1
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
2
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Figueroa-Ochoa EB, Bravo-Anaya LM, Vaca-López R, Landázuri-Gómez G, Rosales-Rivera LC, Diaz-Vidal T, Carvajal F, Macías-Balleza ER, Rharbi Y, Soltero-Martínez JFA. Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System. Polymers (Basel) 2023; 15:polym15112551. [PMID: 37299350 DOI: 10.3390/polym15112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
A detailed study of the different structural transitions of the triblock copolymer PEO27-PPO61-PEO27 (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (CP104) by mean of complimentary methods: viscosimetry, densimetry, dynamic light scattering, turbidimetry, polarized microscopy, and rheometry. The hydration profile was calculated through density and sound velocity measurements. It was possible to identify the regions where monomers exist, spherical micelle formation, elongated cylindrical micelles formation, clouding points, and liquid crystalline behavior. We report a partial phase diagram including information for P104 concentrations from 1 × 10-4 to 90 wt.% and temperatures from 20 to 75 °C that will be helpful for further interaction studies with hydrophobic molecules or active principles for drug delivery.
Collapse
Affiliation(s)
- Edgar Benjamín Figueroa-Ochoa
- Departamento de Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Lourdes Mónica Bravo-Anaya
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
- Université de Rennes, Institut des Sciences Chimiques de Rennes, Équipe CORINT, CNRS, UMR 6226, Campus de Beaulieu, Bat 10A, 35042 Rennes Cedex, France
| | - Ricardo Vaca-López
- Departamento de Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Gabriel Landázuri-Gómez
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Luis Carlos Rosales-Rivera
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Tania Diaz-Vidal
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Francisco Carvajal
- Centro Universitario UTEG, Departamento de Investigación, Héroes Ferrocarrileros #1325, Guadalajara 44460, Jalisco, Mexico
- CUTonalá, Departamento de Ingenierías, Universidad de Guadalajara, Nuevo Periférico # 555, Ejido San José Tatepozco 45425, Jalisco, Mexico
| | - Emma Rebeca Macías-Balleza
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| | - Yahya Rharbi
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
| | - J Félix Armando Soltero-Martínez
- Université Grenoble Alpes, CNRS, Grenoble INP (Institut of Engineering Univ. Grenoble Alpes), 38000 Grenoble, France
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
4
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
5
|
Physicochemical properties of piroxicam in ionic-mixed micellar medium: effect of charge on the micellization behaviour. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Effect of drug aceclofenac on physicochemical properties of mixed micellar systems. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
In this article, the effect of the drug aceclofenac (ACF) on the properties of three mixed micellar systems are studied. The three systems were pluronic L64 + F127 (nonionic-nonionic), pluronic L64 + CTAB (cetyltrimethyl ammonium bromide), (nonionic-cationic) and L64 + SDS (Sodium dodecyl sulphate), (nonionic-anionic) combinations. The physicochemical parameters were characterized by different techniques such as UV visible spectroscopy, FTIR, conductance, DLS, and SEM. The presence of ACF affected the nonionic-ionic mixed micelles more than the nonionic-nonionic group as evidenced by UV spectroscopy. From the DLS measurement, it was observed that ACF enhanced the size of the single micelle of pluronic L64 from 98 to 168 nm. The size of the cationic mixed micelle with ACF displayed 329 nm and the anionic mixed one showed 291 nm suggesting enhanced entrapment efficiency of their mixed micelle compared to the single micelles. The size was also reconfirmed by SEM analysis. From the conductivity measurements of the two nonionic-ionic micellar systems, the counter ion binding constant β, and the thermodynamic parameters ΔG, ΔH, and ΔS were determined. The negative value of ΔG infers spontaneous binding between ACF and ionic mixed micelles.
Article highlights
Ionic mixed micelles are more effective than nonionic pair.
ACF has more spontaneous binding with anionic mixed micelle compared to cationic.
The drug entrapment efficiency is better in mixed micelles than in single micelles.
Collapse
|
7
|
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci 2022; 23:ijms23052856. [PMID: 35269998 PMCID: PMC8911433 DOI: 10.3390/ijms23052856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
|
8
|
Senthilkumar M, Dash S, Vigneshwari R, Paulraj E. Aceclofenac-loaded pluronic F108/L81 mixed polymeric micelles: effect of HLB on solubilization. Des Monomers Polym 2022; 25:1-11. [PMID: 35110968 PMCID: PMC8803101 DOI: 10.1080/15685551.2022.2028373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pluronic block copolymers have phase behavioural characteristics which are extensively studied for drug delivery applications. In this study, we explored hydrophilic pluronic F108 (HLB = 27), hydrophobic pluronic L81 (HLB = 2) and their mixed micelles acting as solubilising mediums for model drug aceclofenac. The drug solubilisation and interactions have been analysed using UV-visible spectroscopy, Fluorescence spectroscopy, Rheology studies, Fourier-transform infrared spectroscopy, Scanning electron microscope, Dynamic light scattering, Cloud point and partition coefficient measurements. The investigation from UV-spectrophotometry demonstrated that mixed pluronic entrapped greater number of aceclofenac molecules than both the neat pluronics at same concentration. Excimer formation was evidenced from fluorescence spectra with pyrene as a probe. The rheological studies showed difference in viscosity over low shear range. Studies on FTIR demonstrated probable bonding between the aceclofenac and mixed pluronic molecules. The DLS studies on mixed pluronic showed swelling of micellar diameter from 317.6 nm to 413.5 nm. Thermodynamic parameters of the above system revealed higher partition coefficient value for mixed pluronic and spontaneity in drug solubilisation. This study can be exploited to use a hydrophobic copolymeric micelle in mixed pluronic formulation for better drug solubilisation.
