1
|
Zhang Y, Na D, Zhang W, Liu X, Miao S, Tan WS, Zhao L. Development of stable HEK293T cell pools expressing CSFV E2 protein: A potential antigen expression platform. Vaccine 2023; 41:1573-1583. [PMID: 36725430 DOI: 10.1016/j.vaccine.2023.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Large quantities of antigens are required since protective antigens, such as classical swine fever virus (CSFV) E2 protein, are widely used in diagnostic reagents and subunit vaccines. Compared to clonal cell lines and transient gene expression, stable cell pools provide a potential alternative platform to rapidly produce large amounts of antigens. In this work, firstly, Human embryonic kidney 293 T (HEK293T) cell pools expressing E2 protein were developed by transduction of lentiviral vectors. On the one hand, the SP7 was selected from 7 well-performing signal peptides to remarkably increase the production of E2 protein. On the other hand, it was found that high MOI could improve the expression of E2 protein by increasing gene copy numbers. Moreover, the HEK293T cell pools were evaluated for stability by passages and batch cultures, demonstrating that the cell pools were stable for at least 90 days. And then, the performance of the cell pools in batch, fed-batch, and semi-perfusion was studied. Among them, the titer of E2 protein was up to 2 g/L in semi-perfusion, which is currently the highest to the authors' knowledge. Finally, the aggregations and immunogenicity of the E2 protein were analyzed by SDS-PAGE and immunization of mice, respectively. There was no significant difference in aggregations and antibody titers of E2 protein in three culture methods. These results suggest that stable HEK293T cell pools are a promising and robust platform for rapid and efficient production of recombinant proteins.
Collapse
Affiliation(s)
- Yanmin Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daoyuan Na
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai Bioengine Sci-Tech Co Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co Ltd, Zhejiang 310056, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
de la Torre A, Jurca M, Hoffmann K, Schmitz L, Heimel K, Kämper J, Pérez-Martín J. Robust Cre recombinase activity in the biotrophic smut fungus Ustilago maydis enables efficient conditional null mutants in planta. Genetics 2022; 220:iyab152. [PMID: 34849846 PMCID: PMC8733456 DOI: 10.1093/genetics/iyab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Site-specific recombinases have been used in higher eukaryotes, especially in animals, for a broad range of applications, including chromosomal translocations, large deletions, site-specific integration, and tissue-specific as well as conditional knock-outs. The application of site-specific recombination has also been demonstrated in simple eukaryotes like fungi and protozoa. However, its use in fungal research, especially in phytopathogenic fungi, has often been limited to "recycle" the marker genes used in transformation experiments. We show that Cre recombinase can be used for conditional gene deletions in the phytopathogenic fungus Ustilago maydis. Conditional gene knock-outs can be generated via the transcriptional control of the recombinase by U. maydis promoters specifically activated during the biotrophic phase of fungal growth, enabling gene deletions at defined developmental stages inside the plant tissue. Also, we show that a tamoxifen-activated Cre-recombinase allows the tight control necessary for the induced deletion of essential genes by the addition of tamoxifen. These tools will be helpful to address the function of genes under both axenic and in planta conditions for the U. maydis-maize pathosystem and should pave the way for similar approaches in other plant pathosystems.
