1
|
Jauro S, C. Ndumnego O, Ellis C, Buys A, Beyer W, van Heerden H. Immunogenicity of Non-Living Anthrax Vaccine Candidates in Cattle and Protective Efficacy of Immune Sera in A/J Mouse Model Compared to the Sterne Live Spore Vaccine. Pathogens 2020; 9:pathogens9070557. [PMID: 32664259 PMCID: PMC7400155 DOI: 10.3390/pathogens9070557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
The Sterne live spore vaccine (SLSV, Bacillus anthracis strain 34F2) is the veterinary vaccine of choice against anthrax though contra-indicated for use with antimicrobials. However, the use of non-living anthrax vaccine (NLAV) candidates can overcome the SLSV limitation. In this study, cattle were vaccinated with either of the NLAV (purified recombinant PA (PrPA) or crude rPA (CrPA) and formaldehyde-inactivated spores (FIS of B. anthracis strain 34F2) and emulsigen-D®/alhydrogel® adjuvants) or SLSV. The immunogenicity of the NLAV and SLSV was assessed and the protective efficacies evaluated using a passive immunization mouse model. Polyclonal IgG (including the IgG1 subset) and IgM responses increased significantly across all vaccination groups after the first vaccination. Individual IgG subsets titres peaked significantly with all vaccines used after the second vaccination at week 5 and remained significant at week 12 when compared to week 0. The toxin neutralization (TNA) titres of the NLAV vaccinated cattle groups showed similar trends to those observed with the ELISA titres, except that the former were lower, but still significant, when compared to week 0. The opsonophagocytic assay indicated good antibody opsonizing responses with 75% (PrPA+FIS), 66% (CrPA+FIS) and 80% (SLSV) phagocytosis following spores opsonization. In the passive protection test, A/J mice transfused with purified IgG from cattle vaccinated with PrPA+FIS+Emulsigen-D®/Alhydrogel® and SLSV had 73% and 75% protection from challenge with B. anthracis strain 34F2 spores, respectively, whereas IgG from cattle vaccinated with CrPA+FIS+Emulsigen-D®/Alhydrogel® offered insignificant protection of 20%. There was no difference in protective immune response in cattle vaccinated twice with either the PrPA+FIS or SLSV. Moreover, PrPA+FIS did not show any residual side effects in vaccinated cattle. These results suggest that the immunogenicity and protective efficacy induced by the NLAV (PrPA+FIS) in the cattle and passive mouse protection test, respectively, are comparable to that induced by the standard SLSV.
Collapse
Affiliation(s)
- Solomon Jauro
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa;
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600230, Nigeria
- Correspondence:
| | | | - Charlotte Ellis
- Design Biologix, Building 43b CSIR, Meiring Naude Road, Brummeria 0184, South Africa; (C.E.); (A.B.)
| | - Angela Buys
- Design Biologix, Building 43b CSIR, Meiring Naude Road, Brummeria 0184, South Africa; (C.E.); (A.B.)
| | - Wolfgang Beyer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany;
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa;
| |
Collapse
|
2
|
Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 2019; 127:12-28. [PMID: 30828919 DOI: 10.1111/jam.14243] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.
Collapse
Affiliation(s)
- P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - R Marchant
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - V Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - I M Banat
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| |
Collapse
|
3
|
Ndumnego OC, Koehler SM, Crafford JE, Beyer W, van Heerden H. Immunogenicity of anthrax recombinant peptides and killed spores in goats and protective efficacy of immune sera in A/J mouse model. Sci Rep 2018; 8:16937. [PMID: 30446695 PMCID: PMC6240085 DOI: 10.1038/s41598-018-35382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022] Open
Abstract
Anthrax is primarily recognized as an affliction of herbivores with incubation period ranging from three to five days post-infection. Currently, the Sterne live-spore vaccine is the only vaccine approved for control of the disease in susceptible animals. While largely effective, the Sterne vaccine has several problems including adverse reactions in sensitive species, ineffectiveness in active outbreaks and incompatibility with antibiotics. These can be surmounted with the advent of recombinant peptides (non-living) next generation vaccines. The candidate vaccine antigens comprised of recombinant protective antigen (PA), spore-specific antigen (bacillus collagen-like protein of anthracis, BclA) and formaldehyde inactivated spores (FIS). Presently, little information exists on the protectivity of these novel vaccine candidates in susceptible ruminants. Thus, this study sought to assess the immunogenicity of these vaccine candidates in goats and evaluate their protectivity using an in vivo mouse model. Goats receiving a combination of PA, BclA and FIS yielded the highest antibody and toxin neutralizing titres compared to recombinant peptides alone. This was also reflected in the passive immunization experiment whereby mice receiving immune sera from goats vaccinated with the antigen combination had higher survival post-challenge. In conclusion, the current data indicate promising potential for further development of non-living anthrax vaccines in ruminants.
Collapse
Affiliation(s)
- Okechukwu C Ndumnego
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa. .,Africa Health Research Institute, Durban, South Africa.
| | - Susanne M Koehler
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, Stuttgart, Germany.,Robert Koch Institute, Berlin, Germany
| | - Jannie E Crafford
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Wolfgang Beyer
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa.
| |
Collapse
|
4
|
Koehler SM, Buyuk F, Celebi O, Demiraslan H, Doganay M, Sahin M, Moehring J, Ndumnego OC, Otlu S, van Heerden H, Beyer W. Protection of farm goats by combinations of recombinant peptides and formalin inactivated spores from a lethal Bacillus anthracis challenge under field conditions. BMC Vet Res 2017; 13:220. [PMID: 28701192 PMCID: PMC5508662 DOI: 10.1186/s12917-017-1140-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/04/2017] [Indexed: 11/30/2022] Open
Abstract
Background Bacillus (B.) anthracis, the causal agent of anthrax, is effectively controlled by the Sterne live spore vaccine (34F2) in animals. However, live spore vaccines are not suitable for simultaneous vaccination and antibiotic treatment of animals being at risk of infection in an outbreak situation. Non-living vaccines could close this gap. Results In this study a combination of recombinant protective antigen and recombinant Bacillus collagen-like antigen (rBclA) with or without formalin inactivated spores (FIS), targeted at raising an immune response against both the toxins and the spore of B. anthracis, was tested for immunogenicity and protectiveness in goats. Two groups of goats received from local farmers of the Kars region of Turkey were immunized thrice in three weeks intervals and challenged together with non-vaccinated controls with virulent B. anthracis, four weeks after last immunization. In spite of low or none measurable toxin neutralizing antibodies and a surprisingly low immune response to the rBclA, 80% of the goats receiving the complete vaccine were protected against a lethal challenge. Moreover, the course of antibody responses indicates that a two-step vaccination schedule could be sufficient for protection. Conclusion The combination of recombinant protein antigens and FIS induces a protective immune response in goats. The non-living nature of this vaccine would allow for a concomitant antibiotic treatment and vaccination procedure. Further studies should clarify how this vaccine candidate performs in a post infection scenario controlled by antibiotics. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1140-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne M Koehler
- Department of Infectiology and Animal Hygiene, University of Hohenheim, Institute of Animal Science, 70593, Stuttgart, Germany.,Robert-Koch-Institut, 13353, Berlin, Germany
| | - Fatih Buyuk
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Ozgur Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Hayati Demiraslan
- Faculty of Medicine, Department of Infectious Diseases, Erciyes University, 38039, Kayseri, Turkey
| | - Mehmet Doganay
- Faculty of Medicine, Department of Infectious Diseases, Erciyes University, 38039, Kayseri, Turkey
| | - Mitat Sahin
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Jens Moehring
- Institute for Crop Science, University of Hohenheim, Biostatistical Unit, 70593, Stuttgart, Germany
| | - Okechukwu C Ndumnego
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa.,Africa Health Research Institute, Durban, 4013, South Africa
| | - Salih Otlu
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Wolfgang Beyer
- Department of Infectiology and Animal Hygiene, University of Hohenheim, Institute of Animal Science, 70593, Stuttgart, Germany.
| |
Collapse
|
5
|
Said Hassane F, Phalipon A, Tanguy M, Guerreiro C, Bélot F, Frisch B, Mulard LA, Schuber F. Rational design and immunogenicity of liposome-based diepitope constructs: application to synthetic oligosaccharides mimicking the Shigella flexneri 2a O-antigen. Vaccine 2009; 27:5419-26. [PMID: 19559116 DOI: 10.1016/j.vaccine.2009.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/03/2009] [Accepted: 06/08/2009] [Indexed: 12/28/2022]
Abstract
We have designed chemically defined diepitope constructs consisting of liposomes displaying at their surface synthetic oligosaccharides mimicking the O-antigen of the Shigella flexneri 2a lipopolysaccharide (B-cell epitope) and influenza hemagglutinin peptide HA 307-319 (Th epitope). Using well controlled and high-yielding covalent bioconjugation reactions, the two structurally independent epitopes were coupled to the lipopeptide Pam(3)CAG, i.e. a TLR2 ligand known for its adjuvant properties, anchored in preformed vesicles. The synthetic construct containing a pentadecasaccharide corresponding to three O-antigen repeating units triggered T-dependent anti-oligosaccharide and anti-S. flexneri 2a LPS antibody responses when administered i.m. to BALB/c mice. Moreover, the long-lasting anti-LPS antibody response afforded protection against a S. flexneri 2a challenge. These results show that liposome diepitope constructs could be attractive alternatives in the development of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
- Fatouma Said Hassane
- Université de Strasbourg, CNRS - UMR 7199, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Karakousis PC, Bishai WR, Dorman SE. Mycobacterium tuberculosiscell envelope lipids and the host immune response. Cell Microbiol 2004; 6:105-16. [PMID: 14706097 DOI: 10.1046/j.1462-5822.2003.00351.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Petros C Karakousis
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1503 E. Jefferson St., Room 105, Baltimore, MD 21231, USA
| | | | | |
Collapse
|