Collapse
Affiliation(s)
- M Senthilkumar
- Department of Chemistry, Annamalai University, Chidambaram, India
| | - Sasmita Dash
- Department of Chemistry, Annamalai University, Chidambaram, India
| | - R Vigneshwari
- Department of Chemistry, Annamalai University, Chidambaram, India
| | - E Paulraj
- Department of Chemistry, Annamalai University, Chidambaram, India
| |
Collapse
|
9
|
Kinetic analysis as an approach to studying specific features of lysozyme—pluronic complexes. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
11
|
Ezhilrani VC, Karunanithi P, Sarangi B, Joshi RG, Dash S. Hydrophilic-hydrophilic mixed micellar system: effect on solubilization of drug. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04250-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractMixed micellar systems have been tried with the aim of achieving higher solubility of drugs compared to single micellar systems. Hydrophobic-hydrophilic mixed micellar systems have been used for the above purpose for the drug ciprofloxacin in the past. In the present study, a hydrophilic-hydrophilic binary micellar system comprising of pluronic copolymers pluronic F127 and pluronic L64 has been studied for its effect on solubilization of the drug Ciprofloxacin. The solutions of the two individual pluronic and their mixed micellar system with drugs were subjected to characterizations viz. UV-spectrophotometry, fluorimetry, FT-IR, dynamic light scattering (DLS), rheology, and partition coefficient. The mixed pluronic–drug system displayed greater solubility of the drug compared with the neat pluronic-drug systems in most of the characterizations. New C–OH bond formation was evidenced by FT-IR spectra due to drug micelle interaction. The values of free energy changes of micellization were found to be −25 kJ mol−1 for pluronic F127, −74.5kJmol−1 for L-64, and −170.4 kJ mol−1 for the mixed pluronic. This is suggestive of spontaneous and stronger binding of drug ciprofloxacin with mixed pluronic in comparison with that in single micellar systems.
Graphic abstract
Collapse
|
12
|
Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. Int J Pharm 2021; 598:120316. [PMID: 33540001 DOI: 10.1016/j.ijpharm.2021.120316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Local drug delivery approaches for treating brain tumors not only diminish the toxicity of systemic chemotherapy, but also circumvent the blood-brain barrier (BBB) which restricts the passage of most chemotherapeutics to the brain. Recently, salinomycin has attracted much attention as a potential chemotherapeutic agent in a variety of cancers. In this study, poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO-PPO-PEO, Pluronic F127) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA), the two most common thermosensitive copolymers, were utilized as local delivery systems for salinomycin in the treatment of glioblastoma. The Pluronic and PLGA-PEG-PLGA hydrogels released 100% and 36% of the encapsulated salinomycin over a one-week period, respectively. While both hydrogels were found to be effective at inhibiting glioblastoma cell proliferation, inducing apoptosis and generating intracellular reactive oxygen species, the Pluronic formulation showed better biocompatibility, a superior drug release profile and an ability to further enhance the cytotoxicity of salinomycin, compared to the PLGA-PEG-PLGA hydrogel formulation. Animal studies in subcutaneous U251 xenograftednudemice also revealed that Pluronic + salinomycin hydrogel reduced tumor growth compared to free salinomycin- and PBS-treated mice by 4-fold and 6-fold, respectively within 12 days. Therefore, it is envisaged that salinomycin-loaded Pluronic can be utilized as an injectable thermosensitive hydrogel platform for local treatment of glioblastoma, providing a sustained release of salinomycin at the tumor site and potentially bypassing the BBB for drug delivery to the brain.
Collapse
|
13
|
Behera SK, Mohanty ME, Mohapatra M. A Fluorescence Study of the Interaction of Anticancer Drug Molecule Doxorubicin Hydrochloride in Pluronic P123 and F127 Micelles. J Fluoresc 2021; 31:17-27. [PMID: 33037527 DOI: 10.1007/s10895-020-02630-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Drug delivery systems for the sustained and target delivery of doxorubicin to tumor cells are a topic of interest due to the efficacy of the doxorubicin in cancer treatment. The use of polymers such as Pluronic is being studied widely for the formulation of doxorubicin hydrochloride. However, the basic understanding of the physicochemical properties of pluronic micelles in presence of doxorubicin hydrochloride is a very essential topic of study. Doxorubicin hydrochloride is fluorescent; this helped us to study its sensitivity towards the Pluronic microenvironment using the fluorescence technique. In this work, the interaction and place of location of doxorubicin hydrochloride in Pluronic F127 and P123 micelles has been studied extensively using steady-state fluorescence intensity, dynamic fluorescence lifetime, quenching studies, dynamic light scattering, and zeta potential measurements, at different Pluronic concentrations. Using a fluorescence quenching experiment, doxorubicin hydrochloride was found to reside near the hydrophilic PEO corona region of the Pluronic micelles. For both the Pluronic, in the concentration range of study, the micellar size was found to be below 30 nm; this may have a greater advantage for various applications.
Collapse
Affiliation(s)
- Sagar Kumar Behera
- Department of Chemistry, VSS University of Technology, Burla, Odisha, 768018, India
| | - Maneesha Esther Mohanty
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Monalisa Mohapatra
- Department of Chemistry, VSS University of Technology, Burla, Odisha, 768018, India.
