1
|
Kumari K, Dey J, Mahapatra SR, Ma Y, Sharma PK, Misra N, Singh RP. Protein profiling and immunoinformatic analysis of the secretome of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8. Folia Microbiol (Praha) 2024; 69:1095-1122. [PMID: 38457114 DOI: 10.1007/s12223-024-01152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, 835215, India
| | - Jyotirmayee Dey
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Namrata Misra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
2
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
3
|
Salie MT, Rampersadh K, Muhamed B, Engel KC, Zühlke LJ, Dale JB, Engel ME. Utility of Human Immune Responses to GAS Antigens as a Diagnostic Indicator for ARF: A Systematic Review. Front Cardiovasc Med 2021; 8:691646. [PMID: 34355030 PMCID: PMC8329041 DOI: 10.3389/fcvm.2021.691646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have established that streptococcal antibody titer is correlated with a diagnosis of acute rheumatic fever (ARF). However, results vary in the usefulness of GAS antibodies, particularly anti-streptolysin-O (ASO) and anti-DNase B, in confirming a recent GAS infection. Therefore, we sought to provide, from published studies, an evidence-based synthesis of the correlation of streptococcal serology to establish the usefulness of immunological data in aiding the diagnosis of ARF. These findings are anticipated to have implications where echocardiography is not freely available, especially where ARF is rampant. Methods: We conducted a comprehensive search across a number of databases. Applying a priori criteria, we selected articles reporting on studies, regardless of study design, that evaluate the levels of antibodies against GAS-specific antigens in ARF subjects against control values or a published standard. Data were extracted onto data extraction forms, captured electronically, and analyzed using Stata software. Risk of bias was assessed in included studies using the Newcastle-Ottawa Scale (NOS). Results and Conclusion: The search strategy yielded 534 studies, from which 24 met the inclusion criteria, reporting on evaluation of titers for SLO (n = 10), DNase B (n = 9), anti-streptokinase (ASK) (n = 3) amongst others. Elevation in titers was determined by comparison with controls and upper limit of normal (ULN) antibody values as determined in healthy individuals. Meta-analysis of case-controlled studies revealed moderate odds ratio (OR) correlations between ARF diagnosis and elevated titers for SLO (OR = 10.57; 95% CI, 3.36-33.29; 10 studies) and DNAse B (OR = 6.97; 95% CI, 2.99-16.27; 7 studies). While providing support for incorporating SLO and DNase B in the diagnosis of ARF, we present the following reflections: an elevation in SLO and DNase B levels are not consistently associated with an ARF diagnosis; increasing the number of GAS proteins in the test is warranted to improve sensitivity; paired (acute and convalescent) samples could provide a more accurate indication of a rising titer. Use of community-based controls as a standard is not a reliable marker by which to gauge recent GAS infection.
Collapse
Affiliation(s)
- M Taariq Salie
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kimona Rampersadh
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Babu Muhamed
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Children's National Health System, Washington, DC, United States
| | - Kélin C Engel
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liesl J Zühlke
- Children's Heart Disease Research Unit, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - James B Dale
- Division of Infectious Diseases, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Mark E Engel
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Ni H, Fan W, Li C, Wu Q, Hou H, Hu D, Zheng F, Zhu X, Wang C, Cao X, Shao ZQ, Pan X. Streptococcus suis DivIVA Protein Is a Substrate of Ser/Thr Kinase STK and Involved in Cell Division Regulation. Front Cell Infect Microbiol 2018; 8:85. [PMID: 29616196 PMCID: PMC5869912 DOI: 10.3389/fcimb.2018.00085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis serotype 2 is an important swine pathogen and an emerging zoonotic agent that causes severe infections. Recent studies have reported a eukaryotic-like Ser/Thr protein kinase (STK) gene and characterized its role in the growth and virulence of different S. suis 2 strains. In the present study, phosphoproteomic analysis was adopted to identify substrates of the STK protein. Seven proteins that were annotated to participate in different cell processes were identified as potential substrates, which suggests the pleiotropic effects of stk on S. suis 2 by targeting multiple pathways. Among them, a protein characterized as cell division initiation protein (DivIVA) was further investigated. In vitro analysis demonstrated that the recombinant STK protein directly phosphorylates threonine at amino acid position 199 (Thr-199) of DivIVA. This effect could be completely abolished by the T199A mutation. To determine the specific role of DivIVA in growth and division, a divIVA mutant was constructed. The ΔdivIVA strain exhibited impaired growth and division, including lower viability, enlarged cell mass, asymmetrical division caused by aberrant septum, and extremely weak pathogenicity in a mouse infection model. Collectively, our results reveal that STK regulates the cell growth and virulence of S. suis 2 by targeting substrates that are involved in different biological pathways. The inactivation of DivIVA leads to severe defects in cell division and strongly attenuates pathogenicity, thereby indicating its potential as a molecular drug target against S. suis.