Collapse
Affiliation(s)
| | - Matteo Jurca
- Department of Genetics, Karlsruhe Institute of Technology, Institute for Applied Biosciences, 76131 Karlsruhe, Germany
| | - Kai Hoffmann
- Department of Genetics, Karlsruhe Institute of Technology, Institute for Applied Biosciences, 76131 Karlsruhe, Germany
| | - Lara Schmitz
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37073, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37073, Germany
| | - Jörg Kämper
- Department of Genetics, Karlsruhe Institute of Technology, Institute for Applied Biosciences, 76131 Karlsruhe, Germany
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica (CSIC), Salamanca 37007, Spain
| |
Collapse
|
3
|
Tevelev B, Patel H, Shields K, Wei W, Cooley C, Zhang S, Bitzas G, Duan W, Khetemenee L, Jackobek R, D'Antona A, Sievers A, King A, Tam A, Zhang Y, Sousa E, Cohen J, Wroblewska L, Marshall J, Jackson M, Scarcelli JJ. Genetic rearrangement during site specific integration event facilitates cell line development of a bispecific molecule. Biotechnol Prog 2021; 37:e3158. [PMID: 33891804 PMCID: PMC8459265 DOI: 10.1002/btpr.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022]
Abstract
Site specific integration (SSI) expression systems offer robust means of generating highly productive and stable cell lines for traditional monoclonal antibodies. As complex modalities such as antibody‐like molecules comprised of greater than two peptides become more prevalent, greater emphasis needs to be placed on the ability to produce appreciable quantities of the correct product of interest (POI). The ability to screen several transcript stoichiometries could play a large role in ensuring high amounts of the correct POI. Here we illustrate implementation of an SSI expression system with a single site of integration for development and production of a multi‐chain, bi‐specific molecule. A SSI vector with a single copy of all of the genes of interest was initially selected for stable Chinese hamster ovary transfection. While the resulting transfection pools generated low levels of the desired heterodimer, utilizing an intensive clone screen strategy, we were able to identify clones having significantly higher levels of POI. In‐depth genotypic characterization of clones having the desirable phenotype revealed that a duplication of the light chain within the landing pad was responsible for producing the intended molecule. Retrospective transfection pool analysis using a vector configuration mimicking the transgene configuration found in the clones, as well as other vector configurations, yielded more favorable results with respect to % POI. Overall, the study demonstrated that despite the theoretical static nature of the SSI expression system, enough heterogeneity existed to yield clones having significantly different transgene phenotypes/genotypes and support production of a complex multi‐chain molecule.
Collapse
Affiliation(s)
- Barbara Tevelev
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Himakshi Patel
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Kathleen Shields
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Wei Wei
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Cecilia Cooley
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Sam Zhang
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | | | - Weili Duan
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Lam Khetemenee
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Ryan Jackobek
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Aaron D'Antona
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Annette Sievers
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Amy King
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Yan Zhang
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Eric Sousa
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Justin Cohen
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Lila Wroblewska
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Jeffrey Marshall
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Martha Jackson
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| |
Collapse
|
4
|
Optimization of tamoxifen-induced Cre activity and its effect on immune cell populations. Sci Rep 2020; 10:15244. [PMID: 32943672 PMCID: PMC7499195 DOI: 10.1038/s41598-020-72179-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022] Open
Abstract
Tamoxifen (TAM) inducible Cre recombinase system is an essential tool to study gene function when early ablation or overexpression can cause developmental defects or embryonic lethality. However, there remains a lack of consensus on the optimal route and dosage of TAM administration in vivo. Here, we assessed dosage and delivery of TAM for activation of Cre in immune cell subsets assessed longitudinally and spatially using transgenic mice with ubiquitously expressed Cre/ER and the Cre-inducible fluorescent reporter YFP. After comparing two TAM delivery methods (intraperitoneal versus oral gavage) and different doses, we found that 3 mg of TAM administered orally for five consecutive days provides maximal reporter induction with minimal adverse effects in vivo. Serum levels of TAM peaked 1 week after initiating treatment then slowly decreased, regardless of dosing and delivery methods. TAM concentration in specific tissues (liver, spleen, lymph nodes, and thymus) was also dependent on delivery method and dose. Cre induction was highest in myeloid cells and B cells and substantially lower in T cells, and double-positive thymocytes had a notably higher response to TAM. In addition to establishing optimal dose and administration of TAM, our study reveals a disparate activity of Cre in different cell immune populations when using Cre/ER models.
