCZ patients with and without pAVHs. CONCLUSION Our findings have shed light on the pathological mechanism of pAVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of pAVHs.
Collapse
Affiliation(s)
- Shaobing Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Ruxin Hu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Huiming Yan
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Lijun Chu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Yuying Qiu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| |
Collapse
|
12
|
Zhang R, Ren J, Zhang C. Efficacy of transcranial alternating current stimulation for schizophrenia treatment: A systematic review. J Psychiatr Res 2023; 168:52-63. [PMID: 37897837 DOI: 10.1016/j.jpsychires.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is an innovative noninvasive technique in brain stimulation that involves applying a low-intensity electrical current to the scalp. And increasing evidence has revealed its potential in schizophrenia treatment. OBJECTIVE This systematic review aimed to evaluate the efficacy of tACS as a novel neurostimulation technique for improving cognitive impairment and alleviating psychotic symptoms in schizophrenia. Additionally, this review attempted to explore the impact of stimulation parameters on the effectiveness of tACS treatment. METHODS A systematic literature search was conducted across five databases, including Web of Science, Embase, PubMed, CENTRAL, and PsycINFO, to identify studies investigating the use of tACS in schizophrenia. Only studies that involved the experimental use of tACS in patients with schizophrenia were included in this review. RESULTS Nineteen studies were included in this review. The most frequently used current intensities were 2 mA and 1 mA, and the most commonly used frequencies were alpha (10 Hz), theta (4.5 Hz and 6 Hz), and gamma (40 Hz). Some studies showed that tACS may have a potential therapeutic effect by improving cognitive functions in various cognitive domains and/or ameliorating negative symptoms, hallucinations, and delusions in patients with schizophrenia, while others showed no significant change. These studies also implicated that tACS treatment is safe and well tolerated. CONCLUSIONS Overall, this systematic review suggests that tACS has promise as a novel, effective, and adjunctive treatment approach for treating schizophrenia. Future research is needed to determine the optimal parameters of tACS for treating this complex disorder.
Collapse
Affiliation(s)
- Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Conring F, Gangl N, Derome M, Wiest R, Federspiel A, Walther S, Stegmayer K. Associations of resting-state perfusion and auditory verbal hallucinations with and without emotional content in schizophrenia. Neuroimage Clin 2023; 40:103527. [PMID: 37871539 PMCID: PMC10598456 DOI: 10.1016/j.nicl.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Auditory Verbal Hallucinations (AVH) are highly prevalent in patients with schizophrenia. AVH with high emotional content lead to particularly poor functional outcome. Increasing evidence shows that AVH are associated with alterations in structure and function in language and memory related brain regions. However, neural correlates of AVH with emotional content remain unclear. In our study (n = 91), we related resting-state cerebral perfusion to AVH and emotional content, comparing four groups: patients with AVH with emotional content (n = 13), without emotional content (n = 14), without hallucinations (n = 20) and healthy controls (n = 44). Patients with AVH and emotional content presented with increased perfusion within the amygdala and the ventromedial and dorsomedial prefrontal cortex (vmPFC/ dmPFC) compared to patients with AVH without emotional content. In addition, patients with any AVH showed hyperperfusion within the anterior cingulate gyrus, the vmPFC/dmPFC, the right hippocampus, and the left pre- and postcentral gyrus compared to patients without AVH. Our results indicate metabolic alterations in brain areas critical for the processing of emotions as key for the pathophysiology of AVH with emotional content. Particularly, hyperperfusion of the amygdala may reflect and even trigger emotional content of AVH, while hyperperfusion of the vmPFC/dmPFC cluster may indicate insufficient top-down amygdala regulation in patients with schizophrenia.
Collapse
Affiliation(s)
- Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Melodie Derome
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Cheng JL, Tan C, Liu HY, Han DM, Liu ZC. Past, present, and future of deep transcranial magnetic stimulation: A review in psychiatric and neurological disorders. World J Psychiatry 2023; 13:607-619. [PMID: 37771645 PMCID: PMC10523198 DOI: 10.5498/wjp.v13.i9.607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Deep transcranial magnetic stimulation (DTMS) is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation tech-nology. The new H-coil has significant advantages in the treatment and mechanism research of psychiatric and neurological disorders. This is due to its deep stimulation site and wide range of action. This paper reviews the clinical progress of DTMS in psychiatric and neurological disorders such as Parkinson's disease, Alzheimer's disease, post-stroke motor dysfunction, aphasia, and other neurological disorders, as well as anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Jin-Ling Cheng
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| | - Cheng Tan
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| | - Hui-Yu Liu
- Department of Infectious Diseases, Yuebei Second People’s Hospital, Shaoguan 512026, Guangdong Province, China
| | - Dong-Miao Han
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou 341000, Jiangxi Province, China
| | - Zi-Cai Liu
- Department of Rehabilitation Medicine, Shaoguan First People’s Hospital, Shaoguan 512000, Guangdong Province, China
| |
Collapse
|
15
|
Ogunwale A, Pienaar L, Oluwaranti O. Plausible subjective experience versus fallible corroborative evidence: The formulation of insanity in Nigerian criminal courts. Front Psychiatry 2023; 14:1084773. [PMID: 37151964 PMCID: PMC10155230 DOI: 10.3389/fpsyt.2023.1084773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/19/2023] [Indexed: 05/09/2023] Open
Abstract
Insanity as a defence against criminal conduct has been known since antiquity. Going through significant reformulations across centuries, different jurisdictions across the globe, including Nigeria, have come to adopt various strains of the insanity defence, with the presence of mental disorder being the causative mechanism of the crime as their central theme. A critical ingredient in the Nigerian insanity plea is the presence of 'mental disease' or 'natural mental infirmity' as the basis for the lack of capacity in certain cognitive and behavioural domains resulting in the offence. Mental disorders, which are the biomedical formulations of this critical legal constituent are primarily subjective experiences with variable objective features. Using illustrative cases based on psycho-legal formulation as well as reform-oriented and fundamental legal research, it is shown that Nigerian courts have held that claims of insanity based on the accused person's evidence alone should be regarded as "suspect" and not to be "taken seriously." Thus, Nigerian judicial opinions rely on non-expert accounts of defendants' apparent behavioural abnormalities and reported familial vulnerability to mental illness, amongst other facts while conventionally discountenancing the defendants' plausible phenomenological experiences validated by expert psychiatric opinion in reaching a conclusion of legal insanity. While legal positivism would be supportive of the prevailing judicial attitude in entrenching the validity of the disposition in its tenuous precedential utility, legal realism invites the proponents of justice and fairness to interrogate the merit of such preferential views which are not supported by scientific evidence or philosophical reasoning. This paper argues that disregarding the subjective experience of the defendant, particularly in the presence of sustainable expert opinion when it stands unrebutted is not in the interest of justice. This judicial posturing towards mentally abnormal offenders should be reformed on the basis of current multidisciplinary knowledge. Learning from the South African legislation, formalising the involvement of mental health professionals in insanity plea cases, ensures that courts are guided by professional opinion and offers a model for reform.
Collapse
Affiliation(s)
- Adegboyega Ogunwale
- Neuropsychiatric Hospital Aro, Abeokuta, Nigeria
- Forensic & Neurodevelopmental Sciences Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- *Correspondence: Adegboyega Ogunwale,
| | - Letitia Pienaar
- Department of Criminal and Procedural Law, College of Law, University of South Africa, Pretoria, South Africa
| | | |
Collapse
|
16
|
Zhang M, Force RB, Walker C, Ahn S, Jarskog LF, Frohlich F. Alpha transcranial alternating current stimulation reduces depressive symptoms in people with schizophrenia and auditory hallucinations: a double-blind, randomized pilot clinical trial. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:114. [PMID: 36566277 PMCID: PMC9789318 DOI: 10.1038/s41537-022-00321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022]
Abstract
People with schizophrenia exhibit reduced alpha oscillations and frontotemporal coordination of brain activity. Alpha oscillations are associated with top-down inhibition. Reduced alpha oscillations may fail to censor spurious endogenous activity, leading to auditory hallucinations. Transcranial alternating current stimulation (tACS) at the alpha frequency was shown to enhance alpha oscillations in people with schizophrenia and may thus be a network-based treatment for auditory hallucinations. We conducted a double-blind, randomized, placebo-controlled pilot clinical trial to examine the efficacy of 10-Hz tACS in treating auditory hallucinations in people with schizophrenia. 10-Hz tACS was administered in phase at the dorsolateral prefrontal cortex and the temporoparietal junction with a return current at Cz. Patients were randomized to receive tACS or sham for five consecutive days during the treatment week (40 min/day), followed by a maintenance period, during which participants received weekly tACS (40 min/visit) or sham. tACS treatment reduced general psychopathology (p < 0.05, Cohen's d = -0.690), especially depression (p < 0.005, Cohen's d = -0.806), but not auditory hallucinations. tACS treatment increased alpha power in the target region (p < 0.05), increased the frequency of peak global functional connectivity towards 10 Hz (p < 0.05), and reduced left-right frontal functional connectivity (p < 0.005). Importantly, changes in brain functional connectivity significantly correlated with symptom improvement (p < 0.05). Daily 10 Hz-tACS increased alpha power and altered alpha-band functional connectivity. Successful target engagement reduced depression and other general psychopathology symptoms, but not auditory hallucinations. Considering existing research of 10Hz tACS as a treatment for major depressive disorder, our study demonstrates its transdiagnostic potential for treating depression.