- School of Chemistry, Gangadhar Meher University, Sambalpur, Odisha, 768004, India.
| |
Collapse
|
14
|
Thotakura N, Parashar P, Raza K. Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics. Expert Opin Drug Metab Toxicol 2020; 17:323-332. [PMID: 33292023 DOI: 10.1080/17425255.2021.1862085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Analogous to nanocarriers such as nanoparticles, liposomes, nano lipoidal carriers, niosomes, and ethosomes, polymeric micelles have gained significance in the field of drug delivery. They have attracted scientists worldwide by their nanometric size, wide range of polymers available for building block synthesis, stability and potential to enhance the targeting and safety of drugs. Incorporation of drugs within the interior of polymeric micelles alters the drug pharmacokinetics, which generally results in increased efficiency.Areas covered: This review deals with the pharmacokinetics of various anti-neoplastic drugs loaded into micelles. The structure of polymeric micelles, polymers employed in their development and techniques involved will be discussed. This is followed by discussion on the pharmacokinetics of anti-cancer drugs loaded into polymeric micelles and the toxicity concerns associated.Expert opinion: Polymeric micelles are nanometeric carriers, with higher stability, polymeric flexibility and higher drug loading of poorly water-soluble drugs. These nanosystems help in increasing the bioavailability of drugs by encapsulating them within the hydrophobic core. The proper selection and design of the amphiphilic polymer for micelles is a crucial step as it decides the toxicity and the biocompatibility.
Collapse
Affiliation(s)
- Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, U.P, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
15
|
Janas K, Boniewska-Bernacka E, Dyrda G, Słota R. Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorg Med Chem 2020; 30:115926. [PMID: 33341498 DOI: 10.1016/j.bmc.2020.115926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/27/2022]
Abstract
Colorectal cancer is of particular concern due to its high mortality rate count. Recent investigations on targeted phototherapy involving novel photosensitizers and drug-delivery systems have provided promising results and realistic prospects for a successful medical treatment. New research trends have been focused particularly on development of advanced molecular systems offering effective photoactive species which could be selectively delivered directly into the affected cells. Porphyrins and phthalocyanines have been considered extremely attractive for this purpose due to their molecular versatility, excellent photochemical properties and multifunctional nature. In this review it has been demonstrated that such macrocyclic compounds may effectively contribute to the inhibition of the growth of colon cancer cells and eventually to their photonecrosis. Purposely designed and tailored porphyrin and phthalocyanine derivatives in combination with smart drug-carriers have proved suitable for photodynamic therapy (PDT) and related antitumor treatments. This survey comprises a choice of potentially applicable ideas developed since 2010 involving 9 different tumor cell lines and featuring 32 photosensitizers.
Collapse
Affiliation(s)
- Katarzyna Janas
- Institute of Chemistry, University of Opole, ul. Oleska 48, 45-052 Opole, Poland.
| | - Ewa Boniewska-Bernacka
- Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland.
| | - Gabriela Dyrda
- Institute of Chemistry, University of Opole, ul. Oleska 48, 45-052 Opole, Poland.
| | - Rudolf Słota
- Institute of Chemistry, University of Opole, ul. Oleska 48, 45-052 Opole, Poland.
| |
Collapse
|
16
|
Klep O, Jones HW, Reukov V, Foulger SH. Control of Vancomycin Activity through the Encapsulation and Controlled Release from a Propargyl Acrylate-Poloxamer Nanocomposite System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14607-14613. [PMID: 33231460 DOI: 10.1021/acs.langmuir.0c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vancomycin is a potent antibacterial drug that suffers from poor bioavailability due to its poor water solubility and relatively high molecular weight. Consequently, the application of vancomycin to treat bacteria-induced disease is limited. In this study, the ability of a temperature-stimulated propargyl acrylate-poloxamer nanocomposite (PAPN) system to encapsulate and release vancomycin is investigated. A controllable encapsulation and release system can be used to not only increase and prolong the bioavailability of vancomycin but also activate vancomycin with a temperature change. The PAPN system was prepared using an emulsion polymerization of propargyl acrylate followed by a surface decoration with a poloxamer at a precisely controlled grafting density. The activity of the PAPN system loaded with vancomycin is compared to that of the free drug and unmodified propargyl acrylate nanoparticles. It is shown that the activity of the PAPN system loaded with vancomycin is comparable to that of a freshly prepared, free-floating vancomycin solution. Upon storage, the activity of the free vancomycin in solution decreases, while the PAPN system loaded with vancomycin retains its high activity. Additionally, the PAPN system is able to effectively encapsulate and deactivate vancomycin until heated above a lower critical solution temperature (LCST). At temperatures above the LCST, the PAPN system releases vancomycin restoring the activity of the drug.
Collapse
Affiliation(s)
- Oleksandr Klep
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
| | - Haley W Jones
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
| | - Vladimir Reukov
- Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Stephen H Foulger
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Anderson, South Carolina 29625, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
17
|
Yang Z, Zhang N, Ma T, Liu L, Zhao L, Xie H. Engineered bovine serum albumin-based nanoparticles with pH-sensitivity for doxorubicin delivery and controlled release. Drug Deliv 2020; 27:1156-1164. [PMID: 32755291 PMCID: PMC7470134 DOI: 10.1080/10717544.2020.1797243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
In this work, we prepared a stimuli-responsive system for drug delivery and controlled release by engineering the bovine serum albumin (BSA). The doxorubicin (DOX)-loaded BSA nanoparticles (NPs) were conveniently prepared using desolvation method, followed by crosslinking through Schiff base bonds, leading to pH-sensitive DOX-loaded system (DOXs@BSA NPs). The resulted DOXs@BSA NPs showed high drug loading capacity (21.4%), and the particle size was about 130 nm with narrow polydispersity and high negative surface charge (-20.5 mV). The pH-sensitivity of DOXs@BSA NPs was evidenced by the size changes and charge reversal after incubation at different pH values. The DOXs@BSA NPs showed high serum stability which indicated the prolonged circulation time. The in vitro drug release experiment showed that the release of DOX was obviously accelerated by acidity because of disassembly of NPs induced by cleavage of Schiff base bonds. The drug release mechanism was thoroughly studied using a semi-empirical model, further confirming the pH played an important role in drug controlled release process. The results of cytotoxicity assay revealed that DOXs@BSA NPs exhibited much higher toxic effects for tumor cells in comparison to the free DOX control. Collectively, these results demonstrated that DOXs@BSA NPs might be potential application for drug delivery and controlled release in cancer chemotherapy. Moreover, this work also showed that preparation of stimuli-responsive drug delivery system by engineering the commercial biomaterials could be a promising method to develop multi-functional nanomedicine.