Collapse
|
5
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Berg K, Schäfer VN, Tschorn N, Stitz J. Advanced Establishment of Stable Recombinant Human Suspension Cell Lines Using Genotype-Phenotype Coupling Transposon Vectors. Methods Mol Biol 2020; 2070:351-361. [PMID: 31625106 DOI: 10.1007/978-1-4939-9853-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stable mammalian, namely human, suspension cell lines play a pivotal role in red biotechnology production scenarios for the generation of state-of-the-art biologics. However, selection of genetically modified and highly productive cell populations - prior to the establishment of clonal lines - is often challenging. To overcome this limitation, we first describe an optimized transient transfection protocol using the inexpensive reagent polyethylenimine (PEI) and human 293F cells. Transposon donor vectors derived from Sleeping Beauty encompassing a cassette with the reporter gene encoding for the green fluorescent protein (GFP) coupled with an internal ribosome entry site (IRES) to the expression of puromycin-resistance are employed to readily detect transfected cells. Upon stable transfection in the presence and absence of transposase expression, respectively, and subsequent antibiotic selection, GFP expression using flow cytometry analysis, cell viability, and cell density can be examined over a range of up to 3 weeks. Owing to the integration of high vector copy numbers into the target cell genome, transposase-mediated transposition of transposon donor vectors is instrumental in the faster establishment of recombinant cell population as compared to the classical stable transfection of plasmid DNA.
Collapse
Affiliation(s)
- Karen Berg
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Vanessa Nicole Schäfer
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany
| | - Natalie Tschorn
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany
| | - Jörn Stitz
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany.
| |
Collapse
|
7
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Migani D, Smales CM, Bracewell DG. Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells. Biotechnol Prog 2017; 33:666-676. [PMID: 28249362 PMCID: PMC5485175 DOI: 10.1002/btpr.2455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/17/2017] [Indexed: 11/21/2022]
Abstract
Recombinant human Acid Alpha Glucosidase (GAA) is the therapeutic enzyme used for the treatment of Pompe disease, a rare genetic disorder characterized by GAA deficiency in the cell lysosomes (Raben et al., Curr Mol Med. 2002; 2:145-166). The manufacturing process for GAA can be challenging, in part due to protease degradation. The overall goal of this study was to understand the effects of GAA overexpression on cell lysosomal phenotype and host cell protein (HCP) release, and any resultant consequences for protease levels and ease of manufacture. To do this we first generated a human recombinant GAA producing stable CHO cell line and designed the capture chromatographic step anion exchange (IEX). We then collected images of cell lysosomes via transmission electron microscopy (TEM) and compared the resulting data with that from a null CHO cell line. TEM imaging revealed 72% of all lysosomes in the GAA cell line were engorged indicating extensive cell stress; by comparison only 8% of lysosomes in the null CHO had a similar phenotype. Furthermore, comparison of the HCP profile among cell lines (GAA, mAb, and Null) capture eluates, showed that while most HCPs released were common across them, some were unique to the GAA producer, implying that cell stress caused by overexpression of GAA has a molecule specific effect on HCP release. Protease analysis via zymograms showed an overall reduction in proteolytic activity after the capture step but also revealed the presence of co-eluting proteases at approximately 80 KDa, which MS analysis putatively identified as dipeptidyl peptidase 3 and prolyl endopeptidase. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:666-676, 2017.
Collapse
Affiliation(s)
- Damiano Migani
- The Advanced Centre of Biochemical Engineering, Dept. of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUnited Kingdom
| | - C. Mark Smales
- Industrial Biotechnology Centre and School of BiosciencesUniversity of KentCanterburyKentCT2 7NJUnited Kingdom
| | - Daniel G. Bracewell
- The Advanced Centre of Biochemical Engineering, Dept. of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
9
|
References. Lab Anim 2016. [DOI: 10.1258/002367703766452985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zhang L, Inniss MC, Han S, Moffat M, Jones H, Zhang B, Cox WL, Rance JR, Young RJ. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 2015; 31:1645-56. [DOI: 10.1002/btpr.2175] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/11/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Lin Zhang
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Andover MA 01810
| | - Mara C. Inniss
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Andover MA 01810
| | - Shu Han
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Andover MA 01810
| | - Mark Moffat
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Chesterfield MO 63017
| | - Heather Jones
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Chesterfield MO 63017
| | - Baohong Zhang
- BioTX Clinical Research, Pfizer Inc.; Cambridge MA 02140
| | - Wendy L. Cox
- Cell Culture Development, Lonza Biologics; Slough SL1 4DX U.K
| | - James R. Rance
- Development Services Singapore, Lonza Biologics Tuas Pte Ltd; Singapore
| | - Robert J. Young
- New Expression Technologies Group, Research & Technology, Lonza Biologics; Granta Park, Great Abington, Cambridge CB21 6GS U.K
| |
Collapse
|
11
|
Chromatin function modifying elements in an industrial antibody production platform--comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015; 10:e0120096. [PMID: 25849659 PMCID: PMC4388700 DOI: 10.1371/journal.pone.0120096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023] Open
Abstract
The isolation of stably transfected cell lines suitable for the manufacture of biotherapeutic protein products can be an arduous process relying on the identification of a high expressing clone; this frequently involves transgene amplification and maintenance of the clones' expression over at least 60 generations. Maintenance of expression, or cell line stability, is highly dependent upon the nature of the genomic environment at the site of transgene integration, where epigenetic mechanisms lead to variable expression and silencing in the vast majority of cases. We have assessed four chromatin function modifying elements (A2UCOE, MAR X_S29, STAR40 and cHS4) for their ability to negate chromatin insertion site position effects and their ability to express and maintain monoclonal antibody expression. Each element was analysed by insertion into different positions within a vector, either flanking or between heavy chain (HC) and light chain (LC) antibody expression cassettes. Our results clearly show that the A2UCOE is the most beneficial element in this system, with stable cell pools and clones increasing antibody yields 6.5-fold and 6.75-fold respectively. Stability analysis demonstrated that the reduction in antibody expression, seen with cells transfected with the control vector over 120 generations, was mitigated in the clones containing A2UCOE-augmented transgenes. Analysis also showed that the A2UCOE reduced the amount of transgene promoter DNA methylation, which contributed to the maintenance of starting levels of expression.
Collapse
|
12
|
Kwon SJ, Lee DW, Shah DA, Ku B, Jeon SY, Solanki K, Ryan JD, Clark DS, Dordick JS, Lee MY. High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening. Nat Commun 2014; 5:3739. [PMID: 24799042 PMCID: PMC4132844 DOI: 10.1038/ncomms4739] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 03/27/2014] [Indexed: 01/09/2023] Open
Abstract
Differential expression of various drug-metabolizing enzymes (DMEs) in the human liver may cause deviations of pharmacokinetic profiles, resulting in interindividual variability of drug toxicity and/or efficacy. Here, we present the 'Transfected Enzyme and Metabolism Chip' (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity. The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1 and UGT1A4) in THLE-2 cell microarrays. To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner.
Collapse
Affiliation(s)
- Seok Joon Kwon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Dong Woo Lee
- Samsung Electro-Mechanics Co, Central R & D Institute, Suwon 443-743, South Korea
| | - Dhiral A Shah
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Bosung Ku
- Samsung Electro-Mechanics Co, Central R & D Institute, Suwon 443-743, South Korea
| | - Sang Youl Jeon
- Samsung Electro-Mechanics Co, Central R & D Institute, Suwon 443-743, South Korea
| | - Kusum Solanki
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jessica D Ryan
- Solidus Biosciences Inc., 409 Illinois Street, Suite 2073, San Francisco, California 94158, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Moo-Yeal Lee
- 1] Solidus Biosciences Inc., 409 Illinois Street, Suite 2073, San Francisco, California 94158, USA [2] Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| |
Collapse
|
13
|
Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells. Sci Rep 2014; 4:4240. [PMID: 24577484 PMCID: PMC3937794 DOI: 10.1038/srep04240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.
Collapse
|
14
|
Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, Guo Z, Zhang Y. A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS One 2013; 8:e62457. [PMID: 23658729 PMCID: PMC3641042 DOI: 10.1371/journal.pone.0062457] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/21/2013] [Indexed: 12/24/2022] Open
Abstract
Antibiotic selectable marker genes have been widely used to generate transgenic animals. Once transgenic animals have been obtained, the selectable marker is no longer necessary but raises public concerns regarding biological safety. The aim of this study was to prepare competent antibiotic selectable marker free transgenic cells for somatic cell nuclear transfer (SCNT). PhiC31 intergrase was used to insert a transgene cassette into a "safe harbor" in the bovine genome. Then, Cre recombinase was employed to excise the selectable marker under the monitoring of a fluorescent double reporter. By visually tracking the phenotypic switch from red to green fluorescence, antibiotic selectable marker free cells were easily detected and sorted by fluorescence-activated cell sorting. For safety, we used phiC31 mRNA and cell-permeant Cre protein in this study. When used as donor nuclei for SCNT, these safe harbor integrated marker-free transgenic cells supported a similar developmental competence of SCNT embryos compared with that of non-transgenic cells. After embryo transfer, antibiotic selectable marker free transgenic cattle were generated and anti-bacterial recombinant human β-defensin-3 in milk was detected during their lactation period. Thus, this approach offers a rapid and safe alternative to produce antibiotic selectable marker free transgenic farm animals, thereby making it a valuable tool to promote the healthy development and welfare of transgenic farm animals.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Qi Tong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Xu Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Feng Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Zekun Guo
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail:
| |
Collapse
|
15
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
16
|
A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS One 2011; 6:e17267. [PMID: 21390305 PMCID: PMC3044732 DOI: 10.1371/journal.pone.0017267] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022] Open
Abstract
The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression.
Collapse
|
17
|
Oberbek A, Matasci M, Hacker DL, Wurm FM. Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 2010; 108:600-10. [PMID: 20967750 DOI: 10.1002/bit.22968] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022]
Abstract
Lentivirus-derived vectors (LVs) were studied for the generation of stable recombinant Chinese hamster ovary (CHO) cell lines. Stable pools and clones expressing the enhanced green fluorescent protein (eGFP) were selected via fluorescence-activated cell sorting (FACS). For comparison, cell pools and cell lines were also generated by transfection, using the LV transfer plasmid alone. The level and stability of eGFP expression was greater in LV-transduced cell lines and pools than in those established by transfection. CHO cells were also infected at two different multiplicities of infection with an LV co-expressing eGFP and a tumor necrosis factor receptor:Fc fusion protein (TNFR:Fc). At 2-day post-infection, clonal cell lines with high eGFP-specific fluorescence were recovered by FACS. These clones co-expressed TNFR:Fc with yields of 50-250 mg/L in 4-day cultures. The recovered cell lines maintained stable expression over 3 months in serum-free suspension culture without selection. In conclusion, LV-mediated gene transfer provided an efficient alternative to plasmid transfection for the generation of stable and high-producing recombinant cell lines.
Collapse
Affiliation(s)
- Agata Oberbek
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Cellular Biotechnology, Lausanne, Switzerland
| | | | | | | |
Collapse
|
18
|
Cheng RB, Lin XZ, Wang ZK, Yang SJ, Rong H, Ma Y. Establishment of a transgene expression system for the marine microalga Schizochytrium by 18S rDNA-targeted homologous recombination. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0510-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Atkinson H, Chalmers R. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 2010; 138:485-98. [PMID: 20084428 DOI: 10.1007/s10709-009-9434-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 12/20/2009] [Indexed: 11/25/2022]
Abstract
Viruses have long been considered to be the most promising tools for human gene therapy. However, the initial enthusiasm for the use of viruses has been tarnished in the light of potentially fatal side effects. Transposons have a long history of use with bacteria in the laboratory and are now routinely applied to eukaryotic model organisms. Transposons show promise for applications in human genetic modification and should prove a useful addition to the gene therapy tool kit. Here we review the use of viruses and the limitations of current approaches to gene therapy, followed by a more detailed analysis of transposon length and the physical properties of internal sequences, which both affect transposition efficiency. As transposon length increases, transposition decreases: this phenomenon is known as length-dependence, and has implications for vector cargo capacity. Disruption of internal sequences, either via deletion of native DNA or insertion of exogenous DNA, may reduce or enhance genetic mobility. These effects may be related to host factor binding, essential spacer requirements or other influences yet to be elucidated. Length-dependence is a complex phenomenon driven not simply by the distance between the transposon ends, but by host proteins, the transposase and the properties of the DNA sequences encoded within the transposon.
Collapse
Affiliation(s)
- Helen Atkinson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Center, Nottingham NG7 2UH, UK
| | | |
Collapse
|
20
|
Claeys Bouuaert C, Chalmers RM. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 2009; 138:473-84. [PMID: 19649713 DOI: 10.1007/s10709-009-9391-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy applications require efficient tools for the stable delivery of genetic information into eukaryotic genomes. Most current gene delivery strategies are based on viral vectors. However, a number of drawbacks, such as the limited cargo capacity, host immune response and mutational risks, highlight the need for alternative gene delivery tools. A comprehensive gene therapy tool kit should contain a range of vectors and techniques that can be adapted to different targets and purposes. Transposons provide a potentially powerful approach. However, transposons encompass a large number of different molecular mechanisms, some of which are better suited to gene delivery applications than others. Here, we consider the range and potentials of the various mechanisms, focusing on the cut-and-paste transposons as one of the more promising avenues towards gene therapy applications. Several cut-and-paste transposition systems are currently under development. We will first consider the mechanisms of piggyBac and the hAT family elements Tol1 and Tol2, before focusing on the mariner family elements including Mos1, Himar1 and Hsmar1.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
21
|
Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A. Marker removal from actinomycetes genome using Flp recombinase. Gene 2008; 419:43-7. [PMID: 18550297 DOI: 10.1016/j.gene.2008.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/16/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
Abstract
We report here a system for the functional expression of the Flp recombinase in several actinomycetes: Streptomyces coelicolor, S. lividans, and Saccharotrix espanaensis. We have constructed a synthetic gene encoding the Flp recombinase with a GC content of 60.6% optimized for expression in high-GC bacteria. Using the synthetic flp(a) gene, we have removed an apramycin resistance gene flanked by FRT sites from the chromosome of actinomycetes with an efficiency of 40%. Sequencing the region of chromosome showed that excision of the apramycin cassette by Flp recombinase was specific.
Collapse
Affiliation(s)
- Marta Fedoryshyn
- Albert-Ludwigs-University of Freiburg, Pharmazeutische Biologie und Biotechnologie, Stefan-Meier st. 19, Freiburg 79104, Germany
| | | | | | | | | |
Collapse
|
22
|
Barnes LM, Bentley CM, Moy N, Dickson AJ. Molecular analysis of successful cell line selection in transfected GS-NS0 myeloma cells. Biotechnol Bioeng 2007; 96:337-48. [PMID: 17001634 DOI: 10.1002/bit.21119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The production of recombinant proteins from mammalian cells is now an essential part of biotechnology. However, despite this importance, the detailed characteristics of good producing cell lines remain largely unknown. The industrially important GS-NS0 mammalian expression system is able to produce large amounts of protein from relatively few copies of recombinant genes. This makes GS-NS0 cell lines ideal candidates to study the consequence of recombinant plasmid transfection in mammalian cells. This study investigated the molecular features of a panel of 17 randomly chosen GS-NS0 cell lines engineered to produce a recombinant antibody. The research analysed antibody production via enzyme-linked immunosorbent assay (ELISA), and investigated the molecular features of the transfectants by Northern, Southern and copy number analysis. The cell lines generated produced a range of antibody concentrations. In addition, for transfectants defined as producers of recombinant antibody there was a positive correlation between specific productivity and heavy chain mRNA expression. The use of Northern and Southern analysis allowed determination of the functional integrity of the transfected plasmid. Over 50% of the transfectants studied had molecular defects at the level of mRNA and/or cDNA. Cell lines were identified with suspected defects in the regulatory regions of transfected genes in addition to cell lines which lacked recombinant genes. Also, "false-positive" cell lines were generated which were able to overcome the GS selection pressure without producing any recombinant antibody. This article discusses these findings in relation to vector design.
Collapse
Affiliation(s)
- Louise M Barnes
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
23
|
Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF. An efficient and targeted gene integration system for high-level antibody expression. J Immunol Methods 2007; 322:28-39. [PMID: 17350648 DOI: 10.1016/j.jim.2007.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/17/2006] [Accepted: 01/30/2007] [Indexed: 11/15/2022]
Abstract
Random integration linking genomic amplification has been used to generate desired cell lines for stable and high-level expressing recombinant antibodies. But this technique is laborious, and the expression level is unpredictable due to position effects. Here, we have constructed a cell-vector system for high-level antibody expression using an FRT/FLP strategy to overcome position effects. The key is to target the FRT sequence to chromosomal locations where there is a high rate of transcription and gene amplification, and the amplified genes can be maintained. To screen desired loci with high transcriptional activity and amplifiable capacity, dual weakened markers (selectable galactosidase and amplifiable dihydrofolate reductase, DHFR) and the FRT sequence were synchronously cloned into a plasmid. After transfection of a Chinese hamster ovary host cell line with this plasmid, we selected 20 candidate cell lines from 721 individual clones. An antibody gene-targeting vector carrying an FRT-fused hygromycin gene was constructed to target antibody genes into the chromosomal FRT site by FLP recombinase. Three out of 20 cell lines can be used as host cells for site-specific recombination. By using southern blot and fluorescence in situ hybridization (FISH), a candidate engineered cell line, number 37, was chosen. It contains a single FRT-tagged locus in its genome. FISH analysis indicated that the antibody genes were all located at the original FRT-tagged locus in the genome of the gene-targeted and gene-amplified cell lines. Three kinds of recombinant antibodies were successfully expressed in candidate cell line 37. The highest producers produced more than 200 mug/ml of the antibody in 6 days of continuous culture in a spinner flask.
Collapse
Affiliation(s)
- Ying Huang
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing 100850, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Hileman RE, Bonner HKS, Kaempfe TA, Hammond BG, Glenn KC. Safety assessment of cre recombinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8640-7. [PMID: 17061845 DOI: 10.1021/jf061210j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cre recombinase, when used as a tool in agricultural biotechnology, can precisely excise DNA sequences that may be useful in the introduction of a new trait but are not needed in the commercial product. Although the cre genetic material would not be present in the final product, the present studies were performed to assess the safety of Cre recombinase to provide confirmatory evidence of the safe use of Cre-lox technology in agricultural biotechnology. Cre recombinase shares no relevant sequence similarity to known allergens or toxins. When Cre recombinase was exposed to a pH 1.2 solution of simulated gastric fluid lacking pepsin, CD spectroscopy showed that there was a loss of secondary structure and that the protein was no longer active in a functional assay. Cre recombinase was degraded rapidly when exposed to pepsin in a standardized gastric digestion model; therefore, Cre recombinase would not survive the harsh gastric environment. When orally administered to mice as an acute dosage of 53 mg/kg of body weight, no treatment-related adverse findings were observed. These data support the conclusion that human and animal dietary exposure to Cre recombinase pose no known safety concerns; consistent with the fact that bacteriophage P1, the source of the cre gene and expressed protein, is commonly encountered in the environment and in normal enteric bacteria without reports of adverse consequences.
Collapse
|
25
|
Sharma SS, Chong S, Harcum SW. Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli. J Biotechnol 2006; 125:48-56. [PMID: 16546284 DOI: 10.1016/j.jbiotec.2006.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/10/2006] [Accepted: 01/19/2006] [Indexed: 01/05/2023]
Abstract
The intein-mediated purification system has the potential to significantly reduce the recovery costs of industrial recombinant proteins. The ability of inteins to catalyze a controllable peptide bond cleavage reaction can be used to separate a recombinant protein from its affinity tag during affinity purification. Inteins have been combined with a chitin-binding domain to serve as a self-cleaving affinity tag, facilitating highly selective capture of the fusion protein on an inexpensive substrate--chitin (IMPACT) system, New England Biolabs, Beverly, MA). This purification system has been used successfully at a lab scale in low cell density cultures, but has not been examined comprehensively under high-cell density conditions in defined medium. In this study, the intein-mediated purification of three commercially relevant proteins expressed under high-cell density conditions in E. coli was studied. Additionally, losses during the purification process were quantified. The data indicate that the intein fusion proteins expressed under high cell density fermentations were stable in vivo after induction for a significant duration, and the intein fusion proteins could undergo thiol or pH and temperature initiated cleavage reaction in vitro. Thus, the intein-mediated protein purification system potentially could be employed for the production of recombinant proteins at the industrial-scale.
Collapse
Affiliation(s)
- Shamik S Sharma
- Department of Chemical Engineering, 127 Earle Hall, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
26
|
Saraf-Levy T, Santoro SW, Volpin H, Kushnirsky T, Eyal Y, Schultz PG, Gidoni D, Carmi N. Site-specific recombination of asymmetric lox sites mediated by a heterotetrameric Cre recombinase complex. Bioorg Med Chem 2006; 14:3081-9. [PMID: 16412655 DOI: 10.1016/j.bmc.2005.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Previous reports have demonstrated that new Cre recombinase specificities can be developed for symmetrically designed lox mutants through directed evolution. The development of Cre variants that allow the recombination of true asymmetric lox mutant sites has not yet been addressed, however. In the present study, we demonstrate that a mixture of two different site-specific Cre recombinase molecules (wt Cre and a mutant Cre) catalyzes efficient recombination between two asymmetric lox sites in vitro, presumably via formation of a functionally active heterotetrameric complex. The results may broaden the application of site-specific recombination in basic and applied research, including the custom-design of recombinases for natural, asymmetric, and lox-related target sequences present in the genome. Future applications may potentially include genomic manipulations, for example, site-specific integrations, deletions or substitutions within precise regions of the genomes of mammalians and other organisms.
Collapse
Affiliation(s)
- Talia Saraf-Levy
- Institute of Plant Sciences, A.R.O, The Volcani Center, PO Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Akopian A, Marshall Stark W. Site‐Specific DNA Recombinases as Instruments for Genomic Surgery. ADVANCES IN GENETICS 2005; 55:1-23. [PMID: 16291210 DOI: 10.1016/s0065-2660(05)55001-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-specific DNA recombinases can "cut and paste" DNA. For example, they can promote excision of specific DNA segments or insertion of new DNA segments in specific places. However, natural recombinases act only at their cognate recombination sites, so current applications are limited to genetically modified organisms in which these sites have been introduced into the genome. Transposases also catalyze DNA rearrangements; they promote insertion of specific DNA sequences but at nonspecific locations. Applicability of site-specific recombinases and transposases in experimental genetics, biotechnology, and gene therapy would be much wider if they could be re-engineered so as to act specifically at chosen sequences within an organism's natural genome. This review will discuss progress towards the creation of such "designer" recombinases.
Collapse
Affiliation(s)
- Aram Akopian
- Institute of Biomedical & Life Sciences University of Glasgow, Glasgow G11 6NU, Scotland, UK
| | | |
Collapse
|
28
|
Galla M, Will E, Kraunus J, Chen L, Baum C. Retroviral pseudotransduction for targeted cell manipulation. Mol Cell 2004; 16:309-15. [PMID: 15494317 DOI: 10.1016/j.molcel.2004.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 07/30/2004] [Accepted: 08/13/2004] [Indexed: 11/20/2022]
Abstract
The present study addressed whether retroviral vectors could be modified to achieve receptor-mediated, dose-controlled, and transient delivery of proteins or nucleic acids into targeted cells. As a paradigm, we generated mouse leukemia virus-based vectors encoding the site-specific recombinase Cre. The vectors were disabled in primer binding site function, blocking reverse transcription of the virion mRNA. While reducing transgene insertion more than 1000-fold and abolishing toxic effects of constitutive Cre expression, transient Cre delivery was still highly efficient, receptor restricted, and insensitive to pharