1
|
Suzuki Y, Nampei M, Kawakita F, Oinaka H, Nakajima H, Suzuki H. The effect of Fibulin-5 on early brain injury after subarachnoid hemorrhage in mice. Neurochem Int 2025; 187:105989. [PMID: 40339910 DOI: 10.1016/j.neuint.2025.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Early brain injury (EBI) is an important cause that determines outcomes after aneurysmal subarachnoid hemorrhage (SAH). Our recent clinical study reported that a high concentration of plasma fibulin-5 (FBLN5), one of matricellular proteins, was associated with poor outcomes after SAH. The aim of this study was to investigate whether and how FBLN5 was associated with EBI during an acute phase of SAH in mice. C57BL/6 male mice underwent sham or filament perforation SAH modeling, and vehicle or four dosages (0.001, 0.01, 0.1, and 1 μg) of short or long recombinant FBLN5 (rFBLN5) were randomly administrated by an intracerebroventricular injection. Neurobehavioral test, measurements of brain water content, immunohistochemical staining, and Western blotting were performed to evaluate EBI 24 h after SAH. Short rFBLN5 had no significant effects on EBI, but administration of long rFBLN5 containing an arginine-glycine-aspartic acid motif improved neurobehavior functions depending on the dosages, without affecting brain edema. Administration of long rFBLN5 also reduced cleaved caspase-3-dependent neuronal apoptosis, associated with the inhibition of post-SAH upregulation of transforming growth factor-β1, but no significant changes in the expression level of Smad 2/3, mitogen-activated protein kinases, and another matricellular protein tenascin-C. Although further research is required to clarify the detailed mechanism, this study demonstrated for the first time that FBLN5 played a protective role against neuronal apoptosis in an acute phase of experimental SAH.
Collapse
Affiliation(s)
- Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
2
|
Xu H, Hu K, Wang Y, Cai S, Wu F, Bao J, Hu Q, Guan Y, Tao Y, Lu J. Single-cell transcriptome sequencing reveals the mechanism of Realgar improvement on erythropoiesis in mice with myelodysplastic syndrome. Cancer Cell Int 2025; 25:135. [PMID: 40200265 PMCID: PMC11978147 DOI: 10.1186/s12935-025-03768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Myelodysplastic syndrome (MDS) is a malignant hematologic disorder with limited curative options, primarily reliant on hematopoietic stem cell transplantation. Anemia, a prevalent symptom of MDS, has few effective treatment strategies. Realgar, though known for its therapeutic effects on MDS, remains poorly understood in terms of its mechanism of action. In this study, both in vivo and in vitro experiments were conducted using Realgar and its primary active component, As2S2, to examine their impact on mouse erythroblasts at the single-cell level. Realgar treatment significantly altered the transcriptional profiles and cellular composition of bone marrow in mice, both in vivo and in vitro. Differentially expressed genes in erythroblasts regulated by Realgar were identified, unveiling potential regulatory functions and signaling pathways, such as heme biosynthesis, hemoglobin production, oxygen binding, IL-17 signaling, and MAPK pathways. These findings suggest that Realgar enhances the differentiation of erythroblasts in mouse bone marrow and improves overall blood cell counts. This work offers preliminary insights into Realgar's mechanisms, expands the understanding of this mineral medicine, and may inform strategies to optimize its therapeutic potential in hematologic diseases.
Collapse
Affiliation(s)
- Hao Xu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kexin Hu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanlu Wang
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Cai
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Wu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jizhang Bao
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Hu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Guan
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuchen Tao
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jiahui Lu
- Clinical Hematology Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2025; 36:189-208. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
4
|
Herrmann A, Sepuru KM, Bai P, Endo H, Nakagawa A, Kusano S, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-regulation of plant developmental signaling by the immune peptide-receptor pathway. SCIENCE ADVANCES 2025; 11:eads3718. [PMID: 39908379 PMCID: PMC11797554 DOI: 10.1126/sciadv.ads3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Cells sense and integrate multiple signals to coordinate a response. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here, we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA pathway. kC9 binds to and inhibits the downstream mitogen-activated protein kinase MPK6, perturbing its substrate interaction. Notably, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-regulation depends on the immune receptor FLS2 (FLAGELLIN SENSING 2) and occurs even in the absence of kC9 if the ERECTA family receptor population becomes suboptimal. Proliferating stomatal lineage cells are vulnerable to this immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by mitogen-activated protein kinase homeostasis, reflecting the availability of upstream receptors, thereby providing an unanticipated view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pengfei Bai
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Pantho AF, Mohamed S, Govande JV, Rane R, Vora N, Kelso KR, Kuehl TJ, Lindheim SR, Uddin MN. Pravastatin Protects Cytotrophoblasts from Hyperglycemia-Induced Preeclampsia Phenotype. Cells 2024; 13:1534. [PMID: 39329718 PMCID: PMC11430553 DOI: 10.3390/cells13181534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
There are no effective therapies to prevent preeclampsia (PE). Pravastatin shows promise by attenuating processes associated with PE such as decreased cytotrophoblast (CTB) migration, aberrant angiogenesis, and increased oxidative stress. This study assesses the effects of pravastatin on hyperglycemia-induced CTB dysfunction. METHODS Human CTB cells were treated with 100, 150, 200, 300, or 400 mg/dL glucose for 48 h. Some cells were pretreated with pravastatin (1 µg/mL), while others were cotreated with pravastatin and glucose. The expression of urokinase plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1) mRNA, vascular endothelial growth factor (VEGF), placenta growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble endoglin (sEng) were measured. CTB migration was assayed using a CytoSelect migration assay kit. Statistical comparisons were performed using an analysis of variance with Duncan's post hoc test. RESULTS The hyperglycemia-induced downregulation of uPA was attenuated in CTB cells pretreated with pravastatin at glucose levels > 200 mg/dL and cotreated at glucose levels > 300 mg/dL (p < 0.05). Hyperglycemia-induced decreases in VEGF and PlGF and increases in sEng and sFlt-1 were attenuated in both the pretreatment and cotreatment samples regardless of glucose dose (p < 0.05). Pravastatin attenuated hyperglycemia-induced dysfunction of CTB migration. CONCLUSIONS Pravastatin mitigates stress signaling responses in hyperglycemic conditions, weakening processes leading to abnormal CTB migration and invasion associated with PE in pregnancy.
Collapse
Affiliation(s)
- Ahmed F. Pantho
- Artemis Biotechnologies LLC, Temple, TX 76504, USA; (A.F.P.); (T.J.K.)
| | - Sara Mohamed
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | | | - Riddhi Rane
- Texas A&M University College of Medicine, College Station, TX 77807, USA;
| | - Niraj Vora
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | - Kelsey R. Kelso
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | - Thomas J. Kuehl
- Artemis Biotechnologies LLC, Temple, TX 76504, USA; (A.F.P.); (T.J.K.)
| | - Steven R. Lindheim
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
| | - Mohammad N. Uddin
- Artemis Biotechnologies LLC, Temple, TX 76504, USA; (A.F.P.); (T.J.K.)
- Baylor Scott & White Health, Temple, TX 76508, USA; (S.M.); (N.V.); (K.R.K.); (S.R.L.)
- Texas A&M University College of Medicine, College Station, TX 77807, USA;
| |
Collapse
|
6
|
Wang Y, Jiang Y, Chen J, Gong H, Qin Q, Wei S. In vitro antiviral activity of eugenol on Singapore grouper iridovirus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109748. [PMID: 38964434 DOI: 10.1016/j.fsi.2024.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 μM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.
