1
|
Xiao XC, Huang JY, Chen YL, Cao KY, Yang RQ, Lin DQ, Hong SJ, Yang YT, Cao MJ. Collagenases from hepatopancreas and muscle of Litopenaeus vannamei: Purification, characterization and comparison of their behaviors in collagen degradation. Food Chem 2025; 475:143282. [PMID: 39946916 DOI: 10.1016/j.foodchem.2025.143282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Collagenases are responsible for collagen degradation, resulting in shrimp muscle softening after death. In this study, biochemical characteristics of collagenases purified from hepatopancreas (CPH) and muscle (CPM) of Litopenaeus vannamei were comparatively investigated. Changes of enzyme activity in shrimp hepatopancreas and muscle presented totally different tendencies, which decreased and increased respectively. Also, the key collagenases in different shrimp body parts were different. The CPH was identified as a highly metal-dependent serine proteinase, while the CPM was identified as a Ba2+-dependent metalloproteinase with a maximum activity at 50 °C and pH of 7.0. In terms of degradation behaviors, both CPH and CPM could hydrolyze type I collagen. However, because of diversified cleavage sites and higher efficiency, the CPM was able to degrade collagen more completely. Hence, these findings clarified the collagen degradation mechanism from a new perspective, providing theoretical basis for shrimp texture maintenance.
Collapse
Affiliation(s)
- Xu-Chen Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jia-Yin Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kai-Yuan Cao
- Department of Biological Science, National University of Singapore, 117558, Singapore
| | - Ru-Qing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duan-Quan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shu-Jun Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Ting Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Giorno LP, Malmonge SM, Santos AR. Collagen as a biomaterial for skin wound healing: From structural characteristics to the production of devices for tissue engineering. Int J Artif Organs 2025; 48:135-145. [PMID: 39894968 DOI: 10.1177/03913988251316437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Collagen is an abundant component in the human body and plays a fundamental role in the integrity and function of various tissues, including skin, bones, joints, and connective tissues. This natural polymer also contributes to physiological balance and individual health. Within this context, this article reviews the structure of collagen, describing intrinsic characteristics that range from its molecular composition to its organization into bundles. Additionally, the review highlights some of the applications of collagen in tissue engineering, particularly its mimicry of the skin's extracellular matrix. For this review, searches were performed in PubMed, Scopus, and Web of Sciences. The inclusion criteria were established based on the relevance of the studies for the objectives of the review and methodological quality. After selection of the articles, a critical analysis of their content was conducted and the information was synthesized and presented concisely. Analysis of the properties of collagen revealed its key importance for the design of bioactive materials in regenerative applications. However, challenges such as the need for improvement of the integration of implanted materials and a better understanding of the underlying biological processes remain.
Collapse
|
3
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
4
|
Jin X, Xu H, Hu Q, Yin Y, Qin M, Xia Z. Early growth response 2, a novel target of pelvic organ prolapse, is highly expressed in anterior vaginal wall tissues with pelvic organ prolapse. Histochem Cell Biol 2024; 161:195-205. [PMID: 37874337 DOI: 10.1007/s00418-023-02240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/25/2023]
Abstract
Pelvic organ prolapse (POP) is a common disorder among women that negatively affects women's quality of life. Early growth response 2 (EGR2) is a transcription factor that regulates cell growth. The present study aimed to explore the role of EGR2 in POP progression and provided a new target for the treatment and prevention of POP. Firstly, we extracted primary vaginal anterior wall fibroblasts from POP tissues and non-POP tissues and then constructed an EGR2-silencing lentivirus for further study. Immunoblotting, qPCR, TUNEL assay, CCK-8 assay, dual luciferase assay, and ELISA assay were carried out. EGR2 expression was much higher in POP tissues than in control tissues, and EGR2 expression positively correlated with cytokine signaling 3 (SOCS3) expression. Knockdown of EGR2 increased cell proliferation, upregulated PCNA expression, and reduced apoptosis in POP fibroblasts. Moreover, we found that the knockdown of EGR2 increased COL1A1, COL3A1, and Elastin expression and decreased MMP2 and MMP9 activities, and knockdown of EGR2 increased TGF-β/Smad pathway activity in POP fibroblasts. Interestingly, the results of dual luciferase assay demonstrated that EGR2 was able to increase SOCS3 transcriptional activity. EGR2 knockdown alleviated the apoptosis of POP fibroblasts by reducing SOCS3 expression and improving the proliferation and collagen synthesis of POP fibroblasts. Overall, our study illustrated that EGR2 was highly expressed in POP tissues, and knockdown of EGR2 alleviated apoptosis and reduced matrix degradation in POP fibroblasts. This study might provide a new insight into the pathogenesis of POP.
Collapse
Affiliation(s)
- Xin Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Qing Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Yitong Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Meiying Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Platelet factor 4 (CXCL4/PF4) upregulates matrix metalloproteinase-2 (MMP-2) in gingival fibroblasts. Sci Rep 2022; 12:18636. [PMID: 36329090 PMCID: PMC9633774 DOI: 10.1038/s41598-022-19850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by the release of matrix metalloproteinases (MMPs) from resident connective tissue cells in tooth-supporting tissues (periodontium). Platelet activation, and the attendant release of pro-inflammatory chemokines such as platelet factor 4 (CXCL4/PF4), are associated with periodontitis although the associated biochemical pathways remain undefined. Here we report that recombinant PF4 is internalized by cultured human gingival fibroblasts (hGFs), resulting in significant (p < 0.05) upregulation in both the production and release of MMP-2 (gelatinase A). This finding was corroborated by elevated circulating levels of MMP-2 (p < 0.05) in PF4-overexpressing transgenic mice, relative to controls. We also determined that PF4 induces the phosphorylation of NF-κB; notably, the suppression of NF-κB signaling by the inhibitor BAY 11-7082 abrogated PF4-induced MMP-2 upregulation. Moreover, the inhibition of surface glycosaminoglycans (GAGs) blocked both PF4 binding and NF-κB phosphorylation. Partial blockade of PF4 binding to the cells was achieved by treatment with either chondroitinase ABC or heparinase III, suggesting that both chondroitin sulfate and heparan sulfate mediate PF4 signaling. These results identify a novel pathway in which PF4 upregulates MMP-2 release from fibroblasts in an NF-κB- and GAG-dependent manner, and further our comprehension of the role of platelet signaling in periodontal tissue homeostasis.
Collapse
|
6
|
Gudde AN, van Velthoven MJJ, Roovers JPWR, Kouwer PHJ, Guler Z. Polyisocyanides as a substrate to trigger vaginal fibroblast functioning in an in vitro model for prolapse repair. BIOMATERIALS ADVANCES 2022; 141:213104. [PMID: 36116187 DOI: 10.1016/j.bioadv.2022.213104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Pelvic organ prolapse (POP) is the descent of the bladder, uterus, and/or rectum into the vagina. POP is associated with altered vaginal fibroblast functionality and connective tissue composition in the vaginal wall. The results of surgical intervention are poor, which may be related to the lack of true restoration of the connective tissue. An innovative treatment addresses tissue repair after surgery by the introduction of a bioactive supplement that enhances the healing process through collagen and elastin deposition. As a novel strategy, we first studied the effects in an in vitro model. Here, we investigate how the presence of cell binding GRGDS (RGD) peptides on the highly biomimetic polyisocyanide (PIC) gel facilitates and promotes the function of primary vaginal fibroblasts isolated from a POP patient. Fibroblast function was analyzed in terms of morphology, proliferation, and extracellular matrix (ECM) deposition and remodeling. RGD modification of the gel facilitated cell spread and proliferation. Quantitative outcomes of the ECM content indicated increased production of collagen and elastin by fibroblasts on gels with the highest RGD density. The in vitro results suggest that PIC-RGD hydrogel application may translate into improved connective tissue healing in the pelvic floor, which is essential for its use as a regeneration promoting additive in surgery.
Collapse
Affiliation(s)
- Aksel N Gudde
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Melissa J J van Velthoven
- Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, the Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Eshkol-Yogev I, Kaufman A, Haddad M, Zilberman M. Cell viability of novel composite hydrogels loaded with hydroxyapatite for oral and maxillofacial bone regeneration. Odontology 2021; 110:296-304. [PMID: 34623513 DOI: 10.1007/s10266-021-00662-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
The development of hydrogels for maxillofacial bone regeneration holds vast potential. However, some challenges need to be addressed to further their application in clinical settings. One challenge is optimizing cell viability. To improve mechanical strength, various materials have been investigated; however, incorporation of these materials within the hydrogel network may affect cell viability. The purpose of this study was to evaluate the cell viability of novel gelatin-alginate composite hydrogels loaded with hydroxyapatite (HA) and nano-hydroxyapatite (n-HA) for maxillofacial bone regeneration. Nine different hydrogels were prepared: three loaded with 0.5%, 1%, and 3% w/v HA; three loaded with 0.25%, 0.5%, and 1% w/v n-HA; one not loaded as a control and two HA and n-HA hydrogels with a lower concentration of the EDC crosslinker. Cell viability of human osteoblasts exposed to the hydrogels as affected by the HA type, size, and concentration, as well as to the crosslinker concentration, was investigated. An Alamar Blue assay was used to evaluate cell viability in the presence of hydrogel extracts and in aqueous solutions (without the hydrogel). A qualitative model was developed for explaining cell viability and growth. Higher percentages of cell viability were observed in the hydrogels loaded with hydroxyapatite as compared with the control. The effect of HA-related parameters, i.e., particle size and concentration, was found to increase the cytotoxic effect, as expressed in lower cell viability. The most favorable composites were the n-HA hydrogels. The incorporation of n-HA in the hydrogel to form a composite seems to be a very promising approach for maxillofacial bone regeneration applications.