Collapse
Affiliation(s)
- Zhihang Yang
- Department of Physiology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Na Zhang
- Department of Electrical Diagnosis, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lini Zhao
- Department of Pharmacology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Hui Xie
- Department of Histology and Embryology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| |
Collapse
|
18
|
Dotivo NC, Rezende RP, Pessoa TBA, Salay LC, Huachaca NSM, Romano CC, Marques EDLS, Costa MS, de Moura SR, Pirovani CP, Dias JCT. Immobilization of PR4A3 enzyme in pluronic F127 polymeric micelles against colorectal adenocarcinoma cells and increase of in vitro bioavailability. Int J Biol Macromol 2020; 166:1238-1245. [PMID: 33202272 DOI: 10.1016/j.ijbiomac.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Traditional therapy for malignant neoplasms involving surgical procedures, radiotherapy and chemotherapy aims to kill neoplastic cells, but also affects normal cells. Therefore, exogenous proteases are the target of studies in cancer therapy, as they have been shown to be effective in suppressing tumors and reducing metastases. Pluronic F127 (F127) is a copolymer of amphiphilic blocks that has shown significant potential for drug administration, as it is capable of incorporating hydrophobic drugs and self-assembling in micrometers of nanometric size. This study investigated the effects of immobilization of the alkaline protease PR4A3 with pluronic F127 micelles on the enzyme-induced cytotoxicity. Protease immobilization was demonstrated through UV-visible and circular dichroism (CD) spectroscopies, as the enzyme interacts with the polymeric micelle of Pluronic F127 without changing its secondary structure. In addition, the immobilized form of the enzyme showed greater bioavailability after passing through the simulated gastrointestinal transit. Cell viability was assessed using the tetrazoic methylthiazole (MTT) assay. The results open perspectives for new research and development for PR4A3 in the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
| | - Rachel Passos Rezende
- Departament of biological science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | - Luiz Carlos Salay
- Departament of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | - Carla Cristina Romano
- Departament of biological science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | - Moara Silva Costa
- Departament of biological science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | | | | | | |
Collapse
|
19
|
Dias VHC, Malacrida AM, Dos Santos AR, Batista AFP, Campanerut-Sá PAZ, Braga G, Bona E, Caetano W, Mikcha JMG. pH interferes in photoinhibitory activity of curcumin nanoencapsulated with pluronic® P123 against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 33:102085. [PMID: 33157329 DOI: 10.1016/j.pdpdt.2020.102085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Microbial contamination control is a public health concern and challenge for the food industry. Antimicrobial technologies employing natural agents may be useful in the food industry for these purposes. This work aimed to investigate the effect of photodynamic inactivation using curcumin in Pluronic® P123 nanoparticles (Cur/P123) at different pH and blue LED light against Staphylococcus aureus. Bacterial photoinactivation was conducted using different photosensitizer concentrations and exposure times at pH 5.0, 7.2 and 9.0. A mixture design was applied to evaluate the effects of exposure time (dark and light incubation) on the photoinhibitory effect. S. aureus was completely inactivated at pH 5.0 by combining low concentrations of Cur/P123 (7.80-30.25 μmol/L) and light doses (6.50-37.74 J/cm2). According to the mathematical model, dark incubation had low significance in bacterial inactivation at pH 5.0 and 9.0. No effect in bacterial inactivation was observed at pH 7.2. Cur/P123 with blue LED was effective in inactivating S. aureus. The antimicrobial effect of photodynamic inactivation was also pH-dependent.
Collapse
Affiliation(s)
| | - Amanda Milene Malacrida
- Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil.
| | | | | | | | - Gustavo Braga
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Evandro Bona
- Department of Food, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Jane Martha Graton Mikcha
- Department of Agrarian Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
20
|
|
21
|
Mike Motloung B, Babu B, Prinsloo E, Nyokong T. The photophysicochemical properties and photodynamic therapy activity of In and Zn phthalocyanines when incorporated into individual or mixed Pluronic® micelles. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Kamble S, Varamini P, Müllner M, Pelras T, Rohanizadeh R. Bisphosphonate-functionalized micelles for targeted delivery of curcumin to metastatic bone cancer. Pharm Dev Technol 2020; 25:1118-1126. [DOI: 10.1080/10837450.2020.1798458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sumedh Kamble
- School of Pharmacy, University of Sydney, Sydney, Australia
| | - Pegah Varamini
- School of Pharmacy, University of Sydney, Sydney, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, Australia
| | - Théophile Pelras
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, Australia
| | | |
Collapse
|
23
|
Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586:119544. [DOI: 10.1016/j.ijpharm.2020.119544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
|
24
|
Hypericin-mediated photoinactivation of polymeric nanoparticles against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101737. [DOI: 10.1016/j.pdpdt.2020.101737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
|
25
|
Jiang Y, Zhou Y, Zhang CY, Fang T. Co-Delivery of Paclitaxel and Doxorubicin by pH-Responsive Prodrug Micelles for Cancer Therapy. Int J Nanomedicine 2020; 15:3319-3331. [PMID: 32494132 PMCID: PMC7227817 DOI: 10.2147/ijn.s249144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background It is of great significance to develop intelligent co-delivery systems for cancer chemotherapy with improved therapeutic efficacy and few side-effects. Materials and Methods Here, we reported a co-delivery system based on pH-sensitive polyprodrug micelles for simultaneous delivery of doxorubicin (DOX) and paclitaxel (PTX) as a combination chemotherapy with pH-triggered drug release profiles. The physicochemical properties, drug release profiles and mechanism, and cytotoxicity of PTX/DOX-PMs have been thoroughly investigated. Results and Discussion The pH-sensitive polyprodrug was used as nanocarrier, and PTX was encapsulated into the micelles with high drug-loading content (25.6%). The critical micelle concentration (CMC) was about 3.16 mg/L, indicating the system could form the micelles at low concentration. The particle size of PTX/DOX-PMs was 110.5 nm, and increased to approximately 140 nm after incubation for 5 days which showed that the PTX/DOX-PMs had high serum stability. With decrease in pH value, the particle size first increased, and thenwas no longer detectable. Similar change trend was observed for CMC values. The zetapotential increased sharply with decrease in pH. These results demonstrated the pHsensitivity of PTX/DOX-PMs. In vitro drug release experiments and study on release mechanism showed that the drug release rate and accumulative release for PTX and DOX were dependent on the pH, showing the pH-triggered drug release profiles. Cytotoxicity assay displayed that the block copolymer showed negligible cytotoxicity, while the PTX/DOX-PMs possessed high cytotoxic effect against several tumor cell lines compared with free drugs and control. Conclusion All the results demonstrated that the co-delivery system based on pH-sensitive polyprodrug could be a potent nanomedicine for combination cancer chemotherapy. In addition, construction based on polyprodrug and chemical drug could be a useful method to prepare multifunctional nanomedicine.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yongjian Zhou
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Can Yang Zhang
- Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Te Fang
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
26
|
Cacaccio J, Durrani F, Cheruku RR, Borah B, Ethirajan M, Tabaczynski W, Pera P, Missert JR, Pandey RK. Pluronic F-127: An Efficient Delivery Vehicle for 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH or Photochlor). Photochem Photobiol 2020; 96:625-635. [PMID: 31738460 PMCID: PMC9832393 DOI: 10.1111/php.13183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023]
Abstract
To determine the impact of delivery vehicles in photosensitizing efficacy of HPPH, a hydrophobic photosensitizer was dissolved in various formulations: 1% Tween 80/5% dextrose, Pluronic P-123 and Pluronic F-127 in 0.5%, 1% and 2% phosphate buffer solutions (PBS). HPPH was also conjugated to Pluronic F-127, and the resulting conjugate (PL-20) was formulated in PBS. Among the different delivery vehicles, only Pluronic P-123 displayed significant vehicle cytotoxicity, whereas Pluronic F127 was nontoxic. Compared to PL-20, HPPH formulated in Tween80 and Pluronic F-127 showed higher cell-uptake, but lower long-term retention in Colon26 cell compared to PL-20. The higher retention of PL-20 was similarly observed during in vivo uptake with BALB/c mice baring Ct26 tumors. In contrast to the in vitro uptake experiments, PL-20 showed slightly higher uptake compared to HPPH formulated in Tween or Pluronic-F127. A significant difference in pharmacokinetic profile was also observed between the HPPH-Pluronic formulation and PL-20. Under similar in vivo treatment parameters (drug dose 0.47 µmol kg-1 , light dose: 135 J cm-2 at 24 h post-injection of PS), HPPH formulated either in Tween or Pluronic F-127 formulation showed similar in vivo PDT efficacy (20-30% tumor cure on day 60), whereas PL-20 showed 40% tumor cure (day 60).
Collapse
Affiliation(s)
- Joseph Cacaccio
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Farukh Durrani
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Ravindra R. Cheruku
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Ballav Borah
- Photolitec, LLC, 73 High Street, Buffalo, NY 14224
| | - Manivannan Ethirajan
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paula Pera
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Joseph R. Missert
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
- Corresponding author’s (Ravindra Pandey)
| |
Collapse
|
27
|
Zhang W, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Influence of the Headgroup on the Interaction of Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers with Lipid Bilayers. J Phys Chem B 2020; 124:2417-2424. [PMID: 32175743 DOI: 10.1021/acs.jpcb.0c00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lipid headgroup plays an important role in the association of polymers with lipid bilayer membranes. Herein, we report how a glycerol headgroup versus a choline headgroup affects the interaction of poly(ethylene oxide)-b-poly(propylene oxide) (PEO-PPO) block copolymers with lipid bilayer vesicles. Unilamellar vesicles composed of phosphatidylcholine and phosphatidylglycerol at various molar ratios were used as model membranes. The interactions between the block copolymers and lipid bilayers were quantified by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) based on the distinctly different mobilities of free and bound polymers. All the investigated polymer species showed significantly higher binding with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (POPG) liposomes than with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, indicating stronger association with the glycerol headgroup compared to the choline headgroup. This effect did not become significant until the composition of mixed POPC/POPG liposomes contained more than 20 mol % POPG. A plausible explanation for the enhanced polymer binding with POPG invokes the role of hydrogen bonding between the glycerol headgroup and the ether moieties of the polymers.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102124. [DOI: 10.1016/j.nano.2019.102124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
|
29
|
Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J Control Release 2020; 317:347-374. [PMID: 31751636 DOI: 10.1016/j.jconrel.2019.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide and, as such, efforts are being done to find new chemotherapeutic drugs or, alternatively, novel approaches for the delivery of old ones. In this scope, when used as vehicles for drugs, nanomaterials may potentially maximize the efficacy of the treatment and reduce its side effects, for example by a change in drug's pharmacokinetics, cell targeting and/or specific stimuli-responsiveness. This is the case of doxorubicin (DOX) that presents a broad spectrum of activity and is one of the most widely used chemotherapeutic drugs as first-line treatment. Indeed, DOX is a very interesting example of a drug for which several nanosized delivery systems have been developed over the years. While it is true that some of these systems are already in the market, it is also true that research on this subject remains very active and that there is a continuing search for new solutions. In this sense, this review takes the example of doxorubicin, not so much with the focus on the drug itself, but rather as a case study around which very diverse and imaginative nanotechnology approaches have emerged.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Serge Mignani
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
30
|
Mike Motloung B, Edward Sekhosana K, Managa M, Prinsloo E, Nyokong T. The photophysicochemical properties and photodynamic therapy activity of phenyldiazenyl phenoxy substituted phthalocyanines when incorporated into Pluronic® F127 micelles. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Lu B, Xiao Z, Wang Z, Wang B, Zhao W, Ma X, Zhang J. Redox-Sensitive Polymer Micelles Based on CD44 and Folic Acid Receptor for Intracellular Drug Delivery and Drug Controlled Release in Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4222-4232. [DOI: 10.1021/acsabm.9b00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Beibei Lu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhourui Xiao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhenyuan Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Adv 2019; 9:24699-24721. [PMID: 35528643 PMCID: PMC9069890 DOI: 10.1039/c9ra04358f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] Open
Abstract
Polymer therapeutics encompasses polymer-drug conjugates that are nano-sized, multicomponent constructs already in the clinic as antitumor compounds, either as single agents or in combination with other organic drug scaffolds. Nanoparticle-based polymer-conjugated therapeutics are poised to become a leading delivery strategy for cancer treatments as they exhibit prolonged half-life, higher stability and selectivity, water solubility, longer clearance time, lower immunogenicity and antigenicity and often also specific targeting to tissues or cells. Compared to free drugs, polymer-tethered drugs preferentially accumulate in the tumor sites unlike conventional chemotherapy which does not discriminate between the cancer cells and healthy cells, thereby causing severe side-effects. It is also desirable that the drug reaches its site of action at a particular concentration and the therapeutic dose remains constant over a sufficiently long period of time. This can be achieved by opting for new formulations possessing polymeric systems of drug carriers. However, many challenges still remain unanswered in polymeric drug conjugates which need to be readdressed and therefore, can broaden the scope of this field. This review highlights some of the antitumor polymer therapeutics including polymer-drug conjugates, polymeric micelles, polymeric liposomes and other polymeric nanoparticles that are currently under investigation.
Collapse
Affiliation(s)
- Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University Yanbu Branch 46423 Yanbu Saudi Arabia +966 504522069
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| |
Collapse
|
33
|
Hu H, Petrosyan A, Osna NA, Liu T, Olou AA, Alakhova DY, Singh PK, Kabanov AV, Faber EA, Bronich TK. Pluronic block copolymers enhance the anti-myeloma activity of proteasome inhibitors. J Control Release 2019; 306:149-164. [PMID: 31121280 PMCID: PMC6822276 DOI: 10.1016/j.jconrel.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Proteasome inhibitors (PIs) have markedly improved response rates as well as the survival of multiple myeloma (MM) patients over the past decade and have become an important foundation in the treatment of MM patients. Unfortunately, the majority of patients either relapses or becomes refractory to proteasome inhibition. This report describes that both PI sensitive and resistant MM cells display enhanced sensitivity to PI in the presence of synthetic amphiphilic block copolymers, Pluronics (SP1017). SP1017 effectively overcomes both acquired resistance and tumor microenvironment-mediated resistance to PIs. The combination of bortezomib and SP1017 augments accumulation of ubiquitinated proteins, increases markers of proteotoxic and ER stress, and ultimately induces both the intrinsic and extrinsic drug-induced apoptotic pathways in MM cells. Notably, co-treatment of bortezomib and SP1017 intensifies SP1017-induced disorganization of the Golgi complex and significantly reduces secretion of paraproteins. Using a human MM/SCID mice model, the combination of bortezomib and SP1017 exerted enhanced antitumor efficacy as compared to bortezomib alone, delaying disease progression, but without additional toxicity. Collectively, these findings provide proof of concept for the utility of combining PI with SP1017 and present a new approach to enhance the efficacy of current treatment options for MM patients.