Collapse
Affiliation(s)
- Hua Ni
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges and Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar, China
| | - Weiwei Fan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,Department of Pharmacy, Changzhou Wujin People's Hospital, Changzhou, China
| | - Chaolong Li
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qianqian Wu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Hongfen Hou
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dan Hu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Feng Zheng
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Xuhui Zhu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Changjun Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Xiangrong Cao
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhu-Qing Shao
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics, Nanjing, China.,School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
McNeilly C, Cosh S, Vu T, Nichols J, Henningham A, Hofmann A, Fane A, Smeesters PR, Rush CM, Hafner LM, Ketheesan N, Sriprakash KS, McMillan DJ. Predicted Coverage and Immuno-Safety of a Recombinant C-Repeat Region Based Streptococcus pyogenes Vaccine Candidate. PLoS One 2016; 11:e0156639. [PMID: 27310707 PMCID: PMC4911098 DOI: 10.1371/journal.pone.0156639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35–42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types.
Collapse
Affiliation(s)
- Celia McNeilly
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - Samantha Cosh
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - Therese Vu
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - Jemma Nichols
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Anna Henningham
- Australian Infectious Disease Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, and Queensland Tropical Health Alliance, Smithfield, QLD, Australia
| | - Anne Fane
- Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Pierre R Smeesters
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium, and Murdoch Children Research Institute, Melbourne, VIC, 3052, Australia
| | - Catherine M Rush
- Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Faculty of Health & Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Natkuman Ketheesan
- Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Kadaba S Sriprakash
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - David J McMillan
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia.,Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
10
|
Good MF, Pandey M, Batzloff MR, Tyrrell GJ. Strategic development of the conserved region of the M protein and other candidates as vaccines to prevent infection with group A streptococci. Expert Rev Vaccines 2015; 14:1459-70. [DOI: 10.1586/14760584.2015.1081817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, Angelova M. Differential Effect of Paraquat and Hydrogen Peroxide on the Oxidative Stress Response inVibrio CholeraeNon O1 26/06. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
DrsG from Streptococcus dysgalactiae subsp. equisimilis inhibits the antimicrobial peptide LL-37. Infect Immun 2014; 82:2337-44. [PMID: 24664506 DOI: 10.1128/iai.01411-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SIC and DRS are related proteins present in only 4 of the >200 Streptococcus pyogenes emm types. These proteins inhibit complement-mediated lysis and/or the activity of certain antimicrobial peptides (AMPs). A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp. equisimilis. Here we show that geographically dispersed isolates representing 14 of 50 emm types examined possess variants of drsG. However, not all isolates within the drsG-positive emm types possess the gene. Sequence comparisons also revealed a high degree of conservation in different S. dysgalactiae subsp. equisimilis emm types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatants. Unlike SIC, but similar to DRS, DrsG does not inhibit complement-mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelicidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. Conservation of prolines in the C-terminal region also suggests that these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP-inhibitory protein in S. dysgalactiae subsp. equisimilis and suggests that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of the complement-inhibitory activity of SIC may reflect its continuing evolution.
Collapse
|
14
|
Wang Y, Yi L, Wu Z, Shao J, Liu G, Fan H, Zhang W, Lu C. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLoS One 2012; 7:e33371. [PMID: 22514606 PMCID: PMC3326019 DOI: 10.1371/journal.pone.0033371] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 02/13/2012] [Indexed: 12/08/2022] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.
Collapse
Affiliation(s)
- Yang Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Li Yi
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jing Shao
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WZ); (CL)
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WZ); (CL)
| |
Collapse
|
15
|
Bauer MJ, Georgousakis MM, Vu T, Henningham A, Hofmann A, Rettel M, Hafner LM, Sriprakash KS, McMillan DJ. Evaluation of novel Streptococcus pyogenes vaccine candidates incorporating multiple conserved sequences from the C-repeat region of the M-protein. Vaccine 2012; 30:2197-205. [DOI: 10.1016/j.vaccine.2011.12.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/02/2011] [Accepted: 12/26/2011] [Indexed: 11/26/2022]
|
16
|
Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 2012; 368:207-42. [PMID: 23250780 DOI: 10.1007/82_2012_284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there is no commercial Group A Streptococcus (GAS; S. pyogenes) vaccine available. The development of safe GAS vaccines is challenging, researchers are confronted with obstacles such as the occurrence of many unique serotypes (there are greater than 150 M types), antigenic variation within the same serotype, large variations in the geographical distribution of serotypes, and the production of antibodies cross-reactive with human tissue which can lead to host auto-immune disease. Cell wall anchored, cell membrane associated, secreted and anchorless proteins have all been targeted as GAS vaccine candidates. As GAS is an exclusively human pathogen, the quest for an efficacious vaccine is further complicated by the lack of an animal model which mimics human disease and can be consistently and reproducibly colonized by multiple GAS strains.
Collapse
Affiliation(s)
- Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
17
|
Asensio AC, Marino D, James EK, Ariz I, Arrese-Igor C, Aparicio-Tejo PM, Arredondo-Peter R, Moran JF. Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1247-57. [PMID: 21774575 DOI: 10.1094/mpmi-10-10-0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species-producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.
Collapse
Affiliation(s)
- Aaron C Asensio
- Institute of Agro-Biotechnology, IdAB-CSIC-UPNa-GN, Public University of Navarre, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Krehenbrink M, Edwards A, Downie JA. The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism. Mol Microbiol 2011; 82:164-79. [PMID: 21854464 DOI: 10.1111/j.1365-2958.2011.07803.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The manganese/iron-type superoxide dismutase (SodA) of Rhizobium leguminosarum bv. viciae 3841 is exported to the periplasm of R. l. bv. viciae and Escherichia coli. However, it does not possess a hydrophobic cleaved N-terminal signal peptide typically present in soluble proteins exported by the Sec-dependent (Sec) pathway or the twin-arginine translocation (TAT) pathway. A tatC mutant of R. l. bv. viciae exported SodA to the periplasm, ruling out export of SodA as a complex with a TAT substrate as a chaperone. The export of SodA was unaffected in a secB mutant of E. coli, but its export from R. l. bv. viciae was inhibited by azide, an inhibitor of SecA ATPase activity. A temperature-sensitive secA mutant of E. coli was strongly reduced for SodA export. The 10 N-terminal amino acid residues of SodA were sufficient to target the reporter protein alkaline phosphatase to the periplasm. Our results demonstrate the export of a protein lacking a classical signal peptide to the periplasm by a SecA-dependent, but SecB-independent targeting mechanism. Export of the R. l. bv. viciae SodA to the periplasm was not limited to the genus Rhizobium, but was also observed in other proteobacteria.
Collapse
Affiliation(s)
- Martin Krehenbrink
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | | | | |
Collapse
|
19
|
Cole JN, Aquilina JA, Hains PG, Henningham A, Sriprakash KS, Caparon MG, Nizet V, Kotb M, Cordwell SJ, Djordjevic SP, Walker MJ. Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 2008; 7:4488-98. [PMID: 18072207 DOI: 10.1002/pmic.200700626] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine protease high-temperature requirement A (HtrA) (DegP) of the human pathogen Streptococcus pyogenes (group A Streptococcus; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease streptococcal pyrogenic exotoxin B (SpeB). Here, we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5DeltahtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5DeltahtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type (WT). Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5DeltahtrA supernatant. HtrA was unable to directly process SpeB zymogen (proSpeB) to the active form in vitro. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Amela I, Cedano J, Querol E. Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach. PLoS One 2007; 2:e512. [PMID: 17551592 PMCID: PMC1885212 DOI: 10.1371/journal.pone.0000512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/04/2007] [Indexed: 12/20/2022] Open
Abstract
The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around.
Collapse
Affiliation(s)
- Isaac Amela
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cedano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
De Mot R, Schoofs G, Nagy I. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 2007; 188:257-71. [PMID: 17486317 DOI: 10.1007/s00203-007-0243-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 02/19/2007] [Accepted: 04/02/2007] [Indexed: 12/17/2022]
Abstract
Prokaryotic 20S proteasomes are confined to archaebacteria and actinomycetes. Bacterial targets of this compartmentalized multi-subunit protease have not yet been identified and its physiological function in prokaryotes remains unknown. In this study, intracellular and extracellular proteomes of Streptomyces coelicolor A3(2) mutants affected in the structural genes of the 20S proteasome, in the gene encoding the presumed proteasome-accessory AAA ATPase ARC, or in two putative proteasome-associated actinomycete-specific genes (sco1646, sco1647) were analysed, revealing modified patterns of stress-responsive proteins. In addition, the extracellular protease profile of the sco1647 mutant was significantly altered. The most prominent change, common to the four mutants, was a strongly increased level of the non-heme chloroperoxidase SCO0465, coinciding with an increased resistance to cumene hydroperoxide.
Collapse
Affiliation(s)
- René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
22
|
Schulze K, Olive C, Ebensen T, Guzmán CA. Intranasal vaccination with SfbI or M protein-derived peptides conjugated to diphtheria toxoid confers protective immunity against a lethal challenge with Streptococcus pyogenes. Vaccine 2006; 24:6088-95. [PMID: 16828529 DOI: 10.1016/j.vaccine.2006.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
We investigated whether intranasal immunisation with diphtheria toxoid (DT) conjugated polypeptides encompassing T and B cell epitopes of the SfbI protein (FNBR) or a conformational-constrained B cell epitope of the M1 protein (J8) was able to confer protection against lethal mucosal challenge with a heterologous Streptococcus pyogenes strain. To this end, BALB/c mice were immunised with the conjugates. Strong antigen-specific antibody responses were observed in both serum and mucosal secretions. Vaccinated mice were challenged 10 days after the last boost by the intranasal route. Animals receiving FNBR-DT co-administered with either the cholera toxin B subunit (CTB) or the TLR 2/6 agonist MALP-2 were efficiently protected against the virulent S. pyogenes strain (90% and 70% survival, respectively), whereas those immunised with J8-DT plus either CTB or MALP-2 showed intermediate levels of protection (60% and 40%, respectively). The obtained results indicate that in our experimental animal model peptide-based conjugate vaccines represent a valid alternative to protect against streptococcal infection.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
23
|
Cole JN, McArthur JD, McKay FC, Sanderson-Smith ML, Cork AJ, Ranson M, Rohde M, Itzek A, Sun H, Ginsburg D, Kotb M, Nizet V, Chhatwal GS, Walker MJ. Trigger for group A streptococcal M1T1 invasive disease. FASEB J 2006; 20:1745-7. [PMID: 16790522 DOI: 10.1096/fj.06-5804fje] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in comparison to the M1T1 strain 5448, the isogenic mutant delta speB accumulated 75-fold more human plasmin activity on the bacterial surface following incubation in human plasma. Human plasminogen was an absolute requirement for M1T1 strain 5448 virulence following subcutaneous (s.c.) infection of humanized plasminogen transgenic mice. S. pyogenes M1T1 isolates from the blood of infected humanized plasminogen transgenic mice expressed reduced levels of SpeB in comparison with the parental 5448 used as inoculum. We propose that the human plasminogen system plays a critical role in group A streptococcal M1T1 systemic disease initiation. SpeB is required for S. pyogenes M1T1 survival at the site of local infection, however, SpeB also disrupts the interaction of S. pyogenes M1T1 with the human plasminogen activation system. Loss of SpeB activity in a subpopulation of S. pyogenes M1T1 at the site of infection results in accumulation of surface plasmin activity thus triggering systemic spread.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cole JN, Ramirez RD, Currie BJ, Cordwell SJ, Djordjevic SP, Walker MJ. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun 2005; 73:3137-46. [PMID: 15845522 PMCID: PMC1087385 DOI: 10.1128/iai.73.5.3137-3146.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A proteomic analysis was undertaken to identify cell wall-associated proteins of Streptococcus pyogenes. Seventy-four distinct cell wall-associated proteins were identified, 66 of which were novel. Thirty-three proteins were immunoreactive with pooled S. pyogenes-reactive human antisera. Biotinylation of the GAS cell surface identified 23 cell wall-associated proteins that are surface exposed.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | | | |
Collapse
|