Collapse
Affiliation(s)
- Inbar Eshkol-Yogev
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
| | - Anat Kaufman
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Marwan Haddad
- Head of Orthopedic Department, Holy Family Hospital, Nazareth, Israel
| | - Meital Zilberman
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Department of Materials Science and Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Post-translational activation of Mmp2 correlates with patterns of active collagen degradation during the development of the zebrafish tail. Dev Biol 2021; 477:155-163. [PMID: 34058190 DOI: 10.1016/j.ydbio.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinase-2 (a.k.a. Gelatinase A, or Mmp2 in zebrafish) is known to have roles in pathologies such as arthritis, in which its function is protective, as well as in cancer metastasis, in which it is activated as part of the migration and invasion of metastatic cells. It is also required during development and the regeneration of tissue architecture after wound healing, but its roles in tissue remodelling are not well understood. Gelatinase A is activated post-translationally by proteolytic cleavage, making information about its transcription and even patterns of protein accumulation difficult to relate to biologically relevant activity. Using a transgenic reporter of endogenous Mmp2 activation in zebrafish, we describe its accumulation and post-translational proteolytic activation during the embryonic development of the tail. Though Mmp2 is expressed relatively ubiquitously, it seems to be active only at specific locations and times. Mmp2 is activated robustly in the neural tube and in maturing myotome boundaries. It is also activated in the notochord during body axis straightening, in patches scattered throughout the epidermal epithelium, in the gut, and on cellular protrusions extending from mesenchymal cells in the fin folds. The activation of Mmp2 in the notochord, somite boundaries and fin folds associates with collagen remodelling in the notochord sheath, myotome boundary ECM and actinotrichia respectively. Mmp2 is likely an important effector of ECM remodelling during the morphogenesis of the notochord, a driving structure in vertebrate development. It also appears to function in remodelling the ECM associated with growing epithelia and the maturation of actinotrichia in the fin folds, mediated by mesenchymal cell podosomes.
Collapse
|
9
|
Reddy PRT, Vandana KV, Prakash S. Antibacterial and anti-inflammatory properties of Plantago ovata Forssk. leaves and seeds against periodontal pathogens: An in vitro study. Ayu 2019; 39:226-229. [PMID: 31367145 PMCID: PMC6639823 DOI: 10.4103/ayu.ayu_176_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Plantago commonly called as Isabgol (Plantago ovata Forssk.) is a perennial herb that belongs to the family Plantaginaceae. A range of biological activities has been found from plant extracts, including wound healing activity, anti-inflammatory, analgesic, antioxidant, weak antibiotic, immunomodulating and anti-ulcerogenic activity. Periodontal disease is a complex condition as a result of interaction between microorganisms and host inflammatory mediators. Hence, the extract of Isabgol is tested for its antibacterial and anti-inflammatory properties against periodontal disease. Aim: The aim of this in vitro study is to evaluate the antibacterial property of Isabgol leaves and seeds against periodontal pathogens, namely Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum and anti-inflammatory property against matrix metalloproteinase-2 (MMP-2) and MMP-9. Materials and Methods: In this in vitro study, aqueous extract of Isabgol is tested for its antibacterial property against the stock cultures of specified periodontal pathogens using the tube dilution method and anti-inflammatory property against MMP-2 and MMP-9 using zymogen gel electrography. Results: Minimum concentration at which the sensitivity of A. actinomycetemcomitans, P. gingivalis, P. intermedia, and F. nucleatum for the extract observed was 50 μl/ml, 0.8 μl/ml, 0.4 μl/ml and 12.5 μl/ml, respectively, concentrations below these showed no effect on the microorganisms. Zymogen electrographic test for anti-inflammatory activity showed percentage inhibition of 30% and 40% against MMP-2 and MMP-9, respectively. Conclusion: Isabgol is effective against the periodontal pathogens and inflammatory mediators which are responsible for periodontal disease.
Collapse
Affiliation(s)
| | - K V Vandana
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, India
| | - Shobha Prakash
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, India
| |
Collapse
|
10
|
Wang C, Xu C, Chen R, Yang L, Sung KP. Different expression profiles of the lysyl oxidases and matrix metalloproteinases in human ACL fibroblasts after co-culture with synovial cells. Connect Tissue Res 2018; 59:369-380. [PMID: 29431515 DOI: 10.1080/03008207.2017.1401615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purposes The anterior cruciate ligament (ACL) has poor functional healing response. The synovial tissue surrounding ACL ligament might be a major regulator of the microenvironment in the joint cavity after ACL injury, thus affecting the repair process. Using transwell co-culture, this study explored the direct influence of human synovial cells (HSCs) on ACL fibroblasts (ACLfs) by characterizing the differential expression of the lysyl oxidase family (LOXs) and matrix metalloproteinases (MMP-1, -2, -3), which facilitate extracellular matrix (ECM) repair and degradation, respectively. Methods The mRNA expression levels of LOXs and MMP-1, -2, -3 were analyzed by semi-quantitative PCR and quantitative real-time PCR. The protein expression levels of LOXs and MMP-1, -2, -3 were detected by western blot. Results We found that co-culture resulted in an increase in the mRNAs of LOXs in normal ACLfs and differentially regulated the expression of MMPs. Then we applied 12% mechanical stretch on ACLfs to induce injury and found the mRNA expression levels of LOXs in injured ACLfs were decreased in the co-culture group relative to the mono-culture group. Conversely, the mRNA expression levels of MMPs in injured ACLfs were promoted in the co-culture group compared with the mono-culture group. At translational level, we found that LOXs were lower while MMPs were highly expressed in the co-culture group compared to the mono-culture group. Conclusions The co-culture of ACLfs and HSCs, which mimicked the cell-to-cell contact in a micro-environment, could contribute to protein modulators for wound healing, inferring the potential reason for the poor self-healing of injured ACL.
Collapse
Affiliation(s)
- Chunli Wang
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Chunming Xu
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Rongfu Chen
- b Department of Orthopedics , People's hospital of changshou Chongqing , Chongqing , China
| | - Li Yang
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Kl Paul Sung
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China.,c Departments of Bioengineering and Orthopedics , University of California , San Diego , California , USA
| |
Collapse
|
11
|
Moura MF, Navarro TP, Silva TA, Cota LOM, Soares Dutra Oliveira AM, Costa FO. Periodontitis and Endothelial Dysfunction: Periodontal Clinical Parameters and Levels of Salivary Markers Interleukin-1β, Tumor Necrosis Factor-α, Matrix Metalloproteinase-2, Tissue Inhibitor of Metalloproteinases-2 Complex, and Nitric Oxide. J Periodontol 2017; 88:778-787. [DOI: 10.1902/jop.2017.170023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Marcela Faria Moura
- School of Dentistry, Department of Clinical, Pathology and Periodontology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Túlio Pinho Navarro
- School of Dentistry, Department of Clinical, Pathology and Periodontology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tarcília Aparecida Silva
- School of Dentistry, Department of Clinical, Pathology and Periodontology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Otávio Miranda Cota
- School of Dentistry, Department of Clinical, Pathology and Periodontology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Fernando Oliveira Costa
- School of Dentistry, Department of Clinical, Pathology and Periodontology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Sun S, Wang GL, Huang Y, Diwu HL, Luo YC, Su J, Xiao YH. The effects of 2-hydroxyethyl methacrylate on matrix metalloproteinases 2 and 9 in human pulp cells and odontoblast-like cells in vitro. Int Endod J 2017; 51 Suppl 2:e157-e166. [PMID: 28667765 DOI: 10.1111/iej.12812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
AIM To assess the effects of 2-hydroxyethyl methacrylate (HEMA) on proliferation and migration of human pulp cells, as well as on matrix metalloproteinase (MMP-2 and MMP-9) expression in human odontoblast-like cells, contributing to the goal of determining the relationship between resin materials and MMP activity in pulp-dentine complexes. METHODOLOGY Dental pulp cell cultures were established from pulp tissue of human teeth extracted for orthodontic purposes. Pulp cell differentiation was characterized in the presence of dentine sialophosphoprotein, bone sialoprotein and alkaline phosphatase by reverse transcription polymerase chain reaction. MMP activity was assessed by gelatine zymography with media containing HEMA. Cell viability was evaluated using methyl thiazolyl tetrazolium assay for 24-72 h. Cell migration was tested using Transwell migration assay. Western blotting was used to visualize MMP expression with the nontoxic HEMA concentrations (0-400 μg mL-1 ) for 48 h. RESULTS Pulp cell proliferation decreased with HEMA exposure in a time- and concentration-dependent manner. HEMA concentrations ≤400 μg mL-1 did not induce changes in cell viability at 48 h (P < 0.05). Pulp cells were induced to differentiate into odontoblast-like cells in media containing 5 mg mL-1 ascorbic acid and 10 mmol L-1 β-sodium glycerophosphate for 3-4 weeks. After incubation with HEMA, dose-dependent inhibition was observed; HEMA had a strong inhibitory effect on MMP activity. Compared with the control group, cell migration and MMP expression were inhibited significantly with increasing HEMA concentration at noncytotoxic doses (P < 0.05). CONCLUSIONS Cell viability was not affected at HEMA concentrations ≤400 μg mL-1 . Within this range, HEMA inhibited MMP-2 and MMP-9 expression and activity, which may protect against type I collagen degradation effectively during dentine adhesive procedures.
Collapse
Affiliation(s)
- S Sun
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China.,Department of Stomatology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - G-L Wang
- Molecular Pharmacology Laboratory, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Y Huang
- Molecular Pharmacology Laboratory, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - H-L Diwu
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Y-C Luo
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| | - J Su
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Y-H Xiao
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
14
|
Min J, Li B, Liu C, Guo W, Hong S, Tang J, Hong L. Extracellular matrix metabolism disorder induced by mechanical strain on human parametrial ligament fibroblasts. Mol Med Rep 2017; 15:3278-3284. [PMID: 28339064 DOI: 10.3892/mmr.2017.6372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Pelvic organ prolapse (POP) is a global health problem that may seriously impact the quality of life of the sufferer. The present study aimed to investigate the potential mechanisms underlying alterations in extracellular matrix (ECM) metabolism in the pathogenesis of POP, by investigating the expression of ECM components in human parametrial ligament fibroblasts (hPLFs) subject to various mechanical strain loads. Fibroblasts derived from parametrial ligaments were cultured from patients with POP and without malignant tumors, who underwent vaginal hysterectomy surgery. Fibroblasts at generations 3‑6 of exponential phase cells were selected, and a four‑point bending device was used for 0, 1,333 or 5,333 µ mechanical loading of cells at 0.5 Hz for 4 h. mRNA and protein expression levels of collagen type I α 1 chain (COL1A1), collagen type III α 1 chain (COL3A1), elastin, matrix metalloproteinase (MMP) ‑2 and ‑9, and transforming growth factor (TGF)‑β1 were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Under increased mechanical strain (5,333 µ), mRNA and protein expression levels of COL1A1, COL3A1 elastin and TGF‑β1 decreased, particularly COL1A1; however, mRNA and protein expression levels of MMP‑2 and ‑9 were significantly increased, compared with the control group (0 µ strain). Following 1,333 µ mechanical strain, mRNA and protein expression levels of COL1A1, COL3A1 elastin and MMP‑2 increased, and MMP‑9 decreased, whereas no significant differences were observed in TGF‑β1 mRNA and protein expression levels. In conclusion, ECM alterations may be involved in pathogenesis of POP, with decreased synthesis and increased degradation of collagen and elastin. Furthermore, the TGF‑β1 signaling pathway may serve an important role in this process and thus may supply a new target and strategy for understanding the etiology and therapy of POP.
Collapse
Affiliation(s)
- Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenjun Guo
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Tsuruga E, Irie K, Yajima T. Fibrillin-2 Degradation by Matrix Metalloproteinase-2 in Periodontium. J Dent Res 2016; 86:352-6. [PMID: 17384031 DOI: 10.1177/154405910708600410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Elastic system fibers, comprised of microfibrils and tropoelastin, are extracellular components of periodontal tissue. During development, the microfibrils act as a template on which tropoelastin is deposited. However, the process of elastic system fiber remodeling is not fully understood. Therefore, we examined whether matrix metalloproteinases (MMPs) are involved in the remodeling of fibrillins (major components of microfibrils) by human gingival fibroblasts and periodontal ligament (PDL) fibroblasts. Gingival and PDL fibroblasts were cultured for 6 weeks. In some cultures, MMP inhibitor or tissue inhibitor of matrix metalloproteinsase-2 (TIMP-2) was added to the medium for an additional 2 weeks. Active MMP-2 (62 kDa) appeared as cell-membrane-associated or in extracellular matrix only in PDL fibroblast cell layers. The addition of MMP inhibitor or TIMP-2 significantly increased fibrillin-2 accumulation in PDL fibroblast cell layers, and decreased the amount of fibrillin-2 fragments, suggesting that active MMP-2 may degrade fibrillin-2, and that MMPs may play a role in the remodeling of elastic system fibers in PDL.
Collapse
Affiliation(s)
- E Tsuruga
- Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | |
Collapse
|
16
|
Bisphosphonates in multicentric osteolysis, nodulosis and arthropathy (MONA) spectrum disorder - an alternative therapeutic approach. Sci Rep 2016; 6:34017. [PMID: 27687687 PMCID: PMC5043187 DOI: 10.1038/srep34017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
Multicentric osteolysis, nodulosis and arthropathy (MONA) spectrum disorder is a rare inherited progressive skeletal disorder caused by mutations in the matrix metalloproteinase 2 (MMP2) gene. Treatment options are limited. Herein we present successful bisphosphonate therapy in three affected patients. Patients were treated with bisphosphonates (either pamidronate or zoledronate) for different time periods. The following outcome variables were assessed: skeletal pain, range of motion, bone densitometry, internal medical problems as well as neurocognitive function. Skeletal pain was dramatically reduced in all patients soon after initiation of therapy and bone mineral density increased. Range of motion did not significantly improve. One patient is still able to walk with aids at the age of 14 years. Neurocognitive development was normal in all patients. Bisphosphonate therapy was effective especially in controlling skeletal pain in MONA spectrum disorder. Early initiation of treatment seems to be particularly important in order to achieve the best possible outcome.
Collapse
|
17
|
Changes in mitochondrial DNA copy number and extracellular matrix (ECM) proteins in the uterosacral ligaments of premenopausal women with pelvic organ prolapse. Taiwan J Obstet Gynecol 2016; 55:9-15. [DOI: 10.1016/j.tjog.2014.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/20/2022] Open
|
18
|
Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells. Stem Cell Res Ther 2015; 6:197. [PMID: 26466582 PMCID: PMC4606504 DOI: 10.1186/s13287-015-0191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/20/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. METHODS Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. RESULTS Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. CONCLUSION These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.
Collapse
|
19
|
Taylor SH, Yeung CYC, Kalson NS, Lu Y, Zigrino P, Starborg T, Warwood S, Holmes DF, Canty-Laird EG, Mauch C, Kadler KE. Matrix metalloproteinase 14 is required for fibrous tissue expansion. eLife 2015; 4:e09345. [PMID: 26390284 PMCID: PMC4684142 DOI: 10.7554/elife.09345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022] Open
Abstract
Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI:http://dx.doi.org/10.7554/eLife.09345.001 A scaffold of proteins called the extracellular matrix surrounds each of the cells that make up our organs and tissues. This matrix, which contains fibres made of proteins called collagens, provides the physical support needed to hold organs and tissues together. This support is especially important in the tendons—a tough tissue that connects the muscle to bone—and other ‘connective’ tissues. An enzyme called MMP14 is able to cut through chains of collagen proteins. It belongs to a family of proteins that are involved in breaking down the extracellular matrix to enable cells to divide and for other important processes in cells. Some cancer cells exploit MMP14 to enable them to leave their tissue of origin and spread around the body. Therefore, when researchers bred mutant mice that lacked MMP14, they expected to see excessive growth of collagen fibres in the connective tissues of the mice. However, these mice actually have extremely thin, fragile connective tissue and die soon after birth. Earlier in 2015, a group of researchers demonstrated that the first stage of tendon development in mice involves the formation of collagen fibres, which are attached to structures that project from tendon cells called fibripositors. Then, soon after the mice are born, the fibripositors disappear and the collagen fibres are released into the extracellular matrix where they grow longer and become thicker. Now, Taylor, Yeung, Kalson et al.—including some of the researchers from the earlier work—have used electron microscopy to investigate how a lack of MMP14 leads to fragile tendons in young mice. The experiments show that MMP14 plays a crucial role in the first stage of tendon development by detaching the collagen fibres from the fibripositors. MMP14 also promotes the formation of new collagen fibres; the tendons of mutant mice that lack MMP14 have fewer collagen fibres than normal mice. Further experiments revealed that the release of collagen fibres from fibripositors does not require MMP14 to cleave the chains of collagen proteins themselves. Instead, it appears that MMP14 cleaves another protein that is associated with the fibres, called fibronectin. Taylor, Yeung, Kalson et al.'s findings show that MMP14 plays an important role in the development of tendons by releasing collagen fibres from fibripositors and promoting the formation of new fibres. The next challenge is to find out how MMP14 regulates the number of collagen fibres in mature tendons and other tissues, and how defects in this enzyme can lead to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.09345.002
Collapse
Affiliation(s)
- Susan H Taylor
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ching-Yan Chloé Yeung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicholas S Kalson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paola Zigrino
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Stacey Warwood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David F Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cornelia Mauch
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Brings S, Zhang S, Choong YS, Hogl S, Middleditch M, Kamalov M, Brimble MA, Gong D, Cooper GJS. Diabetes-induced alterations in tissue collagen and carboxymethyllysine in rat kidneys: Association with increased collagen-degrading proteinases and amelioration by Cu(II)-selective chelation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1610-8. [PMID: 25900786 DOI: 10.1016/j.bbadis.2015.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 02/02/2023]
Abstract
Advanced glycation end-products (AGEs) comprise a group of non-enzymatic post-translational modifications of proteins and are elevated in diabetic tissues. AGE-modification impairs the digestibility of collagen in vitro but little is known about its relation to collagen-degrading proteinases in vivo. N(ε)-carboxymethyllysine (CML) is a stable AGE that forms on lysyl side-chains in the presence of glucose, probably via a transition metal-catalysed mechanism. Here, rats with streptozotocin-induced diabetes and non-diabetic controls were treated for 8weeks with placebo or the Cu(II)-selective chelator, triethylenetetramine (TETA), commencing 8weeks after disease induction. Actions of diabetes and drug treatment were measured on collagen and collagen-degrading proteinases in kidney tissue. The digestibility and CML content of collagen, and corresponding levels of mRNAs and collagen, were related to changes in collagen-degrading-proteinases. Collagen-degrading proteinases, cathepsin L (CTSL) and matrix metalloproteinase-2 (MMP-2) were increased in diabetic rats. CTSL-levels correlated strongly and positively with increased collagen-CML levels and inversely with decreased collagen digestibility in diabetes. The collagen-rich mesangium displayed a strong increase of CTSL in diabetes. TETA treatment normalised kidney collagen content and partially normalised levels of CML and CTSL. These data provide evidence for an adaptive proteinase response in diabetic kidneys, affected by excessive collagen-CML formation and decreased collagen digestibility. The normalisation of collagen and partial normalisation of CML- and CTSL-levels by TETA treatment supports the involvement of Cu(II) in CML formation and altered collagen metabolism in diabetic kidneys. Cu(II)-chelation by TETA may represent a treatment option to rectify collagen metabolism in diabetes independent of alterations in blood glucose levels.
Collapse
Affiliation(s)
- Sebastian Brings
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Yee S Choong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Sebastian Hogl
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Meder Kamalov
- The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; The School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; The School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Deming Gong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, School of Biomedicine, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Pharmacology, Division of Medical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Differential expressions of the lysyl oxidase family and matrix metalloproteinases-1, 2, 3 in posterior cruciate ligament fibroblasts after being co-cultured with synovial cells. INTERNATIONAL ORTHOPAEDICS 2014; 39:183-91. [DOI: 10.1007/s00264-014-2573-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
22
|
Boccafoschi F, Ramella M, Sibillano T, De Caro L, Giannini C, Comparelli R, Bandiera A, Cannas M. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis. J Biomed Mater Res A 2014; 103:1218-30. [DOI: 10.1002/jbm.a.35257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Francesca Boccafoschi
- Department of Health Sciences; University of Piemonte Orientale “A. Avogadro”; 28100 Novara Italy
| | - Martina Ramella
- Department of Health Sciences; University of Piemonte Orientale “A. Avogadro”; 28100 Novara Italy
| | - Teresa Sibillano
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | - Liberato De Caro
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | - Cinzia Giannini
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | | | | | - Mario Cannas
- Department of Health Sciences; University of Piemonte Orientale “A. Avogadro”; 28100 Novara Italy
| |
Collapse
|
23
|
Yılmaz N, Ozaksit G, Terzi YK, Yılmaz S, Budak B, Aksakal O, Sahin Fİ. HOXA11 and MMP2 gene expression in uterosacral ligaments of women with pelvic organ prolapse. J Turk Ger Gynecol Assoc 2014; 15:104-8. [PMID: 24976777 DOI: 10.5152/jtgga.2014.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Pelvic organ prolapse (POP) is a common disorder that negatively impacts the quality of life in many women. Uterosacral ligaments (USLs) are supportive structures of the pelvic organs that are often attenuated in women with POP. The HOXA genes regulate the development of the uterosacral ligaments. We compared expression of HOXA11 and MMP2 in USLs of women with and without POP. MATERIAL AND METHODS A prospective sequential cross sectional study was conducted in ZTB Women's Health Research and Education Hospital. We compared expression of HOXA11 and MMP2 in USLs of women with (n:18) and without (n: 15) POP. Total RNA was isolated from patient (n:18) and control (n:15) uterosacral ligament tissues with TriPure isolation reagent according to the manufacturer's instructions. Expression levels of HOXA11 and MMP2 were determined using semiquantitative RT-PCR in a Light Cycler 480 system. Real-time ready catalog assays, which are short FAM-labeled hydrolysis probes containing locked nucleic acid, were used for RT-PCR reactions. RESULTS There was no difference in patients' mean age, parity, body mass indexes, and menopausal status between two groups. Means of RNA expression of MMP2 were 1.27±0.6 and 0.75±0.4 in the POP group vs control group, respectively (p:0.007). Means of RNA expression of HOXA 11 were 2.57±2.4 and 1.94±1.4 in the POP group vs control group, respectively (p:0.376). The POP group was divided as mild and severe POP; there was no difference in HOXA11 and MMP2 RNA expression between groups (p>0.05). CONCLUSION Although there was no difference HOXA11 RNA expression in USLs with the POP group vs control, there was a significant difference MMP2 RNA expression in USLs with the POP group vs control. There are limited studies on this subject, and study results are contradictory. Further investigations with larger numbers of cases are needed to clarify this subject.
Collapse
Affiliation(s)
- Nafiye Yılmaz
- Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Gülnur Ozaksit
- Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Yunus Kasım Terzi
- Department of Clinical Genetics, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Saynur Yılmaz
- Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Burcu Budak
- Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Orhan Aksakal
- Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Feride İffet Sahin
- Department of Clinical Genetics, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
24
|
Li ZJ, Kim SM. The application of the starfish hatching enzyme for the improvement of scar and keloid based on the fibroblast-populated collagen lattice. Appl Biochem Biotechnol 2014; 173:989-1002. [PMID: 24752939 DOI: 10.1007/s12010-014-0901-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Various bioactivities of the starfish hatching enzyme (HE) including collagen gel contraction, MMPs activity, hydroxyproline release, and gene regulation based on the fibroblast-populated collagen lattice (FPCL) in three-dimensional medium were investigated for the improvement of scar and keloid. The starfish HE significantly inhibited the collagen gel contraction over 2 days of culture. MMP-2 and MMP-9 activities were also identified by gelatin zymography and RT-PCR products with both HE and collagenase treatments, which resulted in the high amount of hydroxyproline release. The HE treatment on the FPCL significantly inhibited the fibroblast proliferation at 3 days of culture. The LPS-induced NO level and iNOS mRNA expression at low concentrations of HE presented a certain ability to inflammatory response. The COX-2 mRNA from the FPCL indicated no significant inflammation-mediated activity at 5 μg/mL of HE, whereas the cytokines of TNF-α and IL-1β were significantly higher than those of the control. Hence, the starfish hatching enzyme can regulate the fibroblast-populated collagen gel conditions by the contraction, MMP production, inflammatory gene expression, etc. Therefore, the starfish HE could be a potential cosmeceutical to heal the scar and keloid tissue.
Collapse
Affiliation(s)
- Zhi Jiang Li
- Department of Food and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163-319, People's Republic of China
| | | |
Collapse
|
25
|
Titanium particles up-regulate the activity of matrix metalloproteinase-2 in human synovial cells. INTERNATIONAL ORTHOPAEDICS 2013; 38:1091-8. [PMID: 24271334 DOI: 10.1007/s00264-013-2190-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/05/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Wear debris particle-induced osteolysis and subsequent aseptic loosening is one of the major causes of failure of total joint replacement. The purpose of this study was to investigate the effect of titanium implant material and inflammatory cytokines on human synovial cells and the development to osteolysis and aseptic loosening. METHODS This study investigated the effect of titanium implant material on the ECM-degraded MMP-2 in human synovial cells and analyzed the contribution of synovial cells in osteolysis and aseptic loosening. RESULTS When human synovial cells are exposed to titanium materials, MMP-2 activity is induced by 1.72 ± 0.14-fold with Ti disc and 3.95 ± 0.10-fold with Ti particles, compared with that of the controls, respectively. Inflammatory cytokines TNFα and IL-1β are also shown to induce MMP-2 activity by 3.65 ± 0.28-fold and 6.76 ± 0.28-fold, respectively. A combination of Ti particles and cytokines induces MMP-2 activities to a higher level (10.54 ± 0.45-fold). Inhibitors of various signal pathways involved in MMP-2 reverse Ti particle-induced MMP-2 activities. CONCLUSIONS Synovial cells surrounding the bone-prosthesis interface may contribute to production of MMP-2, and NFκB inhibitors may be explored as potential therapeutics to alleviate wear debris-induced osteolysis and aseptic loosening.
Collapse
|
26
|
Kawagoe M, Tsuruga E, Oka K, Sawa Y, Ishikawa H. Matrix metalloproteinase-2 degrades fibrillin-1 and fibrillin-2 of oxytalan fibers in the human eye and periodontal ligaments in vitro. Acta Histochem Cytochem 2013; 46:153-9. [PMID: 24194629 PMCID: PMC3813822 DOI: 10.1267/ahc.13024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 01/07/2023] Open
Abstract
Oxytalan fibers are distributed in the eye and periodontal ligaments (PDL). The ciliary zonule, known as Zinn’s zonule, in the eye is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1 and fibrillin-2. As turnover of oxytalan fibers is slow during life, their degradation mechanism remains unclarified. This study was performed to examine degradation pattern of fibrillin-1 and fibrillin-2 by experimental MMP activation. We cultured human non-pigmented ciliary epithelial cells (HNPCEC) and PDL fibroblasts for 7 days, then treated them with concanavalin A to activate matrix metalloproteinase (MMP)-2, and examined the degradation of fibrillin-1 and fibrillin-2 for 72 hr using immunofluorescence. At 7 days of HNPCEC culture, fibrillin-1-positive fibers were observed, some of which merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin and disappeared by 72 hr, while fibrillin-2-positive fibers disappeared almost completely within 24 hr. At 7 days of PDL fibroblast culture, fibrillin-1-positive fibers were mostly merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin by 24 hr and had almost disappeared by 48 hr, while fibrillin-2-positive fibers decreased constantly after 24 hr. A MMP-2 inhibitor completely suppressed these degradations. These results suggest that the patterns of fibrillin-1 and fibrillin-2 degradation differ between the eye and the PDL, possibly reflecting the sensitivity of fibrillin-1 and fibrillin-2 of each type of oxytalan fiber against MMP-2.
Collapse
Affiliation(s)
- Megumi Kawagoe
- Section of Orthodontics, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College
| | - Eichi Tsuruga
- Section of Functional Structure, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College
| | - Yoshihiko Sawa
- Section of Functional Structure, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College
| | - Hiroyuki Ishikawa
- Section of Orthodontics, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College
| |
Collapse
|
27
|
Lu Z, Zhang W, Jiang S, Zou J, Li Y. Effect of lesion location on endometriotic adhesion and angiogenesis in SCID mice. Arch Gynecol Obstet 2013; 289:823-30. [DOI: 10.1007/s00404-013-3048-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/27/2013] [Indexed: 01/16/2023]
|
28
|
Franková J, Pivodová V, Růžička F, Tománková K, Šafářová K, Vrbková J, Ulrichová J. Comparing biocompatibility of gingival fibroblasts and bacterial strains on a different modified titanium discs. J Biomed Mater Res A 2013; 101:2915-24. [DOI: 10.1002/jbm.a.34598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Franková
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University Olomouc; Olomouc; Czech Republic
| | - Veronika Pivodová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University Olomouc; Olomouc; Czech Republic
| | - Filip Růžička
- Department of Microbiology; Faculty of Medicine; Masaryk University and St. Anne's University Hospital; Brno; Czech Republic
| | - Kateřina Tománková
- Department of Medical Biophysics; Faculty of Medicine and Dentistry; Institute of Translation Medicine; Palacký University Olomouc; Olomouc; Czech Republic
| | - Klára Šafářová
- Regional Centre of Advanced Technologies and Materials; Faculty of Science; Palacký University Olomouc; Olomouc; Czech Republic
| | - Jana Vrbková
- Department of Mathematical Analysis and Applications of Mathematics; Faculty of Science; Palacký University Olomouc; Olomouc; Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University Olomouc; Olomouc; Czech Republic
| |
Collapse
|
29
|
Xie J, Wang C, Huang DY, Zhang Y, Xu J, Kolesnikov SS, Sung K, Zhao H. TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury. J Biomech 2013; 46:890-8. [DOI: 10.1016/j.jbiomech.2012.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022]
|
30
|
Yu WH, Huang PT, Lou KL, Yu SSC, Lin C. A smallest 6 kda metalloprotease, mini-matrilysin, in living world: a revolutionary conserved zinc-dependent proteolytic domain- helix-loop-helix catalytic zinc binding domain (ZBD). J Biomed Sci 2012; 19:54. [PMID: 22642296 PMCID: PMC3406945 DOI: 10.1186/1423-0127-19-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022] Open
Abstract
Background The Aim of this study is to study the minimum zinc dependent metalloprotease catalytic folding motif, helix B Met loop-helix C, with proteolytic catalytic activities in metzincin super family. The metzincin super family share a catalytic domain consisting of a twisted five-stranded β sheet and three long α helices (A, B and C). The catalytic zinc is at the bottom of the cleft and is ligated by three His residues in the consensus sequence motif, HEXXHXXGXXH, which is located in helix B and part of the adjacent Met turn region. An interesting question is - what is the minimum portion of the enzyme that still possesses catalytic and inhibitor recognition?” Methods We have expressed a 60-residue truncated form of matrilysin which retains only the helix B-Met turn-helix C region and deletes helix A and the five-stranded β sheet which form the upper portion of the active cleft. This is only 1/4 of the full catalytic domain. The E. coli derived 6 kDa MMP-7 ZBD fragments were purified and refolded. The proteolytic activities were analyzed by Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay and CM-transferrin zymography analysis. SC44463, BB94 and Phosphoramidon were computationally docked into the 3day structure of the human MMP7 ZBD and TAD and thermolysin using the docking program GOLD. Results This minimal 6 kDa matrilysin has been refolded and shown to have proteolytic activity in the Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay. Triton X-100 and heparin are important factors in the refolding environment for this mini-enzyme matrilysin. This minienzyme has the proteolytic activity towards peptide substrate, but the hexamer and octamer of the mini MMP-7 complex demonstrates the CM-transferrin proteolytic activities in zymographic analysis. Peptide digestion is inhibited by SC44463, specific MMP7 inhibitors, but not phosphorimadon. Interestingly, the mini MMP-7 can be processed by autolysis and producing ~ 6 ~ 7 kDa fragments. Thus, many of the functions of the enzyme are retained indicating that the helix B-Met loop-helix C is the minimal functional “domain” found to date for the matrixin family. Conclusions The helix B-Met loop-helix C folding conserved in metalloprotease metzincin super family is able to facilitate proteolytic catalysis for specific substrate and inhibitor recognition. The autolysis processing and producing 6 kDa mini MMP-7 is the smallest metalloprotease in living world.
Collapse
Affiliation(s)
- Wei-Hsuan Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
31
|
Xie J, Wang C, Yin L, Xu C, Zhang Y, Sung KLP. Interleukin-1 beta influences on lysyl oxidases and matrix metalloproteinases profile of injured anterior cruciate ligament and medial collateral ligament fibroblasts. INTERNATIONAL ORTHOPAEDICS 2012; 37:495-505. [PMID: 22588690 DOI: 10.1007/s00264-012-1549-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/06/2012] [Indexed: 01/05/2023]
Abstract
PURPOSE The anterior cruciate ligament (ACL) is known to have a poor healing ability, especially in comparison with the medial collateral ligament (MCL) which can heal relatively well. Interleukin-1beta (IL-1β) is considered to be an important chemical mediator in the acute inflammatory phase of ligament injury. The role of IL-1β-induced expressions of lysyl oxidases (LOXs) and matrix metalloproteinases (MMPs), which respectively facilitate extracellular matrix (ECM) repair and degradation, is poorly understood. In this study, we aim to determine the intrinsic differences between ACL and MCL by characterising the differential expressions of LOXs and MMPs in response to IL-1β in the injury process. METHODS Semi-quantitative polymerase chain reaction (PCR), quantitative real-time PCR, Western blot, and zymography were performed. RESULTS We detected high expressions of IL-1β-induced LOXs in normal ACL and MCL. Then, we found IL-1β induced injured MCL to express more LOXs than injured ACL (up to 2.85-fold in LOX, 2.58-fold in LOXL-1, 1.89-fold in LOXL-2, 2.46-fold in LOXL-3 and 2.18-fold in LOXL-4). Meanwhile, we found IL-1β induced injured ACL to express more MMPs than injured MCL (up to 1.72-fold in MMP-1, 1.95-fold in MMP-2, 2.05-fold in MMP-3 and 2.3-fold in MMP-12). The further protein results coincided with gene expressions above. CONCLUSIONS Lower expressions of LOXs and higher expressions of MMPs might help to explain the poor healing ability of ACL.
Collapse
Affiliation(s)
- Jing Xie
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
32
|
Romanowicz L, Galewska Z. Extracellular matrix remodeling of the umbilical cord in pre-eclampsia as a risk factor for fetal hypertension. J Pregnancy 2010; 2011:542695. [PMID: 21490792 PMCID: PMC3065902 DOI: 10.1155/2011/542695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/20/2010] [Indexed: 11/18/2022] Open
Abstract
The human umbilical cord forms a connection between the placenta and the foetus. It is composed of two arteries and one vein surrounded by Wharton's jelly. Pre-eclampsia is accompanied by extensive remodeling of extracellular matrix of umbilical cord. Matrix metalloproteinases (MMPs) are engaged in degradation of extracellular matrix proteins and activation/inactivation of certain cytokines and enzymes. These enzymes will probably play a central role in the release of matrix-embedded cytokines and growth factors. MMP-2 (gelatinase A) is the main collagenolytic enzyme of both umbilical artery and vein. Other metalloproteinases are present in several times lower amounts. Reduced activity of collagen-degrading enzymes may be a factor, which enhances the accumulation of collagen and some other proteins in the pre-eclamptic umbilical cord tissues. It seems to be possible that similar alterations occur in other fetal blood vessels. It may result in an increase in peripheral resistance as well as an increase in the blood pressure in the fetal vascular system. Some observations suggest that the raised pressure may persist after birth. Pre-eclampsia may be a factor that evokes an initiation of hypertension in utero and its amplification through childhood and adulthood.
Collapse
Affiliation(s)
- Lech Romanowicz
- Department of Medical Biochemistry, Medical University of Białystok, ul. Mickiewicza 2, 15-089 Białystok, Poland.
| | | |
Collapse
|
33
|
Vonk LA, Doulabi BZ, Huang C, Helder MN, Everts V, Bank RA. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin α1 and discoidin domain receptor 2: a protein kinase C-dependent pathway. Rheumatology (Oxford) 2010; 50:463-72. [PMID: 21075784 DOI: 10.1093/rheumatology/keq305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To investigate whether maintaining the chondrocyte's native pericellular matrix prevents collagen-induced up-regulation of collagenase-3 (MMP-13) and whether integrin α1 (ITGα1) and/or discoidin domain receptor 2 (DDR2) modulate MMP-13 expression and which signalling pathway plays a role in collagen-stimulated MMP-13 expression. METHODS Goat articular chondrocytes and chondrons were cultured on collagen coatings. Small interfering RNA (siRNA) oligonucleotides targeted against ITGα1 and DDR2 were transfected into primary chondrocytes. Chemical inhibitors for mitogen-activated protein kinase kinase (MEK1) (PD98059), focal adhesion kinase (FAK) (FAK inhibitor 14), mitogen-activated protein kinase 8 (JNK) (SP600125) and protein kinase C (PKC) (PKC412), and a calcium chelator (BAPTA-AM) were used in cell cultures. Real-time PCR was performed to examine gene expression levels of MMP-13, ITGα1 and DDR2 and collagenolytic activity was determined by measuring the amount of hydroxyproline released in the culture medium. RESULTS Maintaining the chondrocyte's native pericellular matrix prevented MMP-13 up-regulation and collagenolytic activity when the cells were cultured on a collagen coating. Silencing of ITGα1 and DDR2 reduced MMP-13 gene expression and collagenolytic activity by primary chondrocytes cultured on collagen. Incubation with the PKC inhibitor strongly reduced MMP-13 gene expression levels. Gene expression levels of MMP-13 were also decreased by chondrocytes incubated with the MEK, FAK or JNK inhibitor. CONCLUSION Maintaining the native pericellular matrix of chondrocytes prevents collagen-induced up-regulation of MMP-13. Both ITGα1 and DDR2 modulate MMP-13 expression after direct contact between chondrocytes and collagen. PKC, FAK, MEK and JNK are involved in collagen-stimulated expression of MMP-13.
Collapse
Affiliation(s)
- Lucienne A Vonk
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Shimonishi M, Takahashi I, Terao F, Komatsu M, Kikuchi M. Induction of MMP-2 at the interface between epithelial cells and fibroblasts from human periodontal ligament. J Periodontal Res 2010; 45:309-16. [DOI: 10.1111/j.1600-0765.2009.01237.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Marques MR, dos Santos MCLG, da Silva AF, Nociti Jr FH, Barros SP. Parathyroid hormone administration may modulate periodontal tissue levels of interleukin-6, matrix metalloproteinase-2 and matrix metalloproteinase-9 in experimental periodontitis. J Periodontal Res 2009; 44:744-50. [DOI: 10.1111/j.1600-0765.2008.01186.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Lee NP, Chen L, Lin MC, Tsang FH, Yeung C, Poon RT, Peng J, Leng X, Beretta L, Sun S, Day PJ, Luk JM. Proteomic expression signature distinguishes cancerous and nonmalignant tissues in hepatocellular carcinoma. J Proteome Res 2009; 8:1293-303. [PMID: 19161326 DOI: 10.1021/pr800637z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive liver cancer but clinically validated biomarkers that can predict natural history of malignant progression are lacking. The present study explored the proteome-wide patterns of HCC to identify biomarker signature that could distinguish cancerous and nonmalignant liver tissues. A retrospective cohort of 80 HBV-associated HCC was included and both the tumor and adjacent nontumor tissues were subjected to proteome-wide expression profiling by 2-DE method. The subjects were randomly divided into the training (n = 55) and validation (n = 25) subsets, and the data analyzed by classification-and-regression tree algorithm. Protein markers were characterized by MALDI-ToF/MS and confirmed by immunohistochemistry, Western blotting and qPCR assays. Proteomic expression signature composed of six biomarkers (haptoglobin, cytochrome b5, progesterone receptor membrane component 1, heat shock 27 kDa protein 1, lysosomal proteinase cathepsin B, keratin I) was developed as a classifier model for predicting HCC. We further evaluated the model using both leave-one-out procedure and independent validation, and the overall sensitivity and specificity for HCC both are 92.5%, respectively. Clinical correlation analysis revealed that these biomarkers were significantly associated with serum AFP, total protein levels and the Ishak's score. The described model using biomarker signatures could accurately distinguish HCC from nonmalignant tissues, which may also provide hints on how normal hepatocytes are transformed to malignant state during tumor progression.
Collapse
Affiliation(s)
- Nikki P Lee
- Department of Surgery, Center for Cancer Research, and Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Olkowski A, Wojnarowicz C, Chirino-Trejo M, Laarveld B, Sawicki G. Sub-clinical necrotic enteritis in broiler chickens: Novel etiological consideration based on ultra-structural and molecular changes in the intestinal tissue. Res Vet Sci 2008; 85:543-53. [DOI: 10.1016/j.rvsc.2008.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 12/14/2007] [Accepted: 02/08/2008] [Indexed: 01/06/2023]
|
38
|
Everts V, Daci E, Tigchelaar-Gutter W, Hoeben KA, Torrekens S, Carmeliet G, Beertsen W. Plasminogen activators are involved in the degradation of bone by osteoclasts. Bone 2008; 43:915-20. [PMID: 18691680 DOI: 10.1016/j.bone.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
Osteoclastic bone degradation depends on the activity of several proteolytic enzymes, in particular to those belonging to the classes of cysteine proteinases and matrix metalloproteinases (MMPs). Yet, several findings suggest that the two types of plasminogen activators (PA), the tissue- and urokinase-type PA (tPA and uPA, respectively) are also involved in this process. To investigate the involvement of these enzymes in osteoclast-mediated bone matrix digestion, we analyzed bone explants of mice that were deficient for both tPA and uPA and compared them to wild type mice. The number of osteoclasts as well as their ultrastructural appearance was similar for both genotypes. Next, calvarial and metatarsal bone explants were cultured for 6 or 24 h in the presence of selective inhibitors of cysteine proteinases or MMPs and the effect on osteoclast-mediated bone matrix degradation was assessed. Inhibition of the activity of cysteine proteinases in explants of control mice resulted in massive areas of non-digested demineralized bone matrix adjacent to the ruffled border of osteoclasts, an effect already maximal after 6 h. However, at that time point these demineralized areas were not observed in bone explants from uPA/tPA deficient mice. After prolonged culturing (24 h), a comparable amount of demineralized bone matrix adjacent to actively resorbing osteoclasts was observed in the two genotypes, suggesting that degradation was delayed in uPA/tPA deficient bones. The activity of cysteine proteinases as assessed in bone extracts, proved to be higher in extracts from uPA/tPA(-/-) bones. Immunolocalization of the integrin alpha(v)beta(3) of in vitro generated osteoclasts demonstrated a more diffuse labeling of osteoclasts derived from uPA/tPA(-/-) mice. Taken together, our data indicate that the PAs play a hitherto unrecognized role in osteoclast-mediated bone digestion. The present findings suggest that the PAs are involved in the initial steps of bone degradation, probably by a proper integrin-dependent attachment to bone.
Collapse
Affiliation(s)
- Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Research Institute MOVE, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
van Engelen E, Breeveld-Dwarkasing VNA, Taverne MAM, Everts ME, van der Weijden GC, Rutten VPMG. MMP-2 expression precedes the final ripening process of the bovine cervix. Mol Reprod Dev 2008; 75:1669-77. [PMID: 18361420 DOI: 10.1002/mrd.20908] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Collagen is denatured in the gradual cervical ripening process during late pregnancy, already before the onset of final cervical ripening at parturition. Matrix Metallo Proteinases (MMPs) might be responsible for this process. To investigate the presence and potential function of MMPs at the different stages of the ripening process, serial cervical biopsies were obtained from 10 cows at Days 185 and 275 of pregnancy (approximately 5 days before calving), at parturition and at 30 days after parturition. The mRNA and protein expression of MMP-1, MMP-2, and MMP-9 and of the tissue inhibitors of MMPs (TIMP)-1 and TIMP-2 were semi-quantitatively determined using RT-PCR, respectively, zymography, Westernblot, and ELISA techniques and the localization of MMP-2 protein and presence of granulocytes by immunohistochemistry and Luna staining. At parturition compared to 185 days pregnancy the MMP-1 protein expression and the numbers of granulocytes were significantly increased by 3 and 26-fold respectively. MMP-2 mRNA and protein expression had already increased 2.5 (P < 0.05) and twofold (P < 0.05) at 5 days before parturition, prior to final ripening. At that time, MMP-2 was present in smooth muscle cells and extra cellular matrix. TIMP-1 mRNA expression was significantly increased at parturition and TIMP-2 mRNA expression peaked at 5 days before parturition. The increased expression of MMP-2 at 5 days before parturition, suggests that in the cow MMP-2 is responsible for collagen denaturation in the last part of gradual cervical ripening, while MMP-1 and MMP-9 are only active during the final cervical ripening process at parturition.
Collapse
Affiliation(s)
- E van Engelen
- Department of Pathobiology, Division of Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Tidswell HK, Innes JF, Avery NC, Clegg PD, Barr ARS, Vaughan-Thomas A, Wakley G, Tarlton JF. High-intensity exercise induces structural, compositional and metabolic changes in cuboidal bones--findings from an equine athlete model. Bone 2008; 43:724-33. [PMID: 18619567 DOI: 10.1016/j.bone.2008.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 05/01/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
Fatigue fracture of cuboidal bones occurs in the human foot as well as the equine carpus. The racehorse provides a naturally-occurring model to study the effects of high-intensity exercise on the morphology and metabolism of cuboidal bones. We studied both the mineral and the collagenous matrix of the third (C(3)) and radial (C(r)) carpal bones of raced and non-raced Thoroughbred (TB) horses. We hypothesised that racehorses would show increases in the mineral component of these bones and post-translational modifications of the collagenous matrix alongside changes in markers of collagen remodelling and bone formation. C(3) and C(r) carpal bones were retrieved from raced TB horses (n=14) and non-raced TB horses (n=11). Standardised proximal-distal sections were taken from each bone and these were sliced transversely to study the proximal-distal differences in bone metabolism from the subchondral plate through to trabecular bone. Histomorphometry and bone mineral density measurements were performed in parallel with biochemical analyses including total collagen, collagen synthesis and cross-links, matrix metalloproteinases-2 and 9 and their inhibitors, calcium and phosphate, and bone alkaline phosphatase. The results of this study show that, while there is a net increase in bone formation in the racehorses, there is additionally an increase in bone collagen synthesis and remodelling, particularly within the trabecular regions of the bone. The increase in bone density would lead to greater stiffness, particularly in the cortical bone, and failure of this 'stiffer' cortical bone may result from its lack of support from the rapidly remodelling and structurally weakened underlying trabecular bone.
Collapse
Affiliation(s)
- H K Tidswell
- Matrix Biology Research Group, Department of Clinical Veterinary Science, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Badiou W, Granier G, Bousquet PJ, Monrozies X, Mares P, de Tayrac R. Étude histologique de la paroi vaginale antérieure dans le prolapsus génital récidivé. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11608-008-0184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Badiou W, Granier G, Bousquet PJ, Monrozies X, Mares P, de Tayrac R. Comparative histological analysis of anterior vaginal wall in women with pelvic organ prolapse or control subjects. A pilot study. Int Urogynecol J 2008; 19:723-9. [PMID: 18183343 DOI: 10.1007/s00192-007-0516-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/11/2007] [Indexed: 01/26/2023]
|
43
|
Abstract
The Bowman-Birk inhibitor (BBI) is a small water-soluble protein present in soybean and almost all monocotyledonous and dicotyledonous seeds. The molecular size of BBI ranges from 1,513 Da to about 20,000 Da. BBI is to seeds what alpha(1)-antitrypsin is to humans. Soy-based food products rich in BBI include soybean grits, soymilk, oilcake, soybean isolate, and soybean protein concentrate. BBI is stable within the pH range encountered in most foods, can withstand boiling water temperature for 10 min, resistant to the pH range and proteolytic enzymes of the gastrointestinal tract, bioavailable, and not allergenic. BBI reduces the proteolytic activities of trypsin, chymotrypsin, elastase, cathepsin G, and chymase, serine protease-dependent matrix metalloproteinases, urokinase protein activator, mitogen activated protein kinase, and PI3 kinase, and upregulates connexin 43 (Cx43) expression. Several studies have demonstrated the efficacy of BBI against tumor cells in vitro, animal models, and human phase IIa clinical trials. FDA considers BBI as a drug. In 1999, FDA allowed a health claim on food labels stating that a daily diet containing 25 grams of soy protein, also low in saturated fat and cholesterol, may reduce the risk of heart disease [corrected] This review highlights the biochemical and functional food properties of the Bowman-Birk inhibitor.
Collapse
Affiliation(s)
- Jack N Losso
- Food Protein Biotechnology Laboratory, Department of Food Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
44
|
N-acetylcysteine prevents LPS-induced pro-inflammatory cytokines and MMP2 production in gingival fibroblasts. Arch Pharm Res 2007; 30:1283-92. [PMID: 18038907 DOI: 10.1007/bf02980269] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Periodontitis is an inflammatory process that ultimately results in tooth loss. Although the primary etiologic agent for periodontitis is bacteria, the majority of periodontal tissue destruction is thought to be caused by an inappropriate host response. Reactive oxygen species (ROS) have been known to be involved in periodontal tissue destruction. We treated human gingival fibroblasts with lipopolysaccharide (LPS) obtained from E. coli and the periodontopathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis, and examined their inflammatory responses in the presence and absence of the antioxidant N-acetylcysteine (NAC). LPS enhanced ROS production, as well as, expression of pro-inflammatory cytokines such as interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha, and the production and activation of MMP2. NAC suppressed all LPS-induced inflammatory responses examined, suggesting that LPS-induced ROS may play a major regulatory role in these responses in gingival fibroblasts. In addition, NAC prevented LPS-induced activation of p38 MAPK and JNK but not phosphorylation and subsequent degradation of IkB. These results indicate that NAC exerts anti-inflammatory effects in LPS-stimulated gingival fibroblasts, functioning at least in part via down-regulation of JNK and p38 MAPK activation. Furthermore, this work suggests that antioxidants may be useful in adjunctive therapies that complement conventional periodontal treatments.
Collapse
|
45
|
Martinez DA, Vailas AC, Vanderby R, Grindeland RE. Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1552-60. [PMID: 17699562 DOI: 10.1152/ajpregu.00423.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous data from spaceflight studies indicate that injured muscle and bone heal slowly and abnormally compared with ground controls, strongly suggesting that ligaments or tendons may not repair optimally as well. Thus the objective of this study was to investigate the biochemical and molecular gene expression of the collagen extracellular matrix in response to medial collateral ligament (MCL) injury repair in hindlimb unloaded (HLU) rodents. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing (Amb-healing), and HLU-healing groups. Amb- and HLU-healing animals underwent bilateral surgical transection of their MCLs, whereas control animals were subjected to sham surgeries. All surgeries were performed under isoflurane anesthesia. After 3 wk or 7 wk of HLU, rats were euthanized and MCLs were surgically isolated and prepared for molecular or biochemical analyses. Hydroxyproline concentration and hydroxylysylpyridinoline collagen cross-link contents were measured by HPLC and showed a substantial decrement in surgical groups. MCL tissue cellularity, quantified by DNA content, remained significantly elevated in all HLU-healing groups vs. Amb-healing groups. MCL gene expression of collagen type I, collagen type III, collagen type V, fibronectin, decorin, biglycan, lysyl oxidase, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1, measured by real-time quantitative PCR, demonstrated differential expression in the HLU-healing groups compared with Amb-healing groups at both the 3- and 7-wk time points. Together, these data suggest that HLU affects dense fibrous connective tissue wound healing and confirms previous morphological and biomechanical data that HLU inhibits the ligament repair processes.
Collapse
Affiliation(s)
- D A Martinez
- Connective Tissue Physiology Laboratory, Department of Health and Human Performance, Univ. of Houston, N207 D Engineering Bldg. 1, Houston, TX 77204-4006, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Injuries to tendons are common in both human athletes as well as in animals, such as the horse, which are used for competitive purposes. Furthermore, such injuries are also increasing in prevalence in the ageing, sedentary population. Tendon diseases often respond poorly to treatment and require lengthy periods of rehabilitation. The tendon has a unique extracellular matrix, which has developed to withstand the mechanical demands of such tensile-load bearing structures. Following injury, any repair process is inadequate and results in tissue that is distinct from original tendon tissue. There is growing evidence for the key role of the tendon cell (tenocyte) in both the normal physiological homeostasis and regulation of the tendon matrix and the pathological derangements that occur in disease. In particular, the tenocyte is considered to have a major role in effecting the subclinical matrix degeneration that is thought to occur prior to clinical disease, as well as in the severe degradative events that occur in the tendon at the onset of clinical disease. Furthermore, the tenocyte is likely to have a central role in the production of the biologically inadequate fibrocartilaginous repair tissue that develops subsequent to tendinopathy. Understanding the biology of the tenocyte is central to the development of appropriate interventions and drug therapies that will either prevent the onset of disease, or lead to more rapid and appropriate repair of injured tendon. Central to this is a full understanding of the proteolytic response in the tendon in disease by such enzymes as metalloproteinases, as well as the control of the inappropriate fibrocartilaginous differentiation. Finally, it is important that we understand the role of both intrinsic and extrinsic cellular elements in the repair process in the tendon subsequent to injury.
Collapse
Affiliation(s)
- Peter D Clegg
- Department of Veterinary Clinical Science, University of Liverpool Veterinary Teaching Hospital, Leahurst, Neston, UK.
| | | | | |
Collapse
|
47
|
Wenkert D, Mumm S, Wiegand SM, McAlister WH, Whyte MP. Absence of MMP2 mutation in idiopathic multicentric osteolysis with nephropathy. Clin Orthop Relat Res 2007; 462:80-6. [PMID: 17563705 DOI: 10.1097/blo.0b013e3180d09db8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genetic basis of idiopathic multicentric osteolysis with nephropathy is unknown. This disorder is typically a sporadic, but sometimes an autosomal dominant, condition featuring carpal-tarsal destruction and nephropathy causing renal failure. Loss-of-function mutation within the gene encoding matrix metalloproteinase 2 (MMP2) causes the autosomal recessive disorder nodulosis-arthropathy-osteolysis syndrome characterized by carpal-tarsal destruction, subcutaneous nodules, and generalized osteoporosis. We questioned whether sporadic idiopathic multicentric osteolysis with nephropathy is allelic with nodulosis-arthropathy osteolysis syndrome and undertook sequence analysis of the matrix metalloproteinase 2 gene in three unrelated affected boys. Although symptoms appeared by age 2 years, idiopathic multicentric osteolysis was diagnosed at ages 5, 5, and 12 years with flares of pain and limited motion or swelling of wrists, ankles, elbows, knees, and shoulders. Proteinuria was present on referral at ages 8, 7, and 12 years, respectively. Kidney transplantation was necessary for one boy at age 17 years. Coding exons and adjacent mRNA splice sites of the matrix metalloproteinase 2 gene were analyzed by polymerase chain reaction amplification and DNA sequencing. Matrix metalloproteinase 2 gene analysis was negative for mutation in the three patients. Sequence analysis of the matrix metalloproteinase 2 gene shows sporadic idiopathic multicentric osteolysis with nephropathy is not allelic to nodulosis-arthropathy-osteolysis syndrome. The genetic bases of idiopathic multicentric osteolysis disorders remain unknown.
Collapse
Affiliation(s)
- Deborah Wenkert
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
48
|
Bildt MM, Henneman S, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW. CMT-3 inhibits orthodontic tooth displacement in the rat. Arch Oral Biol 2007; 52:571-8. [PMID: 17174265 DOI: 10.1016/j.archoralbio.2006.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/25/2006] [Accepted: 11/06/2006] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Orthodontic tooth movement requires extensive remodeling of the periodontal ligament (PDL) and the alveolar bone. Osteoclasts resorb bone, allowing teeth to migrate in the direction of the force. Matrix metalloproteinases (MMPs) are able to degrade the extracellular matrix of the periodontal tissues. Chemically modified tetracyclines (CMTs) can inhibit MMPs, but lack antimicrobial activity. We hypothesize that CMT-3 will decrease the rate of orthodontic tooth movement in the rat. DESIGN Eighteen Wistar rats received a standardized orthodontic appliance at one side of the maxilla. During 14 days, three groups of six rats received a daily dose of 0, 6 or 30mg/kg CMT-3, and tooth displacement was measured. Thereafter, osteoclasts were counted on histological sections using an ED-1 staining. Multi- and mononuclear ED-1-positive cells in the PDL were also counted. In addition, sections were stained for MMP-9. RESULTS CMT-3 significantly inhibited tooth movement (p=0.03) and also decreased the number of osteoclasts at the compression sides in the 30mg/kg group (p<0.05). Significantly more mono- than multinuclear ED-1-positive cells were present in the PDL, but no significant differences were found between the dosage groups. Osteoclasts in the 30mg/kg group seemed to contain less MMP-9 than in the control. CONCLUSIONS CMT-3 inhibits tooth movement in the rat, probably by reducing the number of osteoclasts at the compression side. This might be due to induction of apoptosis in activated osteoclasts or reduced osteoclast migration. Reduced MMP activity by CMT-3 might also directly inhibit degradation of the organic bone matrix.
Collapse
Affiliation(s)
- M M Bildt
- Radboud University Nijmegen Medical Centre, Department of Orthodontics & Oral Biology, Philips van Leydenlaan 25, Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
49
|
Takeyama N, Sakai H, Ohtake H, Mashitori H, Tamai K, Saotome K. Effects of hyperbaric oxygen on gene expressions of procollagen, matrix metalloproteinase and tissue inhibitor of metalloproteinase in injured medial collateral ligament and anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2007; 15:443-52. [PMID: 17187281 DOI: 10.1007/s00167-006-0241-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/09/2006] [Indexed: 01/12/2023]
Abstract
Animal experiments were performed to investigate whether and how the administration of hyperbaric oxygen (HBO) affects gene expressions of procollagens, matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in injured medial collateral ligament (MCL) and anterior cruciate ligament (ACL). In 64 Sprague-Dawley rats, the MCL of the left knee was lacerated at the midsubstance, and the ACL of the left knee was lacerated adjacent to the tibial insertion in another 64 rats. Of these, 32 rats with lacerated MCL and 32 rats with lacerated ACL were housed in individual cages at normal atmospheric pressure (Groups MC and AC, respectively), while the remaining 64 rats were exposed to 100% oxygen at 2.5 atmospheres absolute for 2 h for 5 days a week (Groups MH and AH, respectively). Rats were sacrificed at 3, 7, 14 and 28 days postoperatively. After macroscopic examination, bilateral MCLs were harvested from Groups MC and MH, and bilateral ACLs from Groups AC and AH. Total RNA was extracted from each specimen and gene expressions of type I and type III procollagens, MMP-2, -9 and -3, and TIMP-1 and -2 were estimated using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Macroscopically, lacerated MCL healed by scar tissue formation, the amount of which appeared to be greater in Group MH than in Group MC. In contrast, no lacerated ACLs united, and little, if any, differences were apparent in macroscopic findings between Groups AH and AC. Gene expression of type I procollagen was significantly greater in Group MH than in Group MC at 7 days postoperatively and was also significantly greater in Group AH than in Group AC at 28 days (P<0.05). No significant differences in type III procollagen gene expression were noted between Groups MH and MC or between Groups AH and AC. In addition, no significant differences in gene expressions of MMPs were seen in either ligament, except that gene expression of MMP-13 was significantly lower at 7 days in Group MH than in Group MC (P<0.05). Gene expressions of TIMPs did not differ significantly between Groups MH and MC in each time interval, whereas gene expressions of TIMPs were significantly greater in Group AH than in Group AC at 7, 14 and 28 days for TIMP-1 and at 3, 7 and 14 days for TIMP-2 (P<0.05). RT-PCR results suggested that HBO enhances structural protein synthesis and inhibits degradative processes by enhancing TIMP activities in the lacerated ACL. However, none of the lacerated ACLs united macroscopically despite administration of HBO, indicating that the effect of HBO is insufficient for healing of the injured ACL. If HBO therapy is used as an adjunctive therapy after primary repair of the injured ACL, the success rate of surgery seems likely to be increased.
Collapse
Affiliation(s)
- Noriyuki Takeyama
- Department of Orthopaedic Surgery, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Montesano R, Carrozzino F, Soulié P. Low concentrations of transforming growth factor-beta-1 induce tubulogenesis in cultured mammary epithelial cells. BMC DEVELOPMENTAL BIOLOGY 2007; 7:7. [PMID: 17288590 PMCID: PMC1802066 DOI: 10.1186/1471-213x-7-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 02/08/2007] [Indexed: 01/08/2023]
Abstract
Background Formation of branching tubes is a fundamental step in the development of glandular organs. To identify extracellular cues that orchestrate epithelial tubulogenesis, we employed an in vitro assay in which EpH4-J3B1A mammary epithelial cells form spheroidal cysts when grown in collagen gels under serum-free conditions, but form branching tubules in the presence of fetal calf serum (FCS). Results Initial experiments showed that the tubulogenesis-inducing activity of FCS was markedly increased by heating (70°C) or transient acidification to pH3. We therefore hypothesized that the tubulogenic agent was transforming growth factor-beta (TGF-beta), a cytokine that is present in serum in latent form and can be activated by heat or acid treatment. We found indeed that the tubulogenic activity of acidified FCS is abrogated by addition of either SB-431542, a selective inhibitor of the TGF-beta type I receptor, or a neutralizing antibody to TGF-beta-1. On the other hand, addition of low concentrations (20–100 pg/ml) of exogenous TGF-beta-1 recapitulated the effect of acidified FCS in inducing morphogenesis of hollow tubes. In contrast, higher concentrations of TGF-beta-1 induced the formation of thin cellular cords devoid of a detectable lumen. To gain insight into the mechanisms underlying TGF-beta-1-induced tube formation, we assessed the potential role of matrix metalloproteinases (MMPs). By western blot and gelatin zymography, we observed a dose-dependent increase in MMP-9 upon TGF-beta-1 treatment. Tube formation was suppressed by a synthetic broad-spectrum metalloproteinase inhibitor, by recombinant tissue inhibitor of metalloproteinases-2 (TIMP-2) and by a selective inhibitor of MMP-9, indicating that this morphogenetic process requires the activity of MMP-9. Conclusion Altogether, our results provide evidence that, at low concentrations, TGF-beta-1 promotes MMP-dependent branching tubulogenesis by mammary epithelial cells in vitro, and suggest that it plays a similar role during mammary gland development in vivo.
Collapse
Affiliation(s)
- Roberto Montesano
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Fabio Carrozzino
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Priscilla Soulié
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| |
Collapse
|