Collapse
Affiliation(s)
- Mengsen Zhang
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA
| | - Rachel B. Force
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA
| | - Christopher Walker
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Sangtae Ahn
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea
| | - L. Fredrik Jarskog
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Flavio Frohlich
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Neurology, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
17
|
Structural brain abnormalities in schizophrenia patients with a history and presence of auditory verbal hallucination. Transl Psychiatry 2022; 12:511. [PMID: 36543775 PMCID: PMC9772175 DOI: 10.1038/s41398-022-02282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Although many studies have demonstrated structural brain abnormalities associated with auditory verbal hallucinations (AVH) in schizophrenia, the results remain inconsistent because of the small sample sizes and the reliability of clinical interviews. We compared brain morphometries in 204 participants, including 58 schizophrenia patients with a history of AVH (AVH + ), 29 without a history of AVH (AVH-), and 117 healthy controls (HCs) based on a detailed inspection of medical records. We further divided the AVH+ group into 37 patients with and 21 patients without hallucinations at the time of the MRI scans (AVH++ and AVH+-, respectively) via clinical interviews to explore the morphological differences according to the persistence of AVH. The AVH + group had a smaller surface area in the left caudal middle frontal gyrus (F = 7.28, FDR-corrected p = 0.0008) and precentral gyrus (F = 7.68, FDR-corrected p = 0.0006) compared to the AVH- group. The AVH+ patients had a smaller surface area in the left insula (F = 7.06, FDR-corrected p = 0.001) and a smaller subcortical volume in the bilateral hippocampus (right: F = 13.34, FDR-corrected p = 0.00003; left: F = 6.80, FDR-corrected p = 0.001) compared to the HC group. Of these significantly altered areas, the AVH++ group showed significantly smaller bilateral hippocampal volumes compared to the AVH+- group, and a smaller surface area in the left precentral gyrus and caudal middle frontal gyrus compared to the AVH- group. Our findings highlighted the distinct pattern of structural alteration between the history and presence of AVH in schizophrenia, and the importance of integrating multiple criteria to elucidate the neuroanatomical mechanisms.
Collapse
|
18
|
Salisbury DF, Curtis M, Longenecker J, Yeh FC, Kim T, Coffman BA. Pathological resting-state executive and language system perfusion in first-episode psychosis. Neuroimage Clin 2022; 36:103261. [PMID: 36451364 PMCID: PMC9668641 DOI: 10.1016/j.nicl.2022.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND HYPOTHESIS Cortical (e.g., Broca's area and Wernicke's area) and subcortical (e.g., putamen) language-related areas and executive control areas (e.g., inferior frontal gyrus (IFG), dorsolateral prefrontal cortex (DLPFC)) show functional and structural dysconnectivity in long-term psychosis. We examined whether resting-state basal perfusion levels revealed selective pathophysiology (likely hypo- and hyper-activation) of language-related and executive areas in first-episode psychosis (FEP). STUDY DESIGN Basal resting-state perfusion was measured using pseudo-continuous Arterial Spin Labeling (pcASL). Relative cerebral blood flow (rCBF) was compared between 32 FEP and 34 matched healthy comparison (HC) individuals. Structural and functional MRI scans were acquired using a 3T Prisma scanner during the same session. STUDY RESULTS Whole-brain comparison of resting rCBF identified 8 clusters with significant between-group differences. Reduced rCBF was found in executive control areas in left and right IFG, right DLPFC, and right parietal cortex. Increased rCBF was found in left and right temporal cortex (including Wernicke's area), and left and right putamen. A positive correlation was observed between auditory hallucination severity and rCBF in the left putamen. CONCLUSIONS To the degree that perfusion implies activation, language and auditory processing areas in bilateral temporal lobe and putamen showed pathological hyper-activity, and cognitive control areas (IFG, DLPFC, right parietal) showed pathological hypo-activity in FEP at rest. Pathological basal activity was present across the range of symptom severity, suggesting it may be a common underlying pathology for psychosis that may be targeted with non-invasive brain stimulation to normalize resting activity levels.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julia Longenecker
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tae Kim
- Department of Radiology, Magnetic Resonance Research Center, Presbyterian Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
20
|
Iwakura Y, Kawahara-Miki R, Kida S, Sotoyama H, Gabdulkhaev R, Takahashi H, Kunii Y, Hino M, Nagaoka A, Izumi R, Shishido R, Someya T, Yabe H, Kakita A, Nawa H. Elevation of EGR1/zif268, a Neural Activity Marker, in the Auditory Cortex of Patients with Schizophrenia and its Animal Model. Neurochem Res 2022; 47:2715-2727. [PMID: 35469366 DOI: 10.1007/s11064-022-03599-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
The family of epidermal growth factor (EGF) including neuregulin-1 are implicated in the neuropathology of schizophrenia. We established a rat model of schizophrenia by exposing perinatal rats to EGF and reported that the auditory pathophysiological traits of this model such as prepulse inhibition, auditory steady-state response, and mismatch negativity are relevant to those of schizophrenia. We assessed the activation status of the auditory cortex in this model, as well as that in patients with schizophrenia, by monitoring the three neural activity-induced proteins: EGR1 (zif268), c-fos, and Arc. Among the activity markers, protein levels of EGR1 were significantly higher at the adult stage in EGF model rats than those in control rats. The group difference was observed despite an EGF model rat and a control rat being housed together, ruling out the contribution of rat vocalization effects. These changes in EGR1 levels were seen to be specific to the auditory cortex of this model. The increase in EGR1 levels were detectable at the juvenile stage and continued until old ages but displayed a peak immediately after puberty, whereas c-fos and Arc levels were nearly indistinguishable between groups at all ages with an exception of Arc decrease at the juvenile stage. A similar increase in EGR1 levels was observed in the postmortem superior temporal cortex of patients with schizophrenia. The commonality of the EGR1 increase indicates that the EGR1 elevation in the auditory cortex might be one of the molecular signatures of this animal model and schizophrenia associating with hallucination.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City, Niigata, 951-8585, Japan.
| | | | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
21
|
Fuentes-Claramonte P, Soler-Vidal J, Salgado-Pineda P, Ramiro N, Garcia-Leon MA, Cano R, Arévalo A, Munuera J, Portillo F, Panicali F, Sarró S, Pomarol-Clotet E, McKenna P, Hinzen W. Processing of linguistic deixis in people with schizophrenia, with and without auditory verbal hallucinations. Neuroimage Clin 2022; 34:103007. [PMID: 35468569 PMCID: PMC9059152 DOI: 10.1016/j.nicl.2022.103007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
Auditory verbal hallucinations (AVH) are a key symptom of schizophrenia (SZ) defined by anomalous perception of speech. Anomalies of processing external speech stimuli have also been reported in people with AVH, but it is unexplored which specific dimensions of language are processed differently. Using a speech perception task (passive listening), we here targeted the processing of deixis, a key dimension of language governing the contextual anchoring of speech in interpersonal context. We designed naturalistic speech stimuli that were either non-personal and fact-reporting ('low-deixis' condition), or else involved rich deictic devices such as the grammatical first and second persons, direct questions, and vocatives ('high-deixis'). We asked whether neural correlates of deixis obtained with fMRI would distinguish patients with and without frequent hallucinations (AVH + vs AVH-) from controls and each other. Results showed that high-deixis relative to low-deixis was associated with clusters of increased activation in the bilateral middle temporal gyri extending into the temporal poles and the inferior parietal cortex, in all groups. The AVH + and AVH- groups did not differ. When unifying them, the SZ group as a whole showed altered activity in the precuneus, midline regions and inferior parietal cortex. These results fail to confirm deictic processing anomalies specific to patients with AVH, but reveal such anomalies across SZ. Hypoactivation of this network may relate to a cognitive mechanism for attributing and anchoring thought and referential speech content in context.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain; Benito Menni Complex Assistencial en Salut Mental, Germanes Hospitalàries, Sant Boi de Llobregat, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Nuria Ramiro
- Hospital Sant Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Ramon Cano
- Hospital Mare de Déu de la Mercè, Germanes Hospitalàries, Barcelona, Spain
| | - Antonio Arévalo
- Hospital Sagrat Cor, Germanes Hospitalàries, Martorell, Spain
| | - Josep Munuera
- Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Francisco Portillo
- Benito Menni Complex Assistencial en Salut Mental, Germanes Hospitalàries, Sant Boi de Llobregat, Spain
| | - Francesco Panicali
- Benito Menni Complex Assistencial en Salut Mental, Germanes Hospitalàries, Sant Boi de Llobregat, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Peter McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Wolfram Hinzen
- Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
22
|
Lee YJ, Huang SY, Lin CP, Tsai SJ, Yang AC. Alteration of power law scaling of spontaneous brain activity in schizophrenia. Schizophr Res 2021; 238:10-19. [PMID: 34562833 DOI: 10.1016/j.schres.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Nonlinear dynamical analysis has been used to quantify the complexity of brain signal at temporal scales. Power law scaling is a well-validated method in physics that has been used to describe the dynamics of a system in the frequency domain, ranging from noisy oscillation to complex fluctuations. In this research, we investigated the power-law characteristics in a large-scale resting-state fMRI data of schizophrenia and healthy participants derived from Taiwan Aging and Mental Illness cohort. We extracted the power spectral density (PSD) of resting signal by Fourier transform. Power law scaling of PSD was estimated by determining the slope of the regression line fitting to the logarithm of PSD. t-Test was used to assess the statistical difference in power law scaling between schizophrenia and healthy participants. The significant differences in power law scaling were found in six brain regions. Schizophrenia patients have significantly more positive power law scaling (i.e., more homogenous frequency components) at four brain regions: left precuneus, left medial dorsal nucleus, right inferior frontal gyrus, and right middle temporal gyrus and less positive power law scaling (i.e., more dominant at lower frequency range) in bilateral putamen compared with healthy participants. Moreover, significant correlations of power law scaling with the severity of psychosis were found. These findings suggest that schizophrenia has abnormal brain signal complexity linked to psychotic symptoms. The power law scaling represents the dynamical properties of resting-state fMRI signal may serve as a novel functional brain imaging marker for evaluating patients with mental illness.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Su-Yun Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science and Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science and Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
A review of functional and structural neuroimaging studies to investigate the inner speech model of auditory verbal hallucinations in schizophrenia. Transl Psychiatry 2021; 11:582. [PMID: 34764242 PMCID: PMC8585980 DOI: 10.1038/s41398-021-01670-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/14/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Although the pathophysiology of auditory verbal hallucinations remains uncertain, the inner speech model remains a prominent theory. A systematic review and meta-analyses of both functional and structural neuroimaging studies were performed to investigate the inner speech model. Of the 417 papers retrieved, 26 met the inclusion criteria. Meta-analyses found the left insula to be significantly active during auditory verbal hallucinations and to have a significantly reduced grey matter volume in hallucinators. Dysfunction of the left insula may contribute to the misattribution of inner speech due to its suggested roles in both inner speech production and the salience network. No significant activity was found at Broca's area or Heschl's gyrus during auditory verbal hallucinations. Furthermore, no structural abnormalities were found at these sites or in the arcuate fasciculi. Overall, evidence was found to both support and oppose the inner speech model. Further research should particularly include a systematic review of task-based trait studies with a focus on inner speech production and self-referential processing, and analyses of additional language-related white matter tracts.
Collapse
|
24
|
Guttesen LL, Albert N, Nordentoft M, Hjorthøj C. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation for auditory hallucinations in schizophrenia: Systematic review and meta-analysis. J Psychiatr Res 2021; 143:163-175. [PMID: 34500345 DOI: 10.1016/j.jpsychires.2021.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Through imaging studies, a significant increase in cerebral activity has been detected in fronto-temporal areas in patients experiencing auditory verbal hallucinations. Therefore, non-invasive neuromodulation, in particular transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), has been considered as a therapeutic intervention for medication-resistant auditory verbal hallucinations in schizophrenia. We aimed to synthesize results from randomized trials on either rTMS or tDCS versus placebo in patients with schizophrenia by including five recently published trials in the field. A systematic review and meta-analysis of relevant literature was conducted. Studies were included on the basis of pre-defined selection criteria. The quality of the studies was assessed by the Cochrane Risk of Bias Tool for Randomized Controlled Trials. RevMan 5.3 was used to conduct the statistical analysis. Including 465 and 960 patients, respectively, 12 tDCS and 27 rTMS studies were included. Regarding treatment of medication refractory auditory verbal hallucinations, no significant effect of tDCS (-0.23 [-0.49, 0.02], p = 0.08) or rTMS (-0.19 [-0.50, 0,11], p = 0.21) was found compared to sham in this meta-analysis. The current study found that it cannot be concluded that rTMS and tDCS are efficacious in treating medication-resistant auditory verbal hallucinations. Larger randomized controlled tDCS trials of a higher quality should be conducted in the future to establish substantial evidence of tDCS. The interventions appear safe and may have beneficial effects on other outcomes.
Collapse
Affiliation(s)
- Liv Liebach Guttesen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark; Psychiatric Center of Ballerup, Copenhagen University Hospital, Denmark
| | - Nikolai Albert
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark; Psychiatry Region Zealand East, Roskilde, Denmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark; University of Copenhagen, Department of Public Health, Section of Epidemiology, Denmark.
| |
Collapse
|
25
|
Xie Y, Guan M, Wang Z, Ma Z, Wang H, Fang P, Yin H. rTMS Induces Brain Functional and Structural Alternations in Schizophrenia Patient With Auditory Verbal Hallucination. Front Neurosci 2021; 15:722894. [PMID: 34539338 PMCID: PMC8441019 DOI: 10.3389/fnins.2021.722894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low-frequency transcranial magnetic stimulation (rTMS) over the left temporoparietal cortex reduces the auditory verbal hallucination (AVH) in schizophrenia. However, the underlying neural basis of the rTMS treatment effect for schizophrenia remains not well understood. This study investigates the rTMS induced brain functional and structural alternations and their associations with clinical as well as neurocognitive profiles in schizophrenia patients with AVH. METHODS Thirty schizophrenia patients with AVH and thirty-three matched healthy controls were enrolled. The patients were administered by 15 days of 1 Hz rTMS delivering to the left temporoparietal junction (TPJ) area. Clinical symptoms and neurocognitive measurements were assessed at pre- and post-rTMS treatment. The functional (amplitude of low-frequency fluctuation, ALFF) and structural (gray matter volume, GMV) alternations were compared, and they were then used to related to the clinical and neurocognitive measurements after rTMS treatment. RESULTS The results showed that the positive symptoms, including AVH, were relieved, and certain neurocognitive measurements, including visual learning (VisLearn) and verbal learning (VerbLearn), were improved after the rTMS treatment in the patient group. Furthermore, the rTMS treatment induced brain functional and structural alternations in patients, such as enhanced ALFF in the left superior frontal gyrus and larger GMV in the right inferior temporal cortex. The baseline ALFF and GMV values in certain brain areas (e.g., the inferior parietal lobule and superior temporal gyrus) could be associated with the clinical symptoms (e.g., positive symptoms) and neurocognitive performances (e.g., VerbLearn and VisLearn) after rTMS treatment in patients. CONCLUSION The low-frequency rTMS over the left TPJ area is an efficacious treatment for schizophrenia patients with AVH and could selectively modulate the neural basis underlying psychiatric symptoms and neurocognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Muzhen Guan
- Department of Mental Health, Xi’an Medical University, Xi’an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China,*Correspondence: Peng Fang,
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China,Hong Yin,
| |
Collapse
|
26
|
Huang K, Kang Y, Wu Z, Wang Y, Cai S, Huang L. Asymmetrical alterations of grey matter among psychiatric disorders: A systematic analysis by voxel-based activation likelihood estimation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110322. [PMID: 33838150 DOI: 10.1016/j.pnpbp.2021.110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Schizophrenia (SZ), bipolar disorder (BD) and major depression disorder (MDD) have been regarded as highly diverged independent entities in current psychiatric diagnosis. However, ample new evidence suggests that they may have common biological traits. Neuroimaging studies showed that psychiatric disorders might associated with altered grey matter (GM) asymmetry compared to controls; however, the degree to which SZ, BD and MDD have common and/or distinct asymmetrical alterations in GM is still ambiguous. In this study, we analysed 169 voxel-based studies (including 3517 SZ patients, 1575 BD patients, 3280 MDD patients and 9733 controls) using activation likelihood estimation (ALE) meta-analysis to systematically review the existence of similar GM atrophy and asymmetrical alteration patterns among these psychiatric disorders, and the functional association between behaviour domains and topological alterations. We found that the right parahippocampal gyrus and left superior frontal gyrus showed commonly altered GM volume across all three illnesses, but did not identify common asymmetrical alteration. The asymmetrical alteration with leftward bias appeared in SZ and bipolar disorder at different locations, but more asymmetrical alteration with rightward bias appeared in MDD. Moreover, these changes have been confirmed to be associate with several symptoms and may have roles in functional networks. Our findings support the existence of common neurobiological damnification in these psychiatric disorders and provides valuable insights for the neural commonalties among different psychiatric disorders based on a large sample size.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yafei Kang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Zhongcheng Wu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
27
|
Brandt SJ, Oral HY, Arellano-Bravo C, Plawecki MH, Hummer TA, Francis MM. Repetitive Transcranial Magnetic Stimulation as a Therapeutic and Probe in Schizophrenia: Examining the Role of Neuroimaging and Future Directions. Neurotherapeutics 2021; 18:827-844. [PMID: 33844154 PMCID: PMC8423934 DOI: 10.1007/s13311-021-01046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia is a complex condition associated with perceptual disturbances, decreased motivation and affect, and disrupted cognition. Individuals living with schizophrenia may experience myriad poor outcomes, including impairment in independent living and function as well as decreased life expectancy. Though existing treatments may offer benefit, many individuals still experience treatment resistant and disabling symptoms. In light of the negative outcomes associated with schizophrenia and the limitations in currently available treatments, there is a significant need for novel therapeutic interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can modulate the activity of discrete cortical regions, allowing direct manipulation of local brain activation and indirect manipulation of the target's associated neural networks. rTMS has been studied in schizophrenia for the treatment of auditory hallucinations, negative symptoms, and cognitive deficits, with mixed results. The field's inability to arrive at a consensus on the use rTMS in schizophrenia has stemmed from a variety of issues, perhaps most notably the significant heterogeneity amongst existing trials. In addition, it is likely that factors specific to schizophrenia, rather than the rTMS itself, have presented barriers to the interpretation of existing results. However, advances in approaches to rTMS as a biologic probe and therapeutic, many of which include the integration of neuroimaging with rTMS, offer hope that this technology may still play a role in improving the understanding and treatment of schizophrenia.
Collapse
Affiliation(s)
- Stephen J Brandt
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Halimah Y Oral
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Carla Arellano-Bravo
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Martin H Plawecki
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Tom A Hummer
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA
| | - Michael M Francis
- Indiana University School of Medicine, Department of Psychiatry, 355W 16 St., Indianapolis, IN, USA.
| |
Collapse
|
28
|
TURGUT C, YILDIZ M, GÜNDÜZ N, ANIK YA, ÖZKUL B. ŞİZOFRENİ TANILI HASTALARDA HASTALIK SÜRESİ, PSİKOTİK ATAK SAYISI, YAŞAM BOYU ANTİPSİKOTİK KULLANIMIYLA İLİŞKİLİ BÖLGESEL GRİ MADDE DEĞİŞİKLİKLERİNİN VOKSEL TABANLI MORFOMETRİK ANALİZİ. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2021. [DOI: 10.17517/ksutfd.878543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Amaç: Etiyolojik etmenler, klinik görünümler ve tedavi yanıtı açısından şizofreninin oldukça ayrışık bir bozukluk olduğu bilinmektedir. Yapısal görüntüleme çalışmalarında gri madde değişikliği olan alanlar, bu çeşitliliğin bir yansıması olarak görünmektedir. Hastalık süresi, antipsikotik tedavisi ve aktif psikoz dönemlerinin, beyindeki yapısal değişikliklerle ilişkisi henüz netlik kazanmamıştır. Çalışmamızın amacı hastalığın ve hastalıkla ilgili süreçlerin (hastalık süresi, ilaç kullanımı, psikotik atak sayısı) beyin yapısına etkisini araştırmaktır.
Yöntem: Çalışmamıza 33 şizofrenili hasta ve yaş, cinsiyet ve eğitim süreleri açısından eşleştirilmiş 35 sağlıklı gönüllü katıldı. Hasta ve sağlıklı kontrollere nüfus özelliklerini değerlendiren anket formu verildi. Hastalara DSM IV’e göre Yapılandırılmış Klinik Görüşme (DYKG-1) uygulandı. Hastaların yaşamboyu antipsikotik maruziyeti belirlendi ve klorpromazin eşdeğer dozları üzerinden doz-yıl birimine çevrildi. Olguların manyetik rezonans görüntüleri (MRG) 3 Tesla gücündeki cihaz ile elde edildi. Görüntüler İstatistiksel Parametrik Haritalama 8 programı kullanılarak voksel tabanlı morfometri (VTM) yöntemiyle karşılaştırıldı. İstatistiksel değerlendirmelerde veri özelliklerine göre t testi, Ki Kare testi, Mann Whitney U testi kullanıldı. İstatistiksel anlamlılık düzeyi çift yönlü p≤ 0,05 olarak kabul edildi. VTM’de genel lineer model (GLM) kullanılarak yaş, cinsiyet ve toplam beyin hacmi karıştırıcı etkenler olarak analiz matriksinde yer aldı. GLM’de iki grup karşılaştırmasında t-testi ve hastalık süreciyle ilişkili GM değişikliklerini araştırmada çoklu regresyon çözümlemesi yapıldı. VTM’de p değerinin 0,001’in altında ve küme oluşturan alanların 50 voksel üstünde olması koşulu arandı.
Bulgular: Sağlıklı kontrollerle karşılaştırıldığında hastalarda GM yoğunluğunda sağ orta temporal ve inferior temporal girus, bilateral orta frontal girus, sol singulat girus, sol presentral girus ve sol supramarginal girus’ta azalma saptandı. Kontrollerle karşılaştırıldığında hastalarda GM yoğunluğunda sağ uncus, sol kaudat ve sol posterior singulat korteks’te artış saptandı. Hasta grubunda hastalık süresiyle sol presentral girus ve sol postsentral girus GM yoğunluğu arasında negatif ilişkili bulundu. Yaşamboyu APİ kullanımıyla pozitif ve negatif ilişkili alanlar sırasıyla; sol inferior frontal girus ve sağ precuneus’tu. Psikotik atak sayısıyla sol medial frontal girus, sağ presentral girus ve sol parasentral lobül GM yoğunluğu arasında pozitif ilişki saptanırken uvula (serebellum) GM yoğunluğu arasında negatif ilişki saptandı.
Sonuç: Şizofrenili hastalarda GM eksikliğinin frontal ve temporal alanlarda ön planda olduğu söynenebilir. Ayrıca hastalık süresi, antipsikotik tedavisi, psikotik atak sayısı beyindeki GM değişiklikleriyle ilişkili görünmektedir. Limbik lobta GM yoğunluğundaki artışı açıklamak için ileri araştırmalara ihtiyaç vardır.
Collapse
Affiliation(s)
- Celaleddin TURGUT
- Kahramanmaras Sutcu Imam University, School of Medicine, Department of Psychiatry, Kahramanmaras
| | - Mustafa YILDIZ
- Kocaeli University, School of Medicine, Department of Psychiatry, Kocaeli, Turkey
| | - Nermin GÜNDÜZ
- Uskudar University, NPISTANBUL Brain Hospital, Psychiatry Clinic, istanbul, Turkey
| | - Yonca Akgoz ANIK
- Kocaeli University, School of Medicine, Department of Radiology, Kocaeli, Turkey
| | - Burcu ÖZKUL
- Dokuz Eylul University
- DEÜ · Department of Psychiatric Nursing Doctor of Philosophy
| |
Collapse
|
29
|
Hare SM, Adhikari BM, Du X, Garcia L, Bruce H, Kochunov P, Simon JZ, Hong LE. Local versus long-range connectivity patterns of auditory disturbance in schizophrenia. Schizophr Res 2021; 228:262-270. [PMID: 33493774 PMCID: PMC7987759 DOI: 10.1016/j.schres.2020.11.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/01/2023]
Abstract
Auditory hallucinations are a debilitating symptom of schizophrenia. Effective treatment is limited because the underlying neural mechanisms remain unknown. Our study investigates how local and long-range functional connectivity is associated with auditory perceptual disturbances (APD) in schizophrenia. APD was assessed using the Auditory Perceptual Trait and State Scale. Resting state fMRI data were collected for N=99 patients with schizophrenia. Local functional connectivity was estimated using regional homogeneity (ReHo) analysis; long-range connectivity was estimated using resting state functional connectivity (rsFC) analysis. Mediation analyses tested whether local (ReHo) connectivity significantly mediated associations between long-distance rsFC and APD. Severity of APD was significantly associated with reduced ReHo in left and right putamen, left temporoparietal junction (TPJ), and right hippocampus-pallidum. Higher APD was also associated with reduced rsFC between the right putamen and the contralateral putamen and auditory cortex. Local and long-distance connectivity measures together explained 40.3% of variance in APD (P < 0.001), with the strongest predictor being the left TPJ ReHo (P < 0.001). Additionally, TPJ ReHo significantly mediated the relationship between right putamen - left putamen rsFC and APD (Sobel test, P = 0.001). Our findings suggest that both local and long-range functional connectivity deficits contribute to APD, emphasizing the role of striatum and auditory cortex. Considering the translational impact of these circuit-based findings within the context of prior clinical trials to treat auditory hallucinations, we propose a model in which correction of both local and long-distance functional connectivity deficits may be necessary to treat auditory hallucinations.
Collapse
Affiliation(s)
- Stephanie M. Hare
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhim M. Adhikari
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Laura Garcia
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Heather Bruce
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, College Park, MD, USA
| | - L. Elliot Hong
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Abnormal semantic processing of threat words associated with excitement and hostility symptoms in schizophrenia. Schizophr Res 2021; 228:394-402. [PMID: 33549981 PMCID: PMC7988509 DOI: 10.1016/j.schres.2020.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is associated with devastating emotional, cognitive and language impairments. Understanding the deficits in each domain and their interactions is important for developing novel, targeted psychotherapies. This study tested whether negative-threat word processing is altered in individuals with SZ compared to healthy controls (HC), in relation to SZ symptom severity across domains. METHODS Thirty-one SZ and seventeen HC subjects were scanned with functional magnetic resonance imaging while silently reading negative-threat and neutral words. Post-scan, subjects rated the valence of each word. The effects of group (SZ, HC), word type (negative, neutral), task period (early, late), and severity of clinical symptoms (positive, negative, excitement/hostility, cognitive, depression/anxiety), on word valence ratings and brain activation, were analyzed. RESULTS SZ and HC subjects rated negative versus neutral words as more negative. The SZ subgroup with severe versus mild excitement/hostility symptoms rated the negative words as more negative. SZ versus HC subjects hyperactivated left language areas (angular gyrus, middle/inferior temporal gyrus (early period)) and the amygdala (early period) to negative words, and the amygdala (late period) to neutral words. In SZ, activation to negative versus neutral words in left dorsal temporal pole and dorsal anterior cingulate was positively correlated with excitement/hostility scores. CONCLUSIONS A negatively-biased behavioral response to negative-threat words was seen in SZ with severe versus mild excitement/hostility symptoms. The biased behavioral response was mediated by hyperactivation of brain networks associated with semantic processing of emotion concepts. Thus, word-level semantic processing may be a relevant psychotherapeutic target in SZ.
Collapse
|
31
|
Latini F, Trevisi G, Fahlström M, Jemstedt M, Alberius Munkhammar Å, Zetterling M, Hesselager G, Ryttlefors M. New Insights Into the Anatomy, Connectivity and Clinical Implications of the Middle Longitudinal Fasciculus. Front Neuroanat 2021; 14:610324. [PMID: 33584207 PMCID: PMC7878690 DOI: 10.3389/fnana.2020.610324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
The middle longitudinal fascicle (MdLF) is a long, associative white matter tract connecting the superior temporal gyrus (STG) with the parietal and occipital lobe. Previous studies show different cortical terminations, and a possible segmentation pattern of the tract. In this study, we performed a post-mortem white matter dissection of 12 human hemispheres and an in vivo deterministic fiber tracking of 24 subjects acquired from the Human Connectome Project to establish whether a constant organization of fibers exists among the MdLF subcomponents and to acquire anatomical information on each subcomponent. Moreover, two clinical cases of brain tumors impinged on MdLF territories are reported to further discuss the anatomical results in light of previously published data on the functional involvement of this bundle. The main finding is that the MdLF is consistently organized into two layers: an antero-ventral segment (aMdLF) connecting the anterior STG (including temporal pole and planum polare) and the extrastriate lateral occipital cortex, and a posterior-dorsal segment (pMdLF) connecting the posterior STG, anterior transverse temporal gyrus and planum temporale with the superior parietal lobule and lateral occipital cortex. The anatomical connectivity pattern and quantitative differences between the MdLF subcomponents along with the clinical cases reported in this paper support the role of MdLF in high-order functions related to acoustic information. We suggest that pMdLF may contribute to the learning process associated with verbal-auditory stimuli, especially on left side, while aMdLF may play a role in processing/retrieving auditory information already consolidated within the temporal lobe.
Collapse
Affiliation(s)
- Francesco Latini
- Neurosurgical Unit, Department of Surgery, Ospedale Santo Spirito, Pescara, Italy
| | - Gianluca Trevisi
- Neurosurgical Unit, Department of Surgery, Ospedale Santo Spirito, Pescara, Italy
| | - Markus Fahlström
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Malin Jemstedt
- Section of Speech-Language Pathology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Maria Zetterling
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Göran Hesselager
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mats Ryttlefors
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Roes MM, Yin J, Taylor L, Metzak PD, Lavigne KM, Chinchani A, Tipper CM, Woodward TS. Hallucination-Specific structure-function associations in schizophrenia. Psychiatry Res Neuroimaging 2020; 305:111171. [PMID: 32916453 DOI: 10.1016/j.pscychresns.2020.111171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/13/2023]
Abstract
Combining structural (sMRI) and functional magnetic resonance imaging (fMRI) data in schizophrenia patients with and without auditory hallucinations (9 SZ_AVH, 12 SZ_nAVH), 18 patients with bipolar disorder, and 22 healthy controls, we examined whether cortical thinning was associated with abnormal activity in functional brain networks associated with auditory hallucinations. Language-task fMRI data were combined with mean cortical thickness values from 148 brain regions in a constrained principal component analysis (CPCA) to identify brain structure-function associations predictable from group differences. Two components emerged from the multimodal analysis. The "AVH component" highlighted an association of frontotemporal and cingulate thinning with altered brain activity characteristic of hallucinations among patients with AVH. In contrast, the "Bipolar component" distinguished bipolar patients from healthy controls and linked increased activity in the language network with cortical thinning in the left occipital-temporal lobe. Our findings add to a body of evidence of the biological underpinnings of hallucinations and illustrate a method for multimodal data analysis of structure-function associations in psychiatric illness.
Collapse
Affiliation(s)
- Meighen M Roes
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada
| | - John Yin
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Laura Taylor
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paul D Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Abhijit Chinchani
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Christine M Tipper
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
34
|
Salisbury DF, Wang Y, Yeh FC, Coffman BA. White Matter Microstructural Abnormalities in the Broca's-Wernicke's-Putamen "Hoffman Hallucination Circuit" and Auditory Transcallosal Fibers in First-Episode Psychosis With Auditory Hallucinations. Schizophr Bull 2020; 47:149-159. [PMID: 32766733 PMCID: PMC7825092 DOI: 10.1093/schbul/sbaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Functional connectivity abnormalities between Broca's and Wernicke's areas and the putamen revealed by functional magnetic resonance imaging (fMRI) are related to auditory hallucinations (AH). In long-term schizophrenia, reduced white matter structural integrity revealed by diffusion imaging in left arcuate fasciculus (connecting Broca's and Wernicke's areas) is likely related to AH. The structural integrity of connections with putamen and their relation to AH are unknown. Little is known about this relationship in first-episode psychosis (FEP), although auditory transcallosal connections were reported to play a role. White matter in the Broca's-Wernicke's-putamen language-related circuit and auditory transcallosal fibers was examined to investigate associations with AH in FEP. METHODS White matter connectivity was measured in 40 FEP and 32 matched HC using generalized fractional anisotropy (gFA) derived from diffusion spectrum imaging (DSI). RESULTS FEP and HC did not differ in gFA in any fiber bundle. In FEP, AH severity was significantly inversely related to gFA in auditory transcallosal fibers and left arcuate fasciculus. Although the right hemisphere arcuate fasciculus-AH association did not attain significance, the left and right arcuate fasciculus associations were not significantly different. CONCLUSIONS Despite overall normal gFA in FEP, AH severity was significantly related to gFA in transcallosal auditory fibers and the left hemisphere connection between Broca's and Wernicke's areas. Other bilateral tracts' gFA were weakly associated with AH. At the first psychotic episode, AH are more robustly associated with left hemisphere arcuate fasciculus and interhemispheric auditory fibers microstructural deficits, likely reflecting mistiming of information flow between language-related cortical centers.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA,To whom correspondence should be addressed; Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, 3501 Forbes Ave, Pittsburgh, PA 15213; tel: 412-246-5123, fax: 412-246-6636, e-mail:
| | - Yiming Wang
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
35
|
Altamura M, Prete G, Elia A, Angelini E, Padalino FA, Bellomo A, Tommasi L, Fairfield B. Do patients with hallucinations imagine speech right? Neuropsychologia 2020; 146:107567. [PMID: 32698031 DOI: 10.1016/j.neuropsychologia.2020.107567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
A direct relationship between auditory verbal hallucinations (AVHs) and decreased left-hemispheric lateralization in speech perception has been often described, although it has not been conclusively proven. The specific lateralization of AVHs has been poorly explored. However, patients with verbal hallucinations show a weak Right Ear Advantage (REA) in verbal perception compared to non AVHs listeners suggesting that left-hemispheric language area are involved in AVHs. In the present study, 29 schizophrenia patients with AVHs, 31 patients with psychotic bipolar disorder who experienced frequent AVHs, 27 patients with schizophrenia who had never experienced AVHs and 57 healthy controls were required to imagine hearing a voice in one ear alone. In line with previous evidence healthy controls confirmed the expected REA for auditory imagery, and the same REA was also found in non-hallucinator patients. However, in line with our hypothesis, patients with schizophrenia and psychotic bipolar disorder with AVHs showed no lateral bias. Results extend the relationship between abnormal asymmetry for verbal stimuli and AVHs to verbal imagery, suggesting that atypical verbal imagery may reflect a disruption of inter-hemispheric connectivity between areas implicated in the generation and monitoring of verbal imagery and may be predictive of a predisposition for AVHs. Results also indicate that the relationship between AVHs and hemispheric lateralization for auditory verbal imagery is not specific to schizophrenia but may extend to other disorders as well.
Collapse
Affiliation(s)
- Mario Altamura
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Antonella Elia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Eleonora Angelini
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Flavia A Padalino
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Beth Fairfield
- Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
36
|
Bai Y, Pascal Z, Calhoun V, Wang YP. Optimized Combination of Multiple Graphs With Application to the Integration of Brain Imaging and (epi)Genomics Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1801-1811. [PMID: 31825864 PMCID: PMC7394342 DOI: 10.1109/tmi.2019.2958256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With the rapid development of high-throughput technologies, a growing amount of multi-omics data are collected, giving rise to a great demand for combining such data for biomedical discovery. Due to the cost and time to label the data manually, the number of labelled samples is limited. This motivated the need for semi-supervised learning algorithms. In this work, we applied a graph-based semi-supervised learning (GSSL) to classify a severe chronic mental disorder, schizophrenia (SZ). An advantage of GSSL is that it can simultaneously analyse more than two types of data, while many existing models focus on pairwise data analysis. In particular, we applied GSSL to the analysis of single nucleotide polymorphism (SNP), functional magnetic resonance imaging (fMRI) and DNA methylation data, which accounts for genetics, brain imaging (endophenotypes), and environmental factors (epigenomics) respectively. While parameter selection has been an open challenge for most models, another key contribution of this work is that we explored the parameter space to interpret their meaning and established practical guidelines. Based on the practical significance of each hyper-parameter, a relatively small range of candidate values can be determined in a data-driven way to both optimize and speed up the parameter tuning process. We validated the model through both synthetic data and a real SZ dataset of 184 subjects from the Mental Illness and Neuroscience Discovery (MIND) Clinical Imaging Consortium. In comparison to several existing approaches, our algorithm achieved better performance in terms of classification accuracy. We also confirmed the significance of several brain regions associated with SZ.
Collapse
|
37
|
Mancini V, Zöller D, Schneider M, Schaer M, Eliez S. Abnormal Development and Dysconnectivity of Distinct Thalamic Nuclei in Patients With 22q11.2 Deletion Syndrome Experiencing Auditory Hallucinations. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:875-890. [PMID: 32620531 DOI: 10.1016/j.bpsc.2020.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several studies in patients with schizophrenia have demonstrated an abnormal thalamic volume and thalamocortical connectivity. Specifically, hyperconnectivity with somatosensory areas has been related to the presence of auditory hallucinations (AHs). The 22q11.2 deletion syndrome is a neurogenetic disorder conferring proneness to develop schizophrenia, and deletion carriers (22qdel carriers) experience hallucinations to a greater extent than the general population. METHODS We acquired 442 consecutive magnetic resonance imaging scans from 120 22qdel carriers and 110 control subjects every 3 years (age range: 8-35 years). The volume of thalamic nuclei was obtained with FreeSurfer and was compared between 22qdel carriers and control subjects and between 22qdel carriers with and without AHs. In a subgroup of 76 22qdel carriers, we evaluated the functional connectivity between thalamic nuclei affected in patients experiencing AHs and cortical regions. RESULTS As compared with control subjects, 22qdel carriers had lower and higher volumes of nuclei involved in sensory processing and cognitive functions, respectively. 22qdel carriers with AHs had a smaller volume of the medial geniculate nucleus, with deviant trajectories showing a steeper volume decrease from childhood with respect to those without AHs. Moreover, we showed an aberrant development of nuclei intercalated between the prefrontal cortex and hippocampus (the anteroventral and medioventral reuniens nuclei) and hyperconnectivity of the medial geniculate nucleus and anteroventral nucleus with the auditory cortex and Wernicke's area. CONCLUSIONS The increased connectivity of the medial geniculate nucleus and anteroventral nucleus to the auditory cortex might be interpreted as a lack of maturation of thalamocortical connectivity. Overall, our findings point toward an aberrant development of thalamic nuclei and an immature pattern of connectivity with temporal regions in relation to AHs.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
38
|
Vanes LD, Mouchlianitis E, Patel K, Barry E, Wong K, Thomas M, Szentgyorgyi T, Joyce D, Shergill S. Neural correlates of positive and negative symptoms through the illness course: an fMRI study in early psychosis and chronic schizophrenia. Sci Rep 2019; 9:14444. [PMID: 31595009 PMCID: PMC6783468 DOI: 10.1038/s41598-019-51023-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Psychotic illness is associated with cognitive control deficits and abnormal recruitment of neural circuits subserving cognitive control. It is unclear to what extent this dysfunction underlies the development and/or maintenance of positive and negative symptoms typically observed in schizophrenia. In this study we compared fMRI activation on a standard Stroop task and its relationship with positive and negative symptoms in early psychosis (EP, N = 88) and chronic schizophrenia (CHR-SZ, N = 38) patients. CHR-SZ patients showed reduced frontal, striatal, and parietal activation across incongruent and congruent trials compared to EP patients. Higher positive symptom severity was associated with reduced activation across both trial types in supplementary motor area (SMA), middle temporal gyrus and cerebellum in EP, but not CHR-SZ patients. Higher negative symptom severity was associated with reduced cerebellar activation in EP, but not in CHR-SZ patients. A negative correlation between negative symptoms and activation in SMA and precentral gyrus was observed in EP patients and in CHR-SZ patients. The results suggest that the neural substrate of positive symptoms changes with illness chronicity, and that cognitive control related neural circuits may be most relevant in the initial development phase of positive symptoms. These findings also highlight a changing role for the cerebellum in the development and later maintenance of both positive and negative symptoms.
Collapse
Affiliation(s)
- Lucy D Vanes
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, United Kingdom.
| | - Elias Mouchlianitis
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Krisna Patel
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Erica Barry
- Institute Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Katie Wong
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Megan Thomas
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Timea Szentgyorgyi
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Dan Joyce
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Sukhwinder Shergill
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| |
Collapse
|
39
|
Oribe N, Hirano Y, Del Re E, Seidman LJ, Mesholam-Gately RI, Woodberry KA, Wojcik JD, Ueno T, Kanba S, Onitsuka T, Shenton ME, Goldstein JM, Niznikiewicz MA, McCarley RW, Spencer KM. Progressive reduction of auditory evoked gamma in first episode schizophrenia but not clinical high risk individuals. Schizophr Res 2019; 208:145-152. [PMID: 31005464 DOI: 10.1016/j.schres.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
The early auditory-evoked gamma band response (EAGBR) may serve as an index of the integrity of fast recurrent inhibition or synaptic connectivity in the auditory cortex, where abnormalities in individuals with schizophrenia have been consistently found. The EAGBR has been rarely investigated in first episode schizophrenia patients (FESZ) and individuals at clinical high risk (CHR) for schizophrenia, and never been compared directly between these populations nor evaluated longitudinally. Here we examined the EAGBR in FESZ, CHR, and matched healthy controls (HC) at baseline and 1-year follow-up assessments to determine whether the EAGBR was affected in these clinical groups, and whether any EAGBR abnormalities changed over time. The electroencephalogram was recorded with a dense electrode array while subjects (18 FESZ, 18 CHR, and 40 HC) performed an auditory oddball task. Event-related spectral measures (phase locking factor [PLF] and evoked power) were computed on Morlet-wavelet-transformed single epochs from the standard trials. At baseline, EAGBR PLF and evoked power did not differ between groups. FESZ showed progressive reductions of PLF and evoked power from baseline to follow-up, and deficits in PLF at follow-up compared to HC. EAGBR peak frequency also increased at temporal sites in FESZ from baseline to follow-up. Longitudinal effects on the EAGBR were not found in CHR or HC, nor did these groups differ at follow-up. In conclusion, we detected neurophysiological changes of auditory cortex function in FESZ during a one-year period, which were not observed in CHR. These findings are discussed within the context of neurodevelopmental models of schizophrenia.
Collapse
Affiliation(s)
- Naoya Oribe
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan; National Hospital Organization, Hizen Psychiatric Center, Japan
| | - Yoji Hirano
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Elisabetta Del Re
- Laboratory of Neuroscience, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA, USA
| | - Larry J Seidman
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kristen A Woodberry
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joanne D Wojcik
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Takefumi Ueno
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan; National Hospital Organization, Hizen Psychiatric Center, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, Boston, MA, USA
| | - Margaret A Niznikiewicz
- Laboratory of Neuroscience, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Lee WH, Kennedy NI, Bikson M, Frangou S. A Computational Assessment of Target Engagement in the Treatment of Auditory Hallucinations with Transcranial Direct Current Stimulation. Front Psychiatry 2018; 9:48. [PMID: 29520240 PMCID: PMC5826940 DOI: 10.3389/fpsyt.2018.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 01/04/2023] Open
Abstract
We use auditory verbal hallucinations (AVH) to illustrate the challenges in defining and assessing target engagement in the context of transcranial direct current stimulation (tDCS) for psychiatric disorders. We defined the target network as the cluster of regions of interest (ROIs) that are consistently implicated in AVH based on the conjunction of multimodal meta-analytic neuroimaging data. These were prescribed in the New York Head (a population derived model) and head models of four single individuals. We appraised two potential measures of target engagement, tDCS-induced peak electric field strength and tDCS-modulated volume defined as the percentage of the volume of the AVH network exposed to electric field magnitude stronger than the postulated threshold for neuronal excitability. We examined a left unilateral (LUL) montage targeting the prefrontal cortex (PFC) and temporoparietal junction (TPJ), a bilateral (BL) prefrontal montage, and a 2 × 1 montage targeting the left PFC and the TPJ bilaterally. Using computational modeling, we estimated the peak electric field strength and modulated volume induced by each montage for current amplitudes ranging 1-4 mA. We found that the LUL montage was inferior to both other montages in terms of peak electric field strength in right-sided AVH-ROIs. The BL montage was inferior to both other montages in terms of modulated volume of the left-sided AVH-ROIs. As the modulated volume is non-linear, its variability between montages reduced for current amplitudes above 3 mA. These findings illustrate how computational target engagement for tDCS can be tailored to specific networks and provide a principled approach for future study design.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nigel I. Kennedy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, United States
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
41
|
Leroy A, Foucher JR, Pins D, Delmaire C, Thomas P, Roser MM, Lefebvre S, Amad A, Fovet T, Jaafari N, Jardri R. fMRI capture of auditory hallucinations: Validation of the two-steps method. Hum Brain Mapp 2017; 38:4966-4979. [PMID: 28660668 PMCID: PMC6866805 DOI: 10.1002/hbm.23707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023] Open
Abstract
Our purpose was to validate a reliable method to capture brain activity concomitant with hallucinatory events, which constitute frequent and disabling experiences in schizophrenia. Capturing hallucinations using functional magnetic resonance imaging (fMRI) remains very challenging. We previously developed a method based on a two-steps strategy including (1) multivariate data-driven analysis of per-hallucinatory fMRI recording and (2) selection of the components of interest based on a post-fMRI interview. However, two tests still need to be conducted to rule out critical pitfalls of conventional fMRI capture methods before this two-steps strategy can be adopted in hallucination research: replication of these findings on an independent sample and assessment of the reliability of the hallucination-related patterns at the subject level. To do so, we recruited a sample of 45 schizophrenia patients suffering from frequent hallucinations, 20 schizophrenia patients without hallucinations and 20 matched healthy volunteers; all participants underwent four different experiments. The main findings are (1) high accuracy in reporting unexpected sensory stimuli in an MRI setting; (2) good detection concordance between hypothesis-driven and data-driven analysis methods (as used in the two-steps strategy) when controlled unexpected sensory stimuli are presented; (3) good agreement of the two-steps method with the online button-press approach to capture hallucinatory events; (4) high spatial consistency of hallucinatory-related networks detected using the two-steps method on two independent samples. By validating the two-steps method, we advance toward the possible transfer of such technology to new image-based therapies for hallucinations. Hum Brain Mapp 38:4966-4979, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arnaud Leroy
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| | - Jack R. Foucher
- Univ Strasbourg, CNRS, UMR 7357 ‐ ICube ‐ Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie and Fédération de Médecine Translationnelle de Strasbourg (FMTS)StrasbourgF‐67000France
- CHU Strasbourg, CEntre de neuroModulation Non Invasive de Strasbourg (CEMNIS)StrasbourgF‐67000France
| | - Delphine Pins
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| | | | - Pierre Thomas
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| | - Mathilde M. Roser
- Univ Strasbourg, CNRS, UMR 7357 ‐ ICube ‐ Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie and Fédération de Médecine Translationnelle de Strasbourg (FMTS)StrasbourgF‐67000France
- CHU Strasbourg, CEntre de neuroModulation Non Invasive de Strasbourg (CEMNIS)StrasbourgF‐67000France
| | - Stéphanie Lefebvre
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| | - Ali Amad
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| | - Thomas Fovet
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| | - Nemat Jaafari
- Henri Laborit Hospital Centre, Unité de recherche clinique intersectorielle en psychiatrie à vocation régionale Pierre DenikerPoitiersF‐86022France
- Univ Poitiers and CHU Poitiers, INSERM, CIC‐P 1402 and U‐1084 Experimental and Clinical Neurosciences LaboratoryPoitiersF‐86022France
| | - Renaud Jardri
- Univ Lille, CNRS, UMR 9193 ‐ SCALab ‐ Sciences Cognitives et Sciences AffectivesLilleF‐59000France
- CHU Lille, Psychiatry Dpt., CURE platformLilleF‐59000France
| |
Collapse
|
42
|
Chang X, Collin G, Xi Y, Cui L, Scholtens LH, Sommer IE, Wang H, Yin H, Kahn RS, van den Heuvel MP. Resting-state functional connectivity in medication-naïve schizophrenia patients with and without auditory verbal hallucinations: A preliminary report. Schizophr Res 2017; 188:75-81. [PMID: 28130005 DOI: 10.1016/j.schres.2017.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 11/30/2022]
Abstract
Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia that has been associated with activation in language processing areas, in concert with higher-order cognitive brain networks. It remains to be determined whether, and if so how, the functional dynamics between these brain regions contributes to the emergence of AVH. The current study recruited 36 first-episode medication-naïve schizophrenia patients, including 18 patients with AVH, 18 patients free of AVH and 18 controls matched on age, gender and level of education. Resting-state functional MRI images were acquired for every subject and used to map functional brain connectivity. We compared functional connectivity in 18 bilateral regions of interest implicated by previous AVH studies among the three subject groups, with the aim of detecting patterns of dysconnectivity unique to or most pronounced in AVH patients. Results showed that AVH patients are characterized by dysconnectivity in neural circuitry involving the anterior cingulate cortex, insular cortex and language-related regions, comparing with both controls and non-AVH patients. Current findings suggest that abnormality in speech-sensitive areas and their functional cooperation with cortical regions involving in source monitoring and salience detection functions may contribute to the occurrence of AVH.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Guusje Collin
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Longbiao Cui
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Lianne H Scholtens
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iris E Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
43
|
Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:105-113. [PMID: 28442422 DOI: 10.1016/j.pnpbp.2017.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/15/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. METHODS Patients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. RESULTS rTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. CONCLUSION rTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples.
Collapse
|
44
|
Cui LB, Chen G, Xu ZL, Liu L, Wang HN, Guo L, Liu WM, Liu TT, Qi S, Liu K, Qin W, Sun JB, Xi YB, Yin H. Cerebral blood flow and its connectivity features of auditory verbal hallucinations in schizophrenia: A perfusion study. Psychiatry Res Neuroimaging 2017; 260:53-61. [PMID: 28024236 DOI: 10.1016/j.pscychresns.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 12/24/2022]
Abstract
The goal of the study was to investigate cerebral blood flow (CBF) and its connectivity (an across-subject covariance measure) patterns of schizophrenia (SZ) patients with auditory verbal hallucinations (AVHs). A total of demographically matched 25 SZ patients with AVHs, 25 without AVHs, and 25 healthy controls (HCs) underwent resting state perfusion imaging using a pulsed arterial spin labeling sequence. CBF and its connectivity were analyzed and then CBF topological properties were calculated. AVHs patients exhibited decreased CBF in the bilateral superior and middle frontal gyri and postcentral gyri, and right supplementary motor area compared with SZ patients without AVHs. SZ patients without AVHs showed reduced CBF in the left middle frontal gyrus relative to HCs. Moreover, AVHs groups showed distinct connectivity pattern, an intermediate level between HCs and patients without AVHs in the global efficiency. Our study demonstrates aberrant CBF in the brain regions associated with inner speech monitoring and language processing in SZ patients with AVHs. The complex network measures showed by CBF-derived functional connectivity indicate dysconnectivity between different functional units within the network of AVHs in SZ. Our findings might shed light on the neural underpinnings behind AVHs in this devastating disease at the level of CBF and its connectivity.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Chen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Radiology, General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Zi-Liang Xu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Guo
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen-Ming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting-Ting Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kang Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
45
|
Thomas F, Bouaziz N, Amengual JL, Andrianisaina PSK, Gaudeau-Bosma C, Moulier V, Valero-Cabré A, Januel D. Unexpected Improvement of Hand Motor Function with a Left Temporoparietal Low-Frequency Repetitive Transcranial Magnetic Stimulation Regime Suppressing Auditory Hallucinations in a Brainstem Chronic Stroke Patient. Front Psychiatry 2017; 8:262. [PMID: 29249993 PMCID: PMC5715395 DOI: 10.3389/fpsyt.2017.00262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
We here report paradoxical hand function recovery in a 61-year-old male tetra-paretic chronic patient following a stroke of the brainstem (with highly degraded right and abolished left-hand finger flexion/extension disabling him to manipulate objects) who experienced insidious auditory hallucinations (AHs) 4 years after such event. Symptomatic treatment for AHs was provided with periodical double sessions of low-frequency repetitive transcranial magnetic stimulation (rTMS) (daily 1 Hz, 2 × 1,200 pulses interleaved by 1 h interval) delivered to the left temporoparietal junction across two periods of 5 and 3 weeks, respectively. At the end of each stimulation period, AHs disappeared completely. Most surprisingly and totally unexpectedly, the patient experienced beneficial improvements of long-lasting impairments in his right-hand function. Detailed examination of onset and offset of rTMS stimulation regimes strongly suggests a temporal relation with the remission and re-appearance of AHs and also with a fragile but clinically meaningful improvements of right (but not left) hand function contingent to the accrual of stimulation sessions. On the basis of post-recovery magnetic resonance imaging structural and functional evidence, mechanistic hypotheses that could subtend such unexpected motor recovery are critically discussed.
Collapse
Affiliation(s)
- Fanny Thomas
- Unité de Recherche Clinique, Etablissement Public de Santé Ville-Evrard, Neuilly sur Marne, France.,Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France
| | - Noomane Bouaziz
- Unité de Recherche Clinique, Etablissement Public de Santé Ville-Evrard, Neuilly sur Marne, France
| | - Julià L Amengual
- Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France
| | | | - Christian Gaudeau-Bosma
- Unité de Recherche Clinique, Etablissement Public de Santé Ville-Evrard, Neuilly sur Marne, France
| | - Virginie Moulier
- Unité de Recherche Clinique, Etablissement Public de Santé Ville-Evrard, Neuilly sur Marne, France
| | - Antoni Valero-Cabré
- Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France.,UMR 7225 CRICM CNRS, Université Pierre et Marie Curie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA, United States.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - Dominique Januel
- Unité de Recherche Clinique, Etablissement Public de Santé Ville-Evrard, Neuilly sur Marne, France
| |
Collapse
|
46
|
Thomas F, Moulier V, Valéro-Cabré A, Januel D. Brain connectivity and auditory hallucinations: In search of novel noninvasive brain stimulation therapeutic approaches for schizophrenia. Rev Neurol (Paris) 2016; 172:653-679. [PMID: 27742234 DOI: 10.1016/j.neurol.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
Auditory verbal hallucinations (AVH) are among the most characteristic symptoms of schizophrenia and have been linked to likely disturbances of structural and functional connectivity within frontal, temporal, parietal and subcortical networks involved in language and auditory functions. Resting-state functional magnetic resonance imaging (fMRI) has shown that alterations in the functional connectivity activity of the default-mode network (DMN) may also subtend hallucinations. Noninvasive neurostimulation techniques such as repetitive transcranial magnetic stimulation (rTMS) have the ability to modulate activity of targeted cortical sites and their associated networks, showing a high potential for modulating altered connectivity subtending schizophrenia. Notwithstanding, the clinical benefit of these approaches remains weak and variable. Further studies in the field should foster a better understanding concerning the status of networks subtending AVH and the neural impact of rTMS in relation with symptom improvement. Additionally, the identification and characterization of clinical biomarkers able to predict response to treatment would be a critical asset allowing better care for patients with schizophrenia.
Collapse
Affiliation(s)
- F Thomas
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France.
| | - V Moulier
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France
| | - A Valéro-Cabré
- UMR 7225 CRICM CNRS, Université Pierre-et-Marie-Curie, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France; Université Pierre-et-Marie-Curie, CNRS UMR 7225-Inserm UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - D Januel
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France
| |
Collapse
|
47
|
Matsumoto J, Nishimaru H, Takamura Y, Urakawa S, Ono T, Nishijo H. Amygdalar Auditory Neurons Contribute to Self-Other Distinction during Ultrasonic Social Vocalization in Rats. Front Neurosci 2016; 10:399. [PMID: 27703429 PMCID: PMC5028407 DOI: 10.3389/fnins.2016.00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
Although, clinical studies reported hyperactivation of the auditory system and amygdala in patients with auditory hallucinations (hearing others' but not one's own voice, independent of any external stimulus), neural mechanisms of self/other attribution is not well understood. We recorded neuronal responses in the dorsal amygdala including the lateral amygdaloid nucleus to ultrasonic vocalization (USVs) emitted by subjects and conspecifics during free social interaction in 16 adult male rats. The animals emitting the USVs were identified by EMG recordings. One-quarter of the amygdalar neurons (15/60) responded to 50 kHz calls by the subject and/or conspecifics. Among the responsive neurons, most neurons (Type-Other neurons; 73%, 11/15) responded only to calls by conspecifics but not subjects. Two Type-Self neurons (13%, 2/15) responded to calls by the subject but not those by conspecifics, although their response selectivity to subjects vs. conspecifics was lower than that of Type-Other neurons. The remaining two neurons (13%) responded to calls by both the subject and conspecifics. Furthermore, population coding of the amygdalar neurons represented distinction of subject vs. conspecific calls. The present results provide the first neurophysiological evidence that the amygdala discriminately represents affective social calls by subject and conspecifics. These findings suggest that the amygdala is an important brain region for self/other attribution. Furthermore, pathological activation of the amygdala, where Type-Other neurons predominate, could induce external misattribution of percepts of vocalization.
Collapse
Affiliation(s)
- Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Susumu Urakawa
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
48
|
Nevue AA, Felix RA, Portfors CV. Dopaminergic projections of the subparafascicular thalamic nucleus to the auditory brainstem. Hear Res 2016; 341:202-209. [PMID: 27620513 DOI: 10.1016/j.heares.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022]
Abstract
Neuromodulators can alter the response properties of sensory neurons, including those in the auditory system. Dopamine, which plays a major role in reward and movement, has been shown to alter neural responses in the auditory brainstem and midbrain. Recently we identified the subparafascicular thalamic nucleus (SPF), part of the A11 dopaminergic cell group, as the source of dopamine to the inferior colliculus (IC). The superior olivary complex (SOC) is also a likely target of dopaminergic projections from the SPF because it receives projections from the SPF and contains fibers and terminals immunoreactive for tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. However, it is unknown if the projections from the SPF to SOC are dopaminergic, and if single neurons in the SPF project to both the IC and SOC. Using anterograde tracing combined with fluorescent immunohistochemistry, we found that the SPF sends dopaminergic projections to the superior paraolivary nucleus and the medial nucleus of the trapezoid body, but not the lateral superior olive. We confirmed these projections using a retrograde tracer. By making dual retrograde deposits in the IC and SOC, we found that individual dopaminergic cells innervate both the IC and SOC. These results suggest dopaminergic innervation, likely released in a context dependent manner, occurs at multiple levels of the auditory pathway.
Collapse
Affiliation(s)
- Alexander A Nevue
- School of Biological Sciences, Washington State University Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA.
| | - Richard A Felix
- Integrative Physiology and Neuroscience, Washington State University Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA.
| | - Christine V Portfors
- School of Biological Sciences, Washington State University Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA.
| |
Collapse
|
49
|
Abstract
Top-down processes like heuristics and gap filling create consistency in normal perception. Sometimes top-down processes cause illusory perceptions. Top-down processes are also involved in the creation of hallucinations, experienced in phenomena like sensory deprivation and phantom limbs. Moreover, it has been argued that the left hemisphere is important in the creation of hallucinations, since it also creates consistency. The influence of the left hemisphere in creating hallucinations is evidenced by an experiment concerning anosognosia (denial of illness). In schizophrenia, top-down processes and the left hemisphere both seem to be involved in the creation of hallucinations. It is argued that hallucinations are instigated for creating consistency and thereby have a functional character.
Collapse
Affiliation(s)
| | - Elke Geraerts
- Department of Experimental Psychology, Maastricht University,
| | | |
Collapse
|
50
|
Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 2016; 69:113-23. [PMID: 27473935 DOI: 10.1016/j.neubiorev.2016.05.037] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
Activation likelihood estimation meta-analysis of functional neuroimaging data was used to investigate the neural mechanisms underlying auditory-verbal and visual hallucinations (AVHs and VHs). Consistent activation across studies during AVHs, but not VHs, in Wernicke's and Broca's areas is consistent with involvement of speech and language processes in the experience of hearing voices when none are present. Similarly, greater activity in auditory cortex during AVHs and in visual cortex during VHs supports models proposing over-stimulation of sensory cortices in the generation of these perceptual anomalies. Activation across studies in the medial temporal lobe highlights a role for memory intrusions in the provision of content for AVHs, whereas insula activation may relate to the involvement of awareness and self-representation. Finally, activation in the paracingulate region of medial prefrontal cortex during AVHs is consistent with models implicating reality monitoring impairment in the misattribution of self-generated information as externally perceived. In the light of the results, the need for unified theoretical frameworks that account for the full range of hallucinatory experiences is discussed.
Collapse
Affiliation(s)
- Leor Zmigrod
- Department of Psychology and Behavioural & Clinical Neuroscience Institute, University of Cambridge, UK
| | - Jane R Garrison
- Department of Psychology and Behavioural & Clinical Neuroscience Institute, University of Cambridge, UK
| | - Joseph Carr
- Department of Psychology and Behavioural & Clinical Neuroscience Institute, University of Cambridge, UK
| | - Jon S Simons
- Department of Psychology and Behavioural & Clinical Neuroscience Institute, University of Cambridge, UK.
| |
Collapse
|