Collapse
Affiliation(s)
- Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hannan Gong
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
7
|
Herrmann A, Sepuru KM, Endo H, Nakagawa A, Kusano S, Bai P, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-activation of plant developmental signaling by the immune peptide-receptor pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605519. [PMID: 39131359 PMCID: PMC11312451 DOI: 10.1101/2024.07.29.605519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cells sense and integrate multiple signals to coordinate development and defence. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA receptor-kinase pathway. kC9 binds to and inhibits the downstream MAP kinase MPK6, perturbing its substrate interaction. Strikingly, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-activation of stomatal development by immune signaling depends on the immune receptor FLS2 and occurs even in the absence of kC9 if the ERECTA-family receptor population becomes suboptimal. Furthermore, proliferating stomatal-lineage cells are vulnerable to the immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by MAP Kinase homeostasis reflecting the availability of upstream receptors, thereby providing a novel view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603–8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
8
|
Rodríguez-González J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Human Dendritic Cell Maturation Is Modulated by Leishmania mexicana through Akt Signaling Pathway. Trop Med Infect Dis 2024; 9:118. [PMID: 38787051 PMCID: PMC11126033 DOI: 10.3390/tropicalmed9050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through the secretion of cytokines. Several studies have demonstrated that Leishmania inhibits DC maturation. Nevertheless, when cells are subjected to a second stimulus such as LPS/IFN-γ, they manage to mature. In the maturation process of DC, several signaling pathways have been implicated, importantly MAPK. On the other hand, Akt is a signaling pathway deeply involved in cell survival. Some Leishmania species have shown to activate MAPK and Akt in different cells. The aim of this work was to investigate the role of ERK and Akt in the maturation of monocyte-derived DC (moDC) infected with L. mexicana. moDC were infected with L. mexicana metacyclic promastigotes, and the phosphorylation of ERK and Akt, the expression of MHCII and CD86 and IL-12 transcript, and secretion were determined in the presence or absence of an Akt inhibitor. We showed that L. mexicana induces a sustained Akt and ERK phosphorylation, while the Akt inhibitor inhibits it. Moreover, the infection of moDC downregulates CD86 expression but not MHCII, and the Akt inhibitor reestablishes CD86 expression and 12p40 production. Thus, L. mexicana can modulate DC maturation though Akt signaling.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez, Oaxaca C.P. 68120, Mexico;
| | - Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| |
Collapse
|
9
|
Mohamed S, Kundysek W, Vora N, Govande V, Bajwa R, Uddin MN. Diabetic pregnancy: A literature review of maternal and neonatal adverse outcomes. Int J Reprod Biomed 2024; 23:131-140. [PMID: 40371362 PMCID: PMC12070054 DOI: 10.18502/ijrm.v23i2.18482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/24/2024] [Accepted: 01/25/2025] [Indexed: 05/16/2025] Open
Abstract
Of all pregnant women in the United States an average of 1.5% reported to have type 1 or type 2 diabetes mellitus. Our review article will discuss and explore the relationship between pre-pregnancy diabetes and its adverse outcomes in mothers and neonates. Diabetes in pregnancy can cause a myriad of complications, many of which are related to microvascular changes, including diabetic nephropathy and retinopathy associated with preterm delivery, cesarean sections, and intrauterine growth restriction. Pregnant patients with diabetes also have an increased risk of pre-eclampsia, likely due to complications related to abnormal structure and function of the placenta. In addition, cardiovascular complications are more common and may present antepartum, intrapartum, or postpartum. Adverse neonatal outcomes that have been observed in diabetic pregnancies include fetal stillbirth and perinatal death, macrosomia, congenital malformations, respiratory distress, and neurological impairments. These complications explain the increased morbidity and mortality rate of infants of diabetic mothers, and the increased frequency of neonatal intensive care unit hospitalizations after birth. Diabetes in pregnancy causes a spectrum of changes in the maternal-fetal interface. This review addresses the placental changes during pregnancy and its adverse maternal and neonatal outcomes. We strongly believe the material discussed in this article can help in understanding the effects of diabetes during pregnancy which will ultimately aid in designing interventions to prevent these adverse outcomes.
Collapse
Affiliation(s)
- Sara Mohamed
- Department of Neonatology, Baylor Scott & White Health, Temple, Texas, USA
| | - Waverly Kundysek
- Texas A&M University School of Medicine, College Station, Texas, USA
| | - Niraj Vora
- Department of Neonatology, Baylor Scott & White Health, Temple, Texas, USA
| | - Vinayak Govande
- Department of Neonatology, Baylor Scott & White Health, Temple, Texas, USA
| | - Raza Bajwa
- Department of Neonatology, Baylor Scott & White Health, Temple, Texas, USA
| | - Mohammad Nasir Uddin
- Department of Neonatology, Baylor Scott & White Health, Temple, Texas, USA
- Texas A&M University School of Medicine, College Station, Texas, USA
| |
Collapse
|
10
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
11
|
Ortega L, Carrera C, Muñoz-Flores C, Salazar S, Villegas MF, Starck MF, Valenzuela A, Agurto N, Montesino R, Astuya A, Parra N, Pérez ET, Santibáñez N, Romero A, Ruíz P, Lamazares E, Reyes F, Sánchez O, Toledo JR, Acosta J. New insight into the biological activity of Salmo salar NK-lysin antimicrobial peptides. Front Immunol 2024; 15:1191966. [PMID: 38655253 PMCID: PMC11035819 DOI: 10.3389/fimmu.2024.1191966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.
Collapse
Affiliation(s)
- Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Santiago Salazar
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F. Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María F. Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS) Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ercilia T. Pérez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natacha Santibáñez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Pamela Ruíz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Talcahuano, Chile
| | - Emilio Lamazares
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fátima Reyes
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
12
|
Alarçin E, Yaşayan G, Bal-Öztürk A, Cecen B. Hydrogel Biomaterial in Bone Tissue Engineering. BIOMATERIAL-BASED HYDROGELS 2024:387-427. [DOI: 10.1007/978-981-99-8826-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Ansari S, Gupta N, Verma R, Singh ON, Gupta J, Kumar A, Yadav MK, Binayke A, Tiwari M, Periwal N, Sood V, Mani S, Awasthi A, Shalimar, Nayak B, Ranjith‐Kumar CT, Surjit M. Antiviral activity of the human endogenous retrovirus‐R envelope protein against SARS‐CoV‐2. EMBO Rep 2023; 24:e55900. [PMCID: PMC10328075 DOI: 10.15252/embr.202255900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 09/29/2023] Open
Abstract
Coronavirus‐induced disease‐19 (COVID‐19), caused by SARS‐CoV‐2, is still a major global health challenge. Human endogenous retroviruses (HERVs) represent retroviral elements that were integrated into the ancestral human genome. HERVs are important in embryonic development as well as in the manifestation of diseases, including cancer, inflammation, and viral infections. Here, we analyze the expression of several HERVs in SARS‐CoV‐2‐infected cells and observe increased activity of HERV‐E, HERV‐V, HERV‐FRD, HERV‐MER34, HERV‐W, and HERV‐K‐HML2. In contrast, the HERV‐R envelope is downregulated in cell‐based models and PBMCs of COVID‐19 patients. Overexpression of HERV‐R inhibits SARS‐CoV‐2 replication, suggesting its antiviral activity. Further analyses demonstrate the role of the extracellular signal‐regulated kinase (ERK) in regulating HERV‐R antiviral activity. Lastly, our data indicate that the crosstalk between ERK and p38 MAPK controls the synthesis of the HERV‐R envelope protein, which in turn modulates SARS‐CoV‐2 replication. These findings suggest the role of the HERV‐R envelope as a prosurvival host factor against SARS‐CoV‐2 and illustrate a possible advantage of integration and evolutionary maintenance of retroviral elements in the human genome.
Collapse
Affiliation(s)
- Shabnam Ansari
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Nidhi Gupta
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
- Present address:
Department of BiochemistryAll India Institute of Medical SciencesNew DelhiIndia
| | - Rohit Verma
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Oinam N Singh
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Jyoti Gupta
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Amit Kumar
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Mukesh Kumar Yadav
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Akshay Binayke
- Immunobiology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Mahima Tiwari
- Translational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Neha Periwal
- Department of Biochemistry, School of Chemical and Life SciencesJamia Hamdard UniversityNew DelhiIndia
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life SciencesJamia Hamdard UniversityNew DelhiIndia
| | - Shailendra Mani
- Translational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Amit Awasthi
- Immunobiology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| | - Shalimar
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Baibaswata Nayak
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - CT Ranjith‐Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha UniversityNew DelhiIndia
| | - Milan Surjit
- Virology LaboratoryTranslational Health Science and Technology Institute, NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
14
|
Sameni M, Mirmotalebisohi SA, Dehghan Z, Abooshahab R, Khazaei-Poul Y, Mozafar M, Zali H. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech 2023; 13:117. [PMID: 37070032 PMCID: PMC10090260 DOI: 10.1007/s13205-023-03518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/28/2023] Open
Abstract
The world has recently been plagued by a new coronavirus infection called SARS-CoV-2. This virus may lead to severe acute respiratory syndrome followed by multiple organ failure. SARS-CoV-2 has approximately 80-90% genetic similarity to SARS-CoV. Given the limited omics data available for host response to the viruses (more limited data for SARS-CoV-2), we attempted to unveil the crucial molecular mechanisms underlying the SARS-CoV-2 pathogenesis by comparing its regulatory network motifs with SARS-CoV. We also attempted to identify the non-shared crucial molecules and their functions to predict the specific mechanisms for each infection and the processes responsible for their different manifestations. Deciphering the crucial shared and non-shared mechanisms at the molecular level and signaling pathways underlying both diseases may help shed light on their pathogenesis and pave the way for other new drug repurposing against COVID-19. We constructed the GRNs for host response to SARS-CoV and SARS-CoV-2 pathogens (in vitro) and identified the significant 3-node regulatory motifs by analyzing them topologically and functionally. We attempted to identify the shared and non-shared regulatory elements and signaling pathways between their host responses. Interestingly, our findings indicated that NFKB1, JUN, STAT1, FOS, KLF4, and EGR1 were the critical shared TFs between motif-related subnetworks in both SARS and COVID-1, which are considered genes with specific functions in the immune response. Enrichment analysis revealed that the NOD-like receptor signaling, TNF signaling, and influenza A pathway were among the first significant pathways shared between SARS and COVID-19 up-regulated DEGs networks, and the term "metabolic pathways" (hsa01100) among the down-regulated DEGs networks. WEE1, PMAIP1, and TSC22D2 were identified as the top three hubs specific to SARS. However, MYPN, SPRY4, and APOL6 were the tops specific to COVID-19 in vitro. The term "Complement and coagulation cascades" pathway was identified as the first top non-shared pathway for COVID-19 and the MAPK signaling pathway for SARS. We used the identified crucial DEGs to construct a drug-gene interaction network to propose some drug candidates. Zinc chloride, Fostamatinib, Copper, Tirofiban, Tretinoin, and Levocarnitine were the six drugs with higher scores in our drug-gene network analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03518-x.
Collapse
Affiliation(s)
- Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yalda Khazaei-Poul
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Chen Q, Che C, Yang S, Ding P, Si M, Yang G. Anti-inflammatory effects of extracellular vesicles from Morchella on LPS-stimulated RAW264.7 cells via the ROS-mediated p38 MAPK signaling pathway. Mol Cell Biochem 2023; 478:317-327. [PMID: 35796909 PMCID: PMC9886593 DOI: 10.1007/s11010-022-04508-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
Morchella is a kind of important edible and medicinal fungi, which is rich in polysaccharides, enzymes, fatty acids, amino acids and other active components. Extracellular vesicles (EVs) have a typical membrane structure, and the vesicles contain some specific lipids, miRNAs and proteins, and their can deliver the contents to different cells to change their functions. The present study investigated whether Morchella produce extracellular vesicles and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The experimental results showed that Morchella produced extracellular vesicles and significantly reduced the production of nitric oxide (NO) and reactive oxygen species (ROS) in a model of LPS-induced inflammation. In addition, the expression of inflammatory factor-related genes such as inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) showed dose-dependent inhibition. Morchella extracellular vesicles also can inhibit the inflammatory response induced by LPS by inhibiting the production of ROS and reducing the phosphorylation levels of the p38 MAPK signaling pathway. These results indicate that the Morchella extracellular vesicles can be used as a potential anti-inflammatory substance in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Qi Chen
- grid.412638.a0000 0001 0227 8151College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165 People’s Republic of China
| | - Chengchuan Che
- grid.412638.a0000 0001 0227 8151College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165 People’s Republic of China
| | - Shanshan Yang
- grid.412638.a0000 0001 0227 8151College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165 People’s Republic of China
| | - Pingping Ding
- grid.412638.a0000 0001 0227 8151College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165 People’s Republic of China
| | - Meiru Si
- grid.412638.a0000 0001 0227 8151College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165 People’s Republic of China
| | - Ge Yang
- grid.412638.a0000 0001 0227 8151College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165 People’s Republic of China
| |
Collapse
|
16
|
Molecular characterization and elucidation of the function of Hap38 MAPK in the response of Helicoverpa armigera (Hübner) to UV-A stress. Sci Rep 2022; 12:18489. [PMID: 36323798 PMCID: PMC9630311 DOI: 10.1038/s41598-022-23363-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), an important pest of cotton, is detrimental to cotton production. Light from UV-A ultraviolet lamps is regarded as a form of environmental stress for insects. In order to investigate the response of H. armigera exposed to UV-A, we explored Hap38 MAPK expression and functions. We hope that the findings of this study will lay the foundation for future investigations into the insect's phototaxis mechanism. A p38 MAPK was cloned and named Hap38 MAPK. A phylogenetic tree showed that Hap38 MAPK was highly conserved. The gene was highly expressed in the thorax and females. Under UV-A stress, the expression of the gene decreased significantly. After silencing Hap38 MAPK, the activity of the antioxidant enzymes SOD, POD, CAT, and GR decreased. This study suggested that Hap38 MAPK responds to UV-A irradiation and plays critical roles in the defense response to environmental stresses.
Collapse
|
17
|
Hassan T, Qiu Y, Hasan MR, Saito T. Effects of Dentin Phosphophoryn-Derived RGD Peptides on the Differentiation and Mineralization of Human Dental Pulp Stem Cells In Vitro. Biomedicines 2022; 10:2781. [PMID: 36359301 PMCID: PMC9687143 DOI: 10.3390/biomedicines10112781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/12/2023] Open
Abstract
The purposes of this study were to investigate the in vitro effects of arginine-glycine-aspertic acid (RGD) peptides derived from human dentin phosphophoryn (DPP) on human dental pulp stem cell-proliferation, differentiation and mineralization, and to explore the mechanism of the peptides' function. The 1 M concentration of soluble DPP-derived RGD peptides, RGD-1, RGD-2 and RGD-3 were coated onto non-tissue-culture polystyrene plates, and human dental pulp stem cells (hDPSCs) were cultured on them to examine the effects of the peptides on hDPSCs. In addition, 1 M arginine-alanine-aspertic acid (RAD) peptides were used as the control. Cell proliferation of hDPSCs was promoted by all three RGD peptides. All three RGD peptides had significantly higher alkaline phosphatase (ALP) activity compared to the control. RGD-3 induced the highest ALP activity compared to the control. RGD-3 also significantly promoted the mRNA expression of the following genes: 1.69-fold in dentine matrix protein-1 (DMP-1), 1.99-fold in dentine sialophosphoprotein (DSPP), 1.51-fold in ALP, and 2.31-fold in bone sialoprotein (BSP), as compared to the control group. Mineralization of hDPSCs was accelerated by all three RGD peptides, RGD-3 in particular. The MAPK p38 inhibitor SB202190 inhibited the effect of RGD-3 to a level comparable to the control, observed in both ALP activity assay and Arizarin red S (ARS) staining. It suggests that the p38 pathway may be responsible for eliciting the differentiation and mineralization effects of DPP-derived RGD peptides in the hDPSCs. The mRNA expression levels of the integrins ITGA1-5, ITGA7, ITGB1 and ITGB3 were significantly upregulated. Among them, expression of ITGA5 was promoted 1.9-fold, ITGA7 1.58-fold, ITGB1 1.75-fold and ITGB3 1.9-fold compared to the control. It suggests the possible involvement of these integrin channels in different subunit combinations facilitating signal transduction for differentiation of hDPSCs into odontoblasts. As conclusions, human DPP-derived RGD peptides RGD-1, RGD-2 and RGD-3 promoted the proliferation, differentiation and mineralization of hDPSCs in vitro. Among the three peptides, RGD-3 had the most significant effects. It is also suggested that RGD-3 binds to integrin receptors on the surface of hDPSCs and regulates the odontogenic gene expression and differentiation via activation of p38 of MAPK pathway. DPP-derived RGD-3 may be a promising choice in the formulation of a novel material for vital pulp therapy to induce dental pulp stem cells into odontoblasts and form reparative dentin on the exposed pulp tissue.
Collapse
Affiliation(s)
- Tubayesha Hassan
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Hokkaido, Japan
| | - Youjing Qiu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
| | - Md Riasat Hasan
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Hokkaido, Japan
| | - Takashi Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu 061-0293, Hokkaido, Japan
| |
Collapse
|
18
|
Duan Y, Zhang W, Chen X, Wang M, Zhong L, Liu J, Bian W, Zhang S. Genome-wide identification and expression analysis of mitogen-activated protein kinase (MAPK) genes in response to salinity stress in channel catfish (Ictalurus punctatus). JOURNAL OF FISH BIOLOGY 2022; 101:972-984. [PMID: 35818162 DOI: 10.1111/jfb.15158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) gene family has been systematically described in several fish species, but less so in channel catfish (Ictalurus punctatus), which is an important global aquaculture species. In this study, 16 MAPK genes were identified in the channel catfish genome and classified into three subfamilies based on phylogenetic analysis, including six extracellular signal regulated kinase (ERK) genes, six p38-MAPK genes and four C-Jun N-terminal kinase (JNK) genes. All MAPK genes were distributed unevenly across 10 chromosomes, of which three (IpMAPK8, IpMAPK12 and IpMAPK14) underwent teleost-specific whole genome duplication during evolution. Gene expression profiles in channel catfish during salinity stress were analysed using transcriptome sequencing and qRT-PCR (quantitative reverse transcription PCR). Results from reads per kilobase million (RPKM) analysis showed IpMAPK13, IpMAPK14a and IpMAPK14b genes were differentially expressed when compared with other genes between treatment and control groups. Furthermore, three of these genes were validated by qRT-PCR, of which IpMAPK14a expression levels were significantly upregulated in treatment groups (high and low salinity) when compared with the control group, with the highest expression levels in the low salinity group (P < 0.05). Therefore, IpMAPK14a may have important response roles to salinity stress in channel catfish.
Collapse
Affiliation(s)
- Yongqiang Duan
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenping Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ju Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
19
|
Chen Q, Wei Y, Zhao Y, Xie X, Kuang N, Wei Y, Yu M, Hu T. Intervening Effects and Molecular Mechanism of Quercitrin on PCV2-Induced Histone Acetylation, Oxidative Stress and Inflammatory Response in 3D4/2 Cells. Antioxidants (Basel) 2022; 11:antiox11050941. [PMID: 35624806 PMCID: PMC9137775 DOI: 10.3390/antiox11050941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is the main pathogen causing porcine circovirus-associated diseases (PCVD/PCVADs), and infection of the host induces immunosuppression. Since quercitrin (QUE) has anti-inflammatory and antiviral activity, it is worth exploiting in animal diseases. In this study, the interventional effects and the molecular mechanism of QUE on PCV2-induced oxidative stress and inflammatory responses in 3D4/2 cells and the modulation of histone acetylation modifications were investigated. The ROS production was measured by DCFH-DA fluorescent probes. HAT and HDAC enzyme activity were determined by ELISA. Histone acetylation, oxidative stress and inflammation-related gene expression levels were measured by q-PCR. Histone H3 and H4 (AcH3 and AcH4) acetylation, oxidative stress and inflammation-related protein expression levels were measured by Western blot. The results showed that QUE treatment at different concentrations on PCV2-infected 3D4/2 cells was able to attenuate the production of ROS. Moreover, QUE treatment could also intervene in oxidative stress and decrease the enzyme activity of HAT and the mRNA expression level of HAT1, while it increased the enzyme activity of HDAC and HDAC1 mRNA expression levels and downregulated histone H3 and H4 (AcH3 and AcH4) acetylation modification levels. In addition, QUE treatment even downregulated the mRNA expression levels of IL-6, IL-8, IκB, AKT and p38, but upregulated the mRNA expression levels of IL-10, SOD, GPx1, p65, Keap1, Nrf2, HO-1 and NQO1. As to protein expression, QUE treatment downregulated the levels of iNOS, p-p65 and IL-8 as well as the phosphorylation expression of IκB and p38, while it upregulated the levels of HO-1 and NQO1. It was shown that QUE at 25, 50 or 100 μmol/L regulated p38MAPK and PI3K/AKT signaling pathways by downregulating cellular histone acetylation modification levels while inhibiting the NF-κB inflammatory signaling pathway and activating the Nrf2/HO-1 antioxidant signaling pathway, thus regulating the production of inflammatory and antioxidant factors and exerting both anti-inflammatory and antioxidant effects.
Collapse
|
20
|
MAPK Signaling Pathway Is Essential for Female Reproductive Regulation in the Cabbage Beetle, Colaphellus bowringi. Cells 2022; 11:cells11101602. [PMID: 35626638 PMCID: PMC9140119 DOI: 10.3390/cells11101602] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a well-conserved intracellular signal transduction pathway, and has important roles in mammalian reproduction. However, it is unknown whether MAPK also regulates insect reproductive mechanisms. Therefore, we investigated the role of the MAPK signaling pathway in ovarian growth and oviposition in the cabbage beetle Colaphellus bowringi, an economically important pest of Cruciferous vegetables. As an initial step, 14 genes from the extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK (P38) cascades were knocked down using RNA interference (RNAi). The results revealed that RNAi knockdown of MAPK-ERK kinase (MEK), ERK, Kinase suppressor of RAS 2 (KSR2), and P38 induced ovarian development stagnation, low fecundity, and decreased longevity, which indicate that ERK and P38 signaling pathways are important for female C. bowringi survival and reproduction. The potential regulatory role of ERK and P38 pathways in the female reproductive process was investigated using quantitative real-time PCR. We found that ERK pathway possibly regulated ecdysone biosynthesis and P38 pathway possibly involved in the germline stem cell (GSC) development and differentiation. Our findings demonstrated the importance of the MAPK signaling pathway in the female reproduction of insects, and further enhanced the molecular mechanism of female reproductive regulation in insects.
Collapse
|
21
|
Teegala LR, Elshoweikh Y, Gudneppanavar R, Thodeti S, Pokhrel S, Southard E, Thodeti CK, Paruchuri S. Protein Kinase C α and β compensate for each other to promote stem cell factor-mediated KIT phosphorylation, mast cell viability and proliferation. FASEB J 2022; 36:e22273. [PMID: 35349200 PMCID: PMC9298465 DOI: 10.1096/fj.202101838rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Mast cells (MCs) develop from hematopoietic progenitors and differentiate into mature MCs that reside within connective or mucosal tissues. Though the number of MCs in tissues usually remains constant, inflammation and asthma disturb this homeostasis, leading to proliferation of MCs. Understanding the signaling events behind this proliferative response could lead to the development of novel strategies for better management of allergic diseases. MC survival, proliferation, differentiation, and migration are all maintained by a MC growth factor, stem cell factor (SCF) via its receptor, KIT. Here, we explored how protein kinase C (PKC) redundancy influences MC proliferation in bone marrow‐derived MC (BMMC). We found that SCF activates PKCα and PKCβ isoforms, which in turn modulates KIT phosphorylation and internalization. Further, PKCα and PKCβ activate p38 mitogen activated protein kinase (MAPK), and this axis subsequently regulates SCF‐induced MC cell proliferation. To ascertain the individual roles of PKCα and PKCβ, we knocked down either PKCα or PKCβ or both via short hairpin RNA (shRNA) and analyzed KIT phosphorylation, p38 MAPK phosphorylation, and MC viability and proliferation. To our surprise, downregulation of neither PKCα nor PKCβ affected MC viability and proliferation. In contrast, blocking both PKCα and PKCβ significantly attenuated SCF‐induced cell viability and proliferation, suggesting that PKCα and PKCβ compensate for each other downstream of SCF signaling to enhance MC viability and proliferation. Our results not only suggest that PKC classical isoforms are novel therapeutic targets for SCF/MC‐mediated inflammatory and allergic diseases, but they also emphasize the importance of inhibiting both PKCα and β isoforms simultaneously to prevent MC proliferation.
Collapse
Affiliation(s)
- Lakshminarayan Reddy Teegala
- Department of Chemistry, University of Akron, Akron, Ohio, USA.,Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | | | | | | | - Sabita Pokhrel
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Erik Southard
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Charles K Thodeti
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA.,Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sailaja Paruchuri
- Department of Chemistry, University of Akron, Akron, Ohio, USA.,Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
22
|
Robinson EL, Drawnel FM, Mehdi S, Archer CR, Liu W, Okkenhaug H, Alkass K, Aronsen JM, Nagaraju CK, Sjaastad I, Sipido KR, Bergmann O, Arthur JSC, Wang X, Roderick HL. MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells 2022; 11:cells11040604. [PMID: 35203255 PMCID: PMC8870627 DOI: 10.3390/cells11040604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Emma L. Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (E.L.R.); (H.L.R.)
| | - Faye M. Drawnel
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Saher Mehdi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Caroline R. Archer
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Wei Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - Hanneke Okkenhaug
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Kanar Alkass
- Department of Oncology and Pathology, Karolinska Institute, SE-17177 Stockholm, Sweden;
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- Bjørknes College, Oslo University, 0456 Oslo, Norway
| | - Chandan K. Nagaraju
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Karin R. Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Olaf Bergmann
- Cell and Molecular Biology, Biomedicum, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - J. Simon C. Arthur
- Division of Immunology and Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
- Correspondence: (E.L.R.); (H.L.R.)
| |
Collapse
|
23
|
Parthasarathi KTS, Munjal NS, Dey G, Kumar A, Pandey A, Balakrishnan L, Sharma J. A pathway map of signaling events triggered upon SARS-CoV infection. J Cell Commun Signal 2021; 15:595-600. [PMID: 34487344 PMCID: PMC8419830 DOI: 10.1007/s12079-021-00642-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronaviruses (SARS-CoVs) caused worldwide epidemics over the past few decades. Extensive studies on various strains of coronaviruses provided a basic understanding of the pathogenesis of the disease. Presently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading a global pandemic with unprecedented challenges. This is the third coronavirus outbreak of this century. A signaling pathway map of signaling events induced by SARS-CoV infection is not yet available. In this study, we present a literature-annotated signaling pathway map of reactions induced by SARS-CoV infected cells. Multiple signaling modules were found to be orchestrated including PI3K-AKT, Ras-MAPK, JAK-STAT, Type 1 IFN and NFκB. The signaling pathway map of SARS-CoV consists of 110 molecules and 101 reactions mediated by SARS-CoV proteins. The pathway reaction data are available in various community standard data exchange formats including Systems Biology Graphical Notation (SBGN). The pathway map is publicly available through the GitHub repository and data in various formats can be freely downloadable.
Collapse
Affiliation(s)
| | - Nupur S Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lavanya Balakrishnan
- Mazumdar Shaw Center for Translational Research, Narayana Hrudayalaya Health City, Bangalore, India.
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Vesicular formation regulated by ERK/MAPK pathway mediates human erythroblast enucleation. Blood Adv 2021; 5:4648-4661. [PMID: 34551066 PMCID: PMC8759143 DOI: 10.1182/bloodadvances.2021004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
ERK pathway plays a key role in enucleation of human orthochromatic erythroblasts. ERK regulates human erythroblast enucleation by affecting vesicular formation.
Enucleation is a key event in mammalian erythropoiesis responsible for the generation of enucleated reticulocytes. Although progress is being made in developing mechanistic understanding of enucleation, our understanding of mechanisms for enucleation is still incomplete. The MAPK pathway plays diverse roles in biological processes, but its role in erythropoiesis has yet to be fully defined. Analysis of RNA-sequencing data revealed that the MAPK pathway is significantly upregulated during human terminal erythroid differentiation. The MAPK pathway consists of 3 major signaling cassettes: MEK/ERK, p38, and JNK. In the present study, we show that among these 3 cassettes, only ERK was significantly upregulated in late-stage human erythroblasts. The increased expression of ERK along with its increased phosphorylation suggests a potential role for ERK activation in enucleation. To explore this hypothesis, we treated sorted populations of human orthochromatic erythroblasts with the MEK/ERK inhibitor U0126 and found that U0126 inhibited enucleation. In contrast, inhibitors of either p38 or JNK had no effect on enucleation. Mechanistically, U0126 selectively inhibited formation/accumulation of cytoplasmic vesicles and endocytosis of the transferrin receptor without affecting chromatin condensation, nuclear polarization, or enucleosome formation. Treatment with vacuolin-1 that induces vacuole formation partially rescued the blockage of enucleation by U0126. Moreover, phosphoproteomic analysis revealed that inactivation of the ERK pathway led to downregulation of the endocytic recycling pathway. Collectively, our findings uncovered a novel role of ERK activation in human erythroblast enucleation by modulating vesicle formation and have implications for understanding anemia associated with defective enucleation.
Collapse
|
25
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Xeroderma Pigmentosum C: A Valuable Tool to Decipher the Signaling Pathways in Skin Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6689403. [PMID: 34630850 PMCID: PMC8495593 DOI: 10.1155/2021/6689403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal genodermatosis that manifests clinically with pronounced sensitivity to ultraviolet (UV) radiation and the high probability of the occurrence of different skin cancer types in XP patients. XP is mainly caused by mutations in XP-genes that are involved in the nucleotide excision repair (NER) pathway that functions in the removal of bulky DNA adducts. Besides, the aggregation of DNA lesions is a life-threatening event that might be a key for developing various mutations facilitating cancer appearance. One of the key players of NER is XPC that senses helical distortions found in damaged DNA. The majority of XPC gene mutations are nonsense, and some are missense leading either to the loss of XPC protein or to the expression of a truncated nonfunctional version. Given that no cure is yet available, XPC patients should be completely protected and isolated from all types of UV radiations (UVR). Although it is still poorly understood, the characterization of the proteomic signature of an XPC mutant is essential to identify mediators that could be targeted to prevent cancer development in XPC patients. Unraveling this proteomic signature is fundamental to decipher the signaling pathways affected by the loss of XPC expression following exposure to UVB radiation. In this review, we will focus on the signaling pathways disrupted in skin cancer, pathways modulating NER's function, including XPC, to disclose signaling pathways associated with XPC loss and skin cancer occurrence.
Collapse
|
27
|
Zhang W, Kazeem BB, Yang H, Liu G, Wang G, Li Z, Guo T, Zhao P, Dong J. Aeromonas sobria regulates proinflammatory immune response in mouse macrophages via activating the MAPK, AKT, and NF-κB pathways. J Zhejiang Univ Sci B 2021; 22:782-790. [PMID: 34514758 DOI: 10.1631/jzus.b2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aeromonas sobria, a Gram-negative bacterium that can colonize both humans and animals, is found in a variety of environments, including water, seafood, meat, and vegetables (Cahill, 1990; Galindo et al., 2004; Song et al., 2019). Aeromonas spp. are conditionally pathogenic bacteria in aquaculture, which can rapidly proliferate, causing disease and even death in fish, especially when the environment is degraded (Neamat-Allah et al., 2020, 2021a, 2021b). In developing countries, Aeromonas spp. have been associated with a wide spectrum of infections in humans, including gastroenteritis, wound infections, septicemia, and lung infections (San Joaquin and Pickett, 1988; Wang et al., 2009; Su et al., 2013). Infections caused by Aeromonas spp. are usually more severe in immunocompromised individuals (Miyamoto et al., 2017). The presence of a plasmid encoding a β-lactamase in A. sobria that confers resistance to β-lactam antibiotics poses a huge challenge to the treatment of diseases caused by this microorganism (Lim and Hong, 2020). Consequently, an in-depth understanding of the interaction between A. sobria and its hosts is urgently required to enable the development of effective strategies for the treatment of A. sobria infections.
Collapse
Affiliation(s)
- Wei Zhang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | | | - Haitao Yang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Gang Liu
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanglu Wang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhixing Li
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Guo
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Zhao
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China. .,Key Laboratory of Zoonosis of Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jingquan Dong
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
28
|
Liu H, Li Z, Li Q, Jia C, Zhang N, Qu Y, Hu D. HSP70 inhibition suppressed glioma cell viability during hypoxia/reoxygenation by inhibiting the ERK1/2 and PI3K/AKT signaling pathways. J Bioenerg Biomembr 2021; 53:405-413. [PMID: 34363569 DOI: 10.1007/s10863-021-09904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Heat shock protein 70 (HSP70) can regulate astrocyte viability under hypoxic and ischemic conditions. However, the protective mechanism involved is not completely clear. This study aimed to investigate whether HSP70 protects U87 glioma cells against hypoxic damage via the extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathways. Lentivirus-mediated HSP70-siRNA was used for HSP70 silencing. U87 glioma cells with lentiviral infection were exposed to hypoxia for 4, 8, 12, and 24 h, respectively, followed by a 24-h reoxygenation treatment. A Cell-Counting Kit-8 was then used to evaluate the viability of the U87 glioma cells. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the mRNA and protein levels, respectively. The expression of HSP70, p-ERK1/2, p-AKT, and U87 cell viability were increased after 8 h of hypoxia/24 h of reoxygenation (P < 0.01). However, HSP70 silencing significantly decreased the U87 cell viability after the hypoxia/reoxygenation treatment (P < 0.01). The protein expressions of p-ERK1/2 and p-AKT also decreased in HSP70-silenced U87 cells (P < 0.01). In conclusion, HSP70 inhibition suppressed the viability of U87 glioma cells during hypoxia/reoxygenation (at least partially) by inhibiting the ERK1/2 and PI3K/AKT signaling pathways. This study may help to understand the molecular mechanisms underlying the progression and development of cerebral hypoxia-ischemia.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Osteoarthrosis, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China
| | - Zhi Li
- Department of Critical Care Medicine, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China
| | - Qingshu Li
- Department of Critical Care Medicine, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China
| | - Chao Jia
- Department of Critical Care Medicine, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China
| | - Nan Zhang
- Department of Cardiology, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China
| | - Yan Qu
- Department of Critical Care Medicine, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China
| | - Dan Hu
- Department of Critical Care Medicine, Qingdao Municipal Hospital East Hospital, Qingdao, 266000, China.
| |
Collapse
|
29
|
Chen Y, Song F, Tu M, Wu S, He X, Liu H, Xu C, Zhang K, Zhu Y, Zhou R, Jin C, Wang P, Zhang H, Tian M. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke. Front Med 2021; 16:429-441. [PMID: 34241786 DOI: 10.1007/s11684-021-0842-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
The local microenvironment is essential to stem cell-based therapy for ischemic stroke, and spatiotemporal changes of the microenvironment in the pathological process provide vital clues for understanding the therapeutic mechanisms. However, relevant studies on microenvironmental changes were mainly confined in the acute phase of stroke, and long-term changes remain unclear. This study aimed to investigate the microenvironmental changes in the subacute and chronic phases of ischemic stroke after stem cell transplantation. Herein, induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs) were transplanted into the ischemic brain established by middle cerebral artery occlusion surgery. Positron emission tomography imaging and neurological tests were applied to evaluate the metabolic and neurofunctional alterations of rats transplanted with stem cells. Quantitative proteomics was employed to investigate the protein expression profiles in iPSCs-transplanted brain in the subacute and chronic phases of stroke. Compared with NSCs-transplanted rats, significantly increased glucose metabolism and neurofunctional scores were observed in iPSCs-transplanted rats. Subsequent proteomic data of iPSCs-transplanted rats identified a total of 39 differentially expressed proteins in the subacute and chronic phases, which are involved in various ischemic stroke-related biological processes, including neuronal survival, axonal remodeling, antioxidative stress, and mitochondrial function restoration. Taken together, our study indicated that iPSCs have a positive therapeutic effect in ischemic stroke and emphasized the wide-ranging microenvironmental changes in the subacute and chronic phases.
Collapse
Affiliation(s)
- Yao Chen
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Department of Radiology, Zhejiang Hospital, Hangzhou, 310030, China
| | - Fahuan Song
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mengjiao Tu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.,Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Hao Liu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Caiyun Xu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Kai Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yuankai Zhu
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Ping Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,Shanxi Medical University, Taiyuan, 030001, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China. .,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
| |
Collapse
|
30
|
Zhao P, Cao L, Wang X, Li J, Dong J, Zhang N, Li X, Li S, Sun M, Zhang X, Liang M, Pu X, Gong P. Giardia duodenalis extracellular vesicles regulate the proinflammatory immune response in mouse macrophages in vitro via the MAPK, AKT and NF-κB pathways. Parasit Vectors 2021; 14:358. [PMID: 34238339 PMCID: PMC8268305 DOI: 10.1186/s13071-021-04865-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Giardia duodenalis is an extracellular protozoan parasite that causes giardiasis in mammals. The presentation of giardiasis ranges from asymptomatic to severe diarrhea, and the World Health Organization lists it in the Neglected Diseases Initiative. Extracellular vesicles (EVs) are a key mediator of intracellular communication. Although previous studies have shown that G. intestinalis can regulate a host’s innate immune response, the role of G. intestinalis EVs (GEVs) in triggering a G. intestinalis-induced innate immune response remains to be further explored. Methods In this study, GEVs, G. intestinalis and GEVs + G. intestinalis were inoculated into macrophages, respectively. The transcription and secretion levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α), were measured using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assays (ELISAs). The phosphorylation levels of the MAPK, AKT and NF-κB signaling pathways in GEV-stimulated mouse macrophages were examined using western blotting and immunofluorescence methods. The roles of activated pathways in the GEV-triggered inflammatory response were determined using inhibition assays, western blotting and ELISAs. Results The results showed that pretreatment with GEVs enhanced with G. intestinalis (GEVs + G. intestinalis) induced IL-1β, IL-6 and TNF-α transcription and secretion from mouse macrophages compared to stimulation with either GEVs or G. intestinalis alone. Inoculation of mouse macrophages with GEVs upregulated the phosphorylation levels of the p38 MAPK, p44/42 MAPK (Erk1/2), AKT and NF-κB signaling pathways and led to the nuclear translocation of NF-κB p65. Blocking the activated p38, Erk and NF-κB signaling pathways significantly downregulated the secretion of proinflammatory cytokines, and blocking the activated AKT signaling pathway demonstrated reverse effects. Conclusions The results of this study reveal that GEVs can enhance G. intestinalis-induced inflammatory response levels in mouse macrophages through activation of the p38, ERK and NF-κB signaling pathways. The role of GEVs in regulating host cell immune responses may provide insights into exploring the underlying mechanisms in G. intestinalis–host interactions. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04865-5.
Collapse
Affiliation(s)
- Panpan Zhao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China
| | - Lili Cao
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, People's Republic of China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianhua Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jingquan Dong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.,Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xin Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shan Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Min Sun
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Min Liang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xudong Pu
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
31
|
Sarker H, Haimour A, Toor R, Fernandez-Patron C. The Emerging Role of Epigenetic Mechanisms in the Causation of Aberrant MMP Activity during Human Pathologies and the Use of Medicinal Drugs. Biomolecules 2021; 11:biom11040578. [PMID: 33920915 PMCID: PMC8071227 DOI: 10.3390/biom11040578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Matrix metalloproteinases (MMPs) cleave extracellular matrix proteins, growth factors, cytokines, and receptors to influence organ development, architecture, function, and the systemic and cell-specific responses to diseases and pharmacological drugs. Conversely, many diseases (such as atherosclerosis, arthritis, bacterial infections (tuberculosis), viral infections (COVID-19), and cancer), cholesterol-lowering drugs (such as statins), and tetracycline-class antibiotics (such as doxycycline) alter MMP activity through transcriptional, translational, and post-translational mechanisms. In this review, we summarize evidence that the aforementioned diseases and drugs exert significant epigenetic pressure on genes encoding MMPs, tissue inhibitors of MMPs, and factors that transcriptionally regulate the expression of MMPs. Our understanding of human pathologies associated with alterations in the proteolytic activity of MMPs must consider that these pathologies and their medicinal treatments may impose epigenetic pressure on the expression of MMP genes. Whether the epigenetic mechanisms affecting the activity of MMPs can be therapeutically targeted warrants further research.
Collapse
|
32
|
Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol 2021; 150:112073. [DOI: 10.1016/j.fct.2021.112073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
|
33
|
Zhao K, Chen M, Liu T, Zhang P, Wang S, Liu X, Wang Q, Sheng J. Rhizoma drynariae total flavonoids inhibit the inflammatory response and matrix degeneration via MAPK pathway in a rat degenerative cervical intervertebral disc model. Biomed Pharmacother 2021; 138:111466. [PMID: 33740525 DOI: 10.1016/j.biopha.2021.111466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022] Open
Abstract
Rhizoma drynariae total flavonoids (RDTF) are extracted from Drynaria fortunei J. Sm (D. fortunei), which was a Chinese herb commonly used to treat fractures and bruises. Modern pharmacological studies indicate flavonoids have anti-inflammatory effect in clinical practice. However, its active ingredients and the mechanisms of action are far from clear. The present study aims to determine whether RDTF can protect against intervertebral disc degeneration in a rat cervical intervertebral disc model and investigate the associated molecular mechanisms. Sprague Dawley (SD) rats were randomized into five groups: control group (CG, n = 8), intervertebral disc degeneration group (NG, n = 8), low-dose RDTF-treated group (LG, n = 8), medium-dose RDTF-treated group (MG, n = 8), and high-dose RDTF-treated group (HG, n = 8). Hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), immunofluorescence, ELISA, Western blot and quantitative real time PCR (qRT-PCR) assays were used to investigate inflammatory, catabolic factors and the latent regulatory mechanism of the effects of RDTF on intervertebral disc cells. HE staining showed disc degeneration in all groups except CG, and the function was restored after RDTF treatment. IHC, Western blot, qRT-PCR, immunofluorescence and ELISA results showed that RDTF prevented intervertebral disc degeneration by suppressing mitogen-activated protein kinase (MAPK) pathway, which reduced expression of intracellular matrix metalloproteinases (MMPs), such MMP3, MMP13, and inflammatory factors including interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α). Notably RDTF inhibited extracellular matrix (ECM) degeneration by increasing expression of aggrecan and collagen type II and preventing the upregulation of collagen type I and III. It suggests that RDTF has a potential therapeutic effect on cervical spondylosis.
Collapse
Affiliation(s)
- Kai Zhao
- Rehabilitation Department of the First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, China; School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Min Chen
- Rehabilitation Department of the First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ting Liu
- Rehabilitation Department of the First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, China
| | - Panpan Zhang
- Rehabilitation Department of the First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, Anhui, China
| | - Xiangguo Liu
- Anhui University of Traditional Chinese Medicine, Hefei 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, Anhui, China.
| |
Collapse
|
34
|
β-Carotene Inhibits Expression of Matrix Metalloproteinase-10 and Invasion in Helicobacter pylori-Infected Gastric Epithelial Cells. Molecules 2021; 26:molecules26061567. [PMID: 33809289 PMCID: PMC8002206 DOI: 10.3390/molecules26061567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Matrix metalloproteinases (MMPs), key molecules of cancer invasion and metastasis, degrade the extracellular matrix and cell–cell adhesion molecules. MMP-10 plays a crucial role in Helicobacter pylori-induced cell-invasion. The mitogen-activated protein kinase (MAPK) signaling pathway, which activates activator protein-1 (AP-1), is known to mediate MMP expression. Infection with H. pylori, a Gram-negative bacterium, is associated with gastric cancer development. A toxic factor induced by H. pylori infection is reactive oxygen species (ROS), which activate MAPK signaling in gastric epithelial cells. Peroxisome proliferator-activated receptor γ (PPAR-γ) mediates the expression of antioxidant enzymes including catalase. β-Carotene, a red-orange pigment, exerts antioxidant and anti-inflammatory properties. We aimed to investigate whether β-carotene inhibits H. pylori-induced MMP expression and cell invasion in gastric epithelial AGS (gastric adenocarcinoma) cells. We found that H. pylori induced MMP-10 expression and increased cell invasion via the activation of MAPKs and AP-1 in gastric epithelial cells. Specific inhibitors of MAPKs suppressed H. pylori-induced MMP-10 expression, suggesting that H. pylori induces MMP-10 expression through MAPKs. β-Carotene inhibited the H. pylori-induced activation of MAPKs and AP-1, expression of MMP-10, and cell invasion. Additionally, it promoted the expression of PPAR-γ and catalase, which reduced ROS levels in H. pylori-infected cells. In conclusion, β-carotene exerts an inhibitory effect on MAPK-mediated MMP-10 expression and cell invasion by increasing PPAR-γ-mediated catalase expression and reducing ROS levels in H. pylori-infected gastric epithelial cells.
Collapse
|
35
|
Zhao J, Jiang X, Liu J, Ye P, Jiang L, Chen M, Xia J. Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1. J Am Heart Assoc 2021; 10:e014311. [PMID: 33522247 PMCID: PMC7955340 DOI: 10.1161/jaha.119.014311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-β activated kinase 1 and inhibited transforming growth factor-β activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-β activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-β activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoli Jiang
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jinhua Liu
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ping Ye
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Lang Jiang
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Manhua Chen
- Department of Cardiology The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiahong Xia
- Department of Cardiovascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
36
|
The Role of Neurotrophic Factors in Pathophysiology of Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:257-272. [PMID: 33834404 DOI: 10.1007/978-981-33-6044-0_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to the neurotrophic hypothesis of major depressive disorder (MDD), impairment in growth factor signaling might be associated with the pathology of this illness. Current evidence demonstrates that impaired neuroplasticity induced by alterations of neurotrophic growth factors and related signaling pathways may be underlying to the pathophysiology of MDD. Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophic factor involved in the neurobiology of MDD. Nevertheless, developing evidence has implicated other neurotrophic factors, including neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), glial cell-derived neurotrophic factor (GDNF), and fibroblast growth factor (FGF) in the MDD pathophysiology. Here, we summarize the current literature on the involvement of neurotrophic factors and related signaling pathways in the pathophysiology of MDD.
Collapse
|
37
|
Wang L, Fang D, Xu J, Luo R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer 2020; 20:1059. [PMID: 33143662 PMCID: PMC7607850 DOI: 10.1186/s12885-020-07568-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Zoledronic acid (ZA) is one of the most important and effective class of anti-resorptive drug available among bisphosphonate (BP), which could effectively reduce the risk of skeletal-related events, and lead to a treatment paradigm for patients with skeletal involvement from advanced cancers. However, the exact molecular mechanisms of its anticancer effects have only recently been identified. In this review, we elaborate the detail mechanisms of ZA through inhibiting osteoclasts and cancer cells, which include the inhibition of differentiation of osteoclasts via suppressing receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK) pathway, non-canonical Wnt/Ca2+/calmodulin dependent protein kinase II (CaMKII) pathway, and preventing of macrophage differentiation into osteoclasts, in addition, induction of apoptosis of osteoclasts through inhibiting farnesyl pyrophosphate synthase (FPPS)-mediated mevalonate pathway, and activation of reactive oxygen species (ROS)-induced pathway. Furthermore, ZA also inhibits cancer cells proliferation, viability, motility, invasion and angiogenesis; induces cancer cell apoptosis; reverts chemoresistance and stimulates immune response; and acts in synergy with other anti-cancer drugs. In addition, some new ways for delivering ZA against cancer is introduced. We hope this review will provide more information in support of future studies of ZA in the treatment of cancers and bone cancer metastasis.
Collapse
Affiliation(s)
- Lianwei Wang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jinming Xu
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, 408300, China.
| |
Collapse
|
38
|
Peterlin A, Počivavšek K, Petrovič D, Peterlin B. The Role of microRNAs in Heart Failure: A Systematic Review. Front Cardiovasc Med 2020; 7:161. [PMID: 33195446 PMCID: PMC7593250 DOI: 10.3389/fcvm.2020.00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs are highly investigated for their role in the pathogenesis of cardiovascular diseases. Nevertheless, evidence for clinical implementation is still lacking. In our systematic review, we evaluated the potential of microRNAs as pathophysiological and diagnostic biomarkers of heart failure. We identified 72 differentially expressed microRNA molecules among groups of heart failure patients and control groups by searching the PubMed database. We did not identify a substantial overlap of differentially expressed microRNAs among different studies; only five microRNAs (miR-1228, miR-122, miR-423-5p, miR-142-3p, and exosomal miR-92b-5p) were differentially expressed in more than one included study. Gene set enrichment analysis, based on the gene targets of microRNAs presented in the included studies, showed that gene targets of differentially expressed microRNAs were enriched in the MAPK, TGFβ, PI3K-Akt, and IL-2 signaling pathways, as well as apoptosis pathway, p53 activity regulation, and angiogenesis pathway. Results of our systematic review show that there is currently insufficient support for the use of any of the presented microRNAs as pathophysiological or prognostic biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Ana Peterlin
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Karolina Počivavšek
- Department of Cardiovascular Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Danijel Petrovič
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Liu Q, Garcia M, Wang S, Chen CW. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells 2020; 9:cells9081888. [PMID: 32806592 PMCID: PMC7465943 DOI: 10.3390/cells9081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The development of high-throughput gene manipulating tools such as short hairpin RNA (shRNA) and CRISPR/Cas9 libraries has enabled robust characterization of novel functional genes contributing to the pathological states of the diseases. In acute myeloid leukemia (AML), these genetic screen approaches have been used to identify effector genes with previously unknown roles in AML. These AML-related genes centralize alongside the cellular pathways mediating epigenetics, signaling transduction, transcriptional regulation, and energy metabolism. The shRNA/CRISPR genetic screens also realized an array of candidate genes amenable to pharmaceutical targeting. This review aims to summarize genes, mechanisms, and potential therapeutic strategies found via high-throughput genetic screens in AML. We also discuss the potential of these findings to instruct novel AML therapies for combating drug resistance in this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Qiao Liu
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Michelle Garcia
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Pomona College, Claremont, CA 91711, USA
| | - Shaoyuan Wang
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
40
|
Buljan M, Ciuffa R, van Drogen A, Vichalkovski A, Mehnert M, Rosenberger G, Lee S, Varjosalo M, Pernas LE, Spegg V, Snijder B, Aebersold R, Gstaiger M. Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases. Mol Cell 2020; 79:504-520.e9. [PMID: 32707033 PMCID: PMC7427327 DOI: 10.1016/j.molcel.2020.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022]
Abstract
Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.
Collapse
Affiliation(s)
- Marija Buljan
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Anton Vichalkovski
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Mehnert
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - George Rosenberger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Columbia University Department of Systems Biology, New York, NY 10032, USA
| | - Sohyon Lee
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Lucia Espona Pernas
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
41
|
Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 PMCID: PMC7275904 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Chicken avian β-defensin 8 modulates immune response via the mitogen-activated protein kinase signaling pathways in a chicken macrophage cell line. Poult Sci 2020; 99:4174-4182. [PMID: 32867961 PMCID: PMC7598012 DOI: 10.1016/j.psj.2020.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022] Open
Abstract
Defensins are antimicrobial peptides composed of 3 conserved disulfide bridges, a β-sheet, and both hydrophobic and cationic amino acids. In this study, we aimed to demonstrate the immunomodulation role of avian β-defensin 8 (AvBD8) in a chicken macrophage cell line. Chicken AvBD8 stimulated the expression of proinflammatory cytokines (IL-1β, interferon gamma, and IL-12p40) and chemokines (CCL4, CXCL13, and CCL20) in macrophages. Furthermore, by Western blotting and immunocytochemistry, we confirmed that AvBD8 activated the mitogen-activated protein kinase signaling pathway via extracellular regulated kinases 1/2 and p38 signaling molecules. Overall, AvBD8 plays a crucial role in host defense as not only an antimicrobial peptide but also an immunomodulator by activating the mitogen-activated protein kinase signaling pathway and inducing the expression of proinflammatory cytokines and chemokines.
Collapse
|
43
|
An L, Zhao J, Sun X, Zhou Y, Zhao Z. S-allylmercaptocysteine inhibits mucin overexpression and inflammation via MAPKs and PI3K-Akt signaling pathways in acute respiratory distress syndrome. Pharmacol Res 2020; 159:105032. [PMID: 32574825 PMCID: PMC7305891 DOI: 10.1016/j.phrs.2020.105032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
Cytokine storm is an important cause of acute respiratory distress syndrome and multiple organ failure. Excessive secretion and accumulation of mucins on the surface of airway cause airway obstruction and exacerbate lung infections. MUC5AC and MUC5B are the main secreted mucins and overexpressed in various inflammatory responses. S-allylmercaptocysteine, a water-soluble organic sulfur compound extracted from garlic, has anti-inflammatory and anti-oxidative effects for various pulmonary diseases. The aim of this work was to investigate the therapeutic effects of SAMC on mucin overproduction and inflammation in 16HBE cells and LPS-induced ARDS mice. Results show that SAMC treatment ameliorated inflammatory cell infiltration and lung histopathological changes in the LPS-induced ARDS mice. SAMC also inhibited the expressions of MUC5AC and MUC5B, decreased the production of pro-inflammatory markers (IL-6, TNF-α, CD86 and IL-12) and increased the production of anti-inflammatory markers (IL-10, CD206 and TGF-β). These results confirm that SAMC had potential beneficial effects on suppressed hyperinflammation and mucin overexpression. Furthermore, SAMC exerted the therapeutic effects through the inhibition of phosphorylation of MAPKs and PI3K-Akt signaling pathways in the 16HBE cells and mice. Overall, our results demonstrate the effects of SAMC on the LPS-induced mucin overproduction and inflammation both in the 16HBE cells and mice.
Collapse
Affiliation(s)
- Lulu An
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Jianxiong Zhao
- School of Basic Medical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Xiao Sun
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
44
|
Inhibitory Effect of Manassantin B Isolated from Saururus chinensis on Skin Heat Aging. COSMETICS 2020. [DOI: 10.3390/cosmetics7020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heat shock treatment-induced skin aging causes a thickened epidermis, increased matrix metalloproteinase (MMP)-1 expression, collagen degradation, and deep wrinkles. In this study, we investigated the effect of manassantin B in preventing heat shock treatment-induced aging. We first separated manassantin B (MB) from the roots of Saururus chinensis, and the structure was identified using 1H- and 13C-NMR spectroscopy. RT-PCR and western blotting were applied to investigate the anti-aging effect of manassantin B. Manassantin B decreased MMP-1 expression through transient receptor potential vanilloid (TRPV) 1 channel inhibition and significantly increased procollagen expression. In addition, manassantin B suppressed MAPK phosphorylation in a dose-dependent manner. Our results suggest that manassantin B, the active ingredient in S. chinensis, can be effectively used to inhibit heat shock treatment-induced skin aging.
Collapse
|
45
|
Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.). PLoS One 2020; 15:e0232756. [PMID: 32407323 PMCID: PMC7224490 DOI: 10.1371/journal.pone.0232756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a form of serine/threonine protein kinase that activated by extracellular stimulation acting through the MAPK cascade (MAPKKK-MAPKK-MAPK). The MAPK cascade gene family, an important family of protein kinases, plays a vital role in responding to various stresses and hormone signal transduction processes in plants. In this study, we identified 14 CmMAPKs, 6 CmMAPKKs and 64 CmMAPKKKs in melon genome. Based on structural characteristics and a comparison of phylogenetic relationships of MAPK gene families from Arabidopsis, cucumber and watermelon, CmMAPKs and CmMAPKKs were categorized into 4 groups, and CmMAPKKKs were categorized into 3 groups. Furthermore, chromosome location revealed an unevenly distribution on chromosomes of MAPK cascade genes in melon, respectively. Eventually, qRT-PCR analysis showed that all 14 CmMAPKs had different expression patterns under drought, salt, salicylic acid (SA), methyl jasmonate (MeJA), red light (RL), and Podosphaera xanthii (P. xanthii) treatments. Overall, the expression levels of CmMAPK3 and CmMAPK7 under different treatments were higher than those in control. Our study provides an important basis for future functional verification of MAPK genes in regulating responses to stress and signal substance in melon.
Collapse
|
46
|
Labuzan SA, Lynch SA, Cooper LM, Waddell DS. Inhibition of protein phosphatase methylesterase 1 dysregulates MAP kinase signaling and attenuates muscle cell differentiation. Gene 2020; 739:144515. [DOI: 10.1016/j.gene.2020.144515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
|
47
|
Qu F, Xu W, Deng Z, Xie Y, Tang J, Chen Z, Luo W, Xiong D, Zhao D, Fang J, Zhou Z, Liu Z. Fish c-Jun N-Terminal Kinase (JNK) Pathway Is Involved in Bacterial MDP-Induced Intestinal Inflammation. Front Immunol 2020; 11:459. [PMID: 32292404 PMCID: PMC7134542 DOI: 10.3389/fimmu.2020.00459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun NH2-terminal kinases (JNKs) are an evolutionarily conserved family of serine/threonine protein kinases that play critical roles in the pathological process in species ranging from insects to mammals. However, the function of JNKs in bacteria-induced intestinal inflammation is still poorly understood. In this study, a fish JNK (CiJNK) pathway was identified, and its potential roles in bacterial muramyl dipeptide (MDP)-induced intestinal inflammation were investigated in Ctenopharyngodon idella. The present CiJNK was found to possess a conserved dual phosphorylation motif (TPY) in a serine/threonine protein kinase (S_TKc) domain and to contain several potential immune-related transcription factor binding sites, including nuclear factor kappa B (NF-κB), activating protein 1 (AP-1), and signal transducer and activator of downstream transcription 3 (STAT3), in its 5′ flanking regions. Quantitative real-time PCR results revealed that the mRNA levels of the JNK pathway genes in the intestine were significantly upregulated after challenge with a bacterial pathogen (Aeromonas hydrophila) and MDP in a time-dependent manner. Additionally, the JNK pathway was found to be involved in regulating the MDP-induced expression levels of inflammatory cytokines (IL-6, IL-8, and TNF-α) in the intestine of grass carp. Moreover, the nutritional dipeptide carnosine and Ala–Gln could effectively alleviate MDP-induced intestinal inflammation by regulating the intestinal expression of JNK pathway genes and inflammatory cytokines in grass carp. Finally, fluorescence microscopy and dual-reporter assays indicated that CiJNK could associate with CiMKK4 and CiMKK7 involved in the regulation of the AP-1 signaling pathway. Overall, these results provide the first experimental demonstration that the JNK signaling pathway is involved in the intestinal immune response to MDP challenge in C. idella, which may provide new insight into the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhangren Deng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yifang Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhiguo Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China.,Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Cheon YH, Kim MS, Kim JY, Kim DH, Han SY, Lee JH. Eupatilin downregulates phorbol 12-myristate 13-acetate-induced MUC5AC expression via inhibition of p38/ERK/JNK MAPKs signal pathway in human airway epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:157-163. [PMID: 32140039 PMCID: PMC7043994 DOI: 10.4196/kjpp.2020.24.2.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Chronic inflammatory airway diseases, such as chronic rhinosinusitis, chronic obstructive pulmonary disease, and asthma, are associated with excessive mucus production. Hence, the regulation of mucus production is important for the treatment of upper and lower airway diseases. Eupatilin is a pharmacologically active ingredient obtained from Artemisia asiatica Nakai (Asteraceae) and exerts potent anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated the effect of eupatilin on phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC and MUC5B expression in human airway epithelial cells. We found that eupatilin treatment significantly inhibited PMA-induced mucus secretion in PAS staining. In addition, qRT-PCR results showed that eupatilin dose-dependently decreased the mRNA expression of MUC5AC in human airway epithelial cells. Western blot and immunofluorescence assay also showed that PMA-induced protein expression of MUC5AC was inhibited by eupatilin treatment. Finally, we investigated MAPKs activity after stimulation with PMA using western blot analysis in human airway epithelial cells. The results showed that eupatilin downregulated the levels of phosphorylated p38, ERK, and JNK. In summary, the anti-inflammatory activities of eupatilin, characterized as the suppression of MUC5AC expression and secretion in human airway epithelial cells, were found to be associated with the inhibition of p38/ERK/JNK MAPKs signaling pathway of MUC5AC secretion.
Collapse
Affiliation(s)
- Yoon-Hee Cheon
- Center for Core Research Facilities, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Min Seob Kim
- Department of Physiology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Ju-Young Kim
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea
| | - Dong Hyun Kim
- Department of Otolaryngology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Seung Yoon Han
- Department of Otolaryngology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Jae-Hoon Lee
- Department of Otolaryngology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan 54538, Korea
| |
Collapse
|
49
|
Takahashi M, Kinugawa S, Takada S, Kakutani N, Furihata T, Sobirin MA, Fukushima A, Obata Y, Saito A, Ishimori N, Iwabuchi K, Tsutsui H. The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure caused by pressure overload in mice. Exp Physiol 2020; 105:489-501. [PMID: 31957919 DOI: 10.1113/ep087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? We questioned whether the disruption of invariant natural killer T (iNKT) cells exacerbates left ventricular (LV) remodelling and heart failure after transverse aortic constriction in mice. What are the main findings and their importance? Pressure overload induced by transverse aortic constriction increased the infiltration of iNKT cells in mouse hearts. The disruption of iNKT cells exacerbated LV remodelling and hastened the transition from hypertrophy to heart failure, in association with the activation of mitogen-activated protein kinase signalling. Activation of iNKT cells modulated the immunological balance in this process and played a protective role against LV remodelling and failure. ABSTRACT Chronic inflammation is involved in the development of cardiac remodelling and heart failure (HF). Invariant natural killer T (iNKT) cells, a subset of T lymphocytes, have been shown to produce various cytokines and orchestrate tissue inflammation. The pathophysiological role of iNKT cells in HF caused by pressure overload has not been studied. In the present study, we investigated whether the disruption of iNKT cells affected this process in mice. Transverse aortic constriction (TAC) and a sham operation were performed in male C57BL/6J wild-type (WT) and iNKT cell-deficient Jα18 knockout (KO) mice. The infiltration of iNKT cells was increased after TAC. The disruption of iNKT cells exacerbated left ventricular (LV) remodelling and hastened the transition to HF after TAC. Histological examinations also revealed that the disruption of iNKT cells induced greater myocyte hypertrophy and a greater increase in interstitial fibrosis after TAC. The expressions of interleukin-10 and tumour necrosis factor-α mRNA and their ratio in the LV after TAC were decreased in the KO compared with WT mice, which might indicate that the disruption of iNKT cells leads to an imbalance between T-helper type 1 and type 2 cytokines. The phosphorylation of extracellular signal-regulated kinase was significantly increased in the KO mice. The disruption of iNKT cells exacerbated the development of cardiac remodelling and HF after TAC. The activation of iNKT cells might play a protective role against HF caused by pressure overload. Targeting the activation of iNKT cells might thus be a promising candidate as a new therapeutic strategy for HF.
Collapse
Affiliation(s)
- Masashige Takahashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Iwabuchi
- Department of Immunobiology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Zhang L, Chen W, Li Y, Hong W, Li H, Cui Z, Dong X, Han X, Bao G, Xiao L, Gao P, Wang Y. Effect of 650-nm low-level laser irradiation on c-Jun, c-Fos, ICAM-1, and CCL2 expression in experimental periodontitis. Lasers Med Sci 2020; 35:31-40. [PMID: 30341668 DOI: 10.1007/s10103-018-2662-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the effect of 650-nm low-level laser irradiation (LLLI) as an adjunctive treatment of experimental periodontitis. To investigate possible LLLI-mediated anti-inflammatory effects, we utilized an experimental periodontitis (EP) rat model and analyzed c-Jun, c-Fos, ICAM-1, and CCL2 gene expressions on PB leukocytes and in the gingival tissue. Total RNA was isolated from the gingivae and peripheral blood (PB) leukocytes of normal, EP, scaling, and root planing (SRP)-treated EP and LLLI + SRP-treated EP rats, and gene expressions were analyzed by real-time PCR. The productions of c-Jun, c-Fos, ICAM-1, and CCL2 in gingivae were analyzed immunohistochemically. Tartrate-resistant acid phosphatase (TRAP) staining was used to determine osteoclast activity in alveolar bone. The c-Jun and ICAM-1 messenger RNA (mRNA) levels were significantly decreased in the EP rat gingival tissue treated by SRP + LLLI than by SRP, the c-Jun, ICAM-1, and c-Fos mRNA levels on PB leukocytes reduced after LLLI treatment but did not show any significant differences in both groups. There was no significant difference in CCL2 mRNA levels on PB leukocytes and in gingivae between the SRP + LLLI and the SRP groups. The c-Fos mRNA levels in gingivae did not show significant difference in both groups. Immunohistochemistry showed that the CCL2, ICAM-1, c-Jun, and c-Fos productions were significantly reduced in rats of the SRP + LLLI group compared with the only SRP group. LLLI significantly decreased the number of osteoclasts as demonstrated by TRAP staining. The 650-nm LLLI might be a useful treatment modality for periodontitis.
Collapse
Affiliation(s)
- Lin Zhang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin, 300070, China
| | - Wenlei Chen
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin, 300070, China
| | - Yingxin Li
- Institute of Biomedical Engineering, Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haidong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuang Cui
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoxi Dong
- Institute of Biomedical Engineering, Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gang Bao
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin, 300070, China
| | - Li Xiao
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin, 300070, China
| | - Pengfei Gao
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin, 300070, China
| | - Yonglan Wang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin, 300070, China.
| |
Collapse
|