Collapse
Affiliation(s)
- Hangting Hu
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Natalia A Osna
- Liver Study Unit, VA Medical Center, Research Service (151), 4101 Woolworth Avenue, Omaha, NE 68105, United States of America
| | - Tong Liu
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Appolinaire A Olou
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Daria Y Alakhova
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina 27599, United States of America
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Alexander V Kabanov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina 27599, United States of America; Carolina Institute for Nanomedicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, United States of America
| | - Edward A Faber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
34
|
Zhang W, Coughlin ML, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Influence of Cholesterol and Bilayer Curvature on the Interaction of PPO-PEO Block Copolymers with Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7231-7241. [PMID: 31117745 PMCID: PMC7050598 DOI: 10.1021/acs.langmuir.9b00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Interactions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm. The fraction of polymer bound to the liposomes was extracted from NMR data on the basis of the very different mobilities of the bound and free polymers in aqueous solution. Cholesterol concentration was manipulated by varying the molar percentage of this sterol in the POPC bilayer preparation. The membrane curvature was varied by adjusting the liposome size through a conventional pore extrusion technique. Although the PPO content significantly influences the overall amount of block copolymer adsorbed to the liposome, we found that polymer binding decreases with increasing cholesterol concentration in a universal fashion, with the fraction of bound polymer dropping 10-fold between 0 and 30 mol % cholesterol relative to the total content of POPC and cholesterol. Increasing the bilayer curvature (decreasing the radius of the liposome) in the absence of cholesterol increases polymer binding between 2- and 4-fold over the range of liposome sizes studied. These results demonstrate that cholesterol plays a dominant role, and bilayer curvature has a less significant impact as the curvature decreases, on polymer-membrane association.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - McKenzie L. Coughlin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Senthilkumar M, Dash S. Interaction of methylparaben and propylparaben with P123/F127 mixed polymeric micelles. Colloids Surf B Biointerfaces 2019; 176:140-149. [DOI: 10.1016/j.colsurfb.2018.12.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
|
36
|
Transforming an inert nanopolymer into broad-spectrum bactericidal by superstructure tuning. Colloids Surf B Biointerfaces 2019; 178:214-221. [PMID: 30870788 DOI: 10.1016/j.colsurfb.2019.02.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/19/2023]
Abstract
Poloxamer block copolymers (also known as Pluronic®) are particularly useful for drug delivery and self-assembly techniques. These nanopolymers are generally considered to be biologically inert and they were used to generate only bacteria repellent surfaces but keeps bacteria alive and as a latent threat. However, the inherent capabilities of these nanopolymers to kill bacteria have been largely overlooked. Here, we report that Pluronic shaped as superstructures (self-organized array of micelles) in fact possess a broad-spectrum bactericidal activity (capability of killing bacteria) similar to that shown for some antibiotics. This further represents the first report that shows that appropriate control of superstructured mesophase architecture is a key parameter for bactericidal efficacy. Based on this finding, we have developed a highly bactericidal coating (>99.9% kill) against all tested Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhimurium LT2, Escherichia coli K12 and Pseudomonas aeruginosa PAO1) bacteria which moreover allows the adhesion and proliferation of mammalian cells. The inexpensiveness and ease of production make these versatile nanopolymer structures a powerful tool for the development of a new generation of highly effective antimicrobial coatings.
Collapse
|
37
|
Jabri T, Imran M, Aziz A, Rao K, Kawish M, Irfan M, Malik MI, Simjee SU, Arfan M, Shah MR. Design and synthesis of mixed micellar system for enhanced anticancer efficacy of Paclitaxel through its co-delivery with Naringin. Drug Dev Ind Pharm 2019; 45:703-714. [PMID: 30557053 DOI: 10.1080/03639045.2018.1550091] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emergence of multidrug resistance (MDR) has limited the success of chemotherapeutic agents. Reversal of drugs efflux systems through combination therapy has got wider attention for increasing anticancer drugs efficacy. This study aims at co-encapsulation of Paclitaxel with Naringin in mixed polymeric micelles for enhanced anticancer activity of the drug. Drug-loaded micelles were prepared using two different amphiphilic block co-polymers and were characterized for morphology, size, zeta potential, drug encapsulation, in vitro release and stability using atomic force microscope (AFM), zetasizer, UV spectrophotometer, and FT-IR. MTT assay and fluorescence microscopy were used for in vitro cytotoxicity and cellular uptake studies. Nano-size micelles with spherical morphology and negative charge encapsulated 76.52 ± 0.94% and 32.87 0.61% Paclitaxel and Naringin, respectively. The micelles were thermally stable and retained 87.05 ± 0.69% and 92.88 ± 2.17% Paclitaxel and Naringin upon one-month storage. Maximum drug release was achieved at fourth hour of the study for both the loaded drugs. Paclitaxel co-encapsulation with Naringin synergistically improved its intracellular uptake and 65% in vitro cytotoxicity against breast cancer cells was achieved at its lower dose of 15 µg/mL. Results suggest that co-encapsulation of Paclitaxel with Naringin in mixed micelles is an effective strategy for achieving its higher anticancer activity.
Collapse
Affiliation(s)
- Tooba Jabri
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Muhammad Imran
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Aisha Aziz
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Komal Rao
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Muhammad Kawish
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Muhammad Irfan
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Muhammad Imran Malik
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Shabana Usman Simjee
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Muhammad Arfan
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| | - Muhammad Raza Shah
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University , Karachi , Pakistan
| |
Collapse
|
38
|
Khaliq NU, Park DY, Yun BM, Yang DH, Jung YW, Seo JH, Hwang CS, Yuk SH. Pluronics: Intelligent building units for targeted cancer therapy and molecular imaging. Int J Pharm 2019; 556:30-44. [DOI: 10.1016/j.ijpharm.2018.11.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022]
|
39
|
Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. NANOCARRIERS FOR DRUG DELIVERY 2019:557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Lu B, Li Y, Wang Z, Wang B, Pan X, Zhao W, Ma X, Zhang J. A dual responsive hyaluronic acid graft poly(ionic liquid) block copolymer micelle for an efficient CD44-targeted antitumor drug delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj02608h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Illustration of the formation and elevated antitumor mechanism of the HA-g-mPEG-polymers nanocarriers.
Collapse
Affiliation(s)
- Beibei Lu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Yuanbin Li
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Zhenyuan Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Xi Pan
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| |
Collapse
|
41
|
Kahraman E, Neşetoğlu N, Güngör S, Ünal DŞ, Özsoy Y. The combination of nanomicelles with terpenes for enhancement of skin drug delivery. Int J Pharm 2018; 551:133-140. [DOI: 10.1016/j.ijpharm.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022]
|
42
|
Managa M, Britton J, Prinsloo E, Nyokong T. Effects of Pluronic F127 micelles as delivering agents on the vitro dark toxicity and photodynamic therapy activity of carboxy and pyrene substituted porphyrins. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
A pH-responsive prodrug delivery system self-assembled from acid-labile doxorubicin-conjugated amphiphilic pH-sensitive block copolymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:27-37. [DOI: 10.1016/j.msec.2018.04.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/30/2018] [Accepted: 04/15/2018] [Indexed: 12/20/2022]
|
44
|
Li X, Huang Y, Huang Z, Ma X, Dong N, Chen W, Pan X, Wu C. Enhancing Stability of Exenatide-Containing Pressurized Metered-Dose Inhaler Via Reverse Microemulsion System. AAPS PharmSciTech 2018; 19:2499-2508. [PMID: 29948981 DOI: 10.1208/s12249-018-1026-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
The dispersibility and stability issues of peptide drugs during preparation and storage hinder the widespread adoption of pressurized metered-dose inhaler (pMDI). This study aimed to develop a reverse microemulsion (RM) of exenatide (EXE) pMDI through a liquid-based bottom-up method, thus to overcome the stability issue of peptide drugs encountered in traditional top-down methods, such as milling down and high-pressure homogenization. In this study, Pluronic® L64 (L64) was chosen as a surfactant to prepare the EXE-RM pMDI formulations with the assistance of ethanol. The results showed RM possessed a particle size of 123.80 ± 2.91 nm with 0.121 ± 0.024 PdI and a satisfied fine-particle fraction of 41.30 ± 3.73% measured by a next-generation impactor. In addition, the dispersion stability of RM pMDI was maintained after storage at 4 °C for 50 days. The secondary structure of EXE was maintained during the preparation process. Moreover, the results indicated that L64 was compatible with cells and could improve the penetration of EXE through cell monolayers. Through the liquid-based bottom-up method, EXE-RM pMDI was successfully prepared and exhibited favorable stability and aerodynamic performance. This study offers a preparation strategy to enhance the stability of peptides in pMDIs.
Collapse
Affiliation(s)
- Xing Li
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Ying Huang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Xiangyu Ma
- College of Pharmacy, University of Texas at Austin, 2409 West University Avenue, PHR 1.108, Austin, Texas, 78712, USA
| | - Ni Dong
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Wanxin Chen
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Xin Pan
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Klep O, Bandera Y, Foulger SH. Temperature responsive nanoparticles: poloxamers as a modulator of Förster resonance energy transfer (FRET). NANOSCALE 2018; 10:9401-9409. [PMID: 29741544 DOI: 10.1039/c8nr01278d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An effective strategy to control the Förster resonance energy transfer (FRET) of a donor/acceptor emitter pair that were attached to a 60 nm poly(propargyl acrylate)(PA) nanoparticle using temperature variations was developed. The size dependent properties of a poly-(ethylene oxide)-poly-(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymer (poloxamer) was exploited to vary the spatial separation of the emitters and vary the FRET efficiency. Specifically, a 2% change in FRET efficiency between the donor/acceptor pair was achieved per 1 °C change in temperature from 49 °C to 60 °C when using a poloxamer of 2950 g mol-1 molecular weight, with sections of PPO consisting of 32 repeat units, PEO sections consisting of 12 repeat units and a lower critical solution temperature (LCST) of 58 °C. The methodology presented in this effort is easily extended to other temperature regimes through a judicious choice in poloxamer and corresponding LCST.
Collapse
Affiliation(s)
- Oleksandr Klep
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, USA
| | | | | |
Collapse
|
46
|
Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother 2018; 100:335-348. [PMID: 29453043 DOI: 10.1016/j.biopha.2018.02.038] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/27/2023] Open
Abstract
Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.
Collapse
|
47
|
Sun Y, Kang C, Liu F, Zhou Y, Luo L, Qiao H. RGD Peptide-Based Target Drug Delivery of Doxorubicin Nanomedicine. Drug Dev Res 2017; 78:283-291. [PMID: 28815721 DOI: 10.1002/ddr.21399] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preclinical Research Doxorubicin (DOX) is commonly used for the treatment of breast cancer and lymphoma. However, its clinical use has been severely limited due to cardiotoxicity, requiring the development of safer and more efficient pharmaceutical formulations of DOX. Advances in nanotechnology have provided new ways to administer chemotherapeutic drugs like DOX are conveyed into the body and to tumor sites. These Nanotechnology approaches have aided in the selective accumulation of DOX into tumor sites via the enhanced permeability and retention. However, the absence of active targeting ligands still hinders the effective delivery of DOX. Among all active targeting ligands developed to date, RGD peptide (Arginylglycylaspartic acid) occupies a unique position owing to its inherent safety, biocompatibility, and targeting ability. Accordingly, modification of DOX with RGD ligand is anticipated to improve transport of DOX into tumor cells. In this review, we discuss using RGD peptide for improving the therapeutic efficacy of DOX nanomedicine. Drug Dev Res 78 : 283-291, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, California, 95758
| | - Chen Kang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242
| | - Fei Liu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - You Zhou
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Hongzhi Qiao
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
48
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
49
|
Nittayacharn P, Nasongkla N. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:101. [PMID: 28534285 DOI: 10.1007/s10856-017-5905-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand.
| |
Collapse
|
50
|
Lucas AT, Herity LB, Kornblum ZA, Madden AJ, Gabizon A, Kabanov AV, Ajamie RT, Bender DM, Kulanthaivel P, Sanchez-Felix MV, Havel HA, Zamboni WC. Pharmacokinetic and screening studies of the interaction between mononuclear phagocyte system and nanoparticle formulations and colloid forming drugs. Int J Pharm 2017; 526:443-454. [DOI: 10.1016/j.ijpharm.2017.04.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 02/08/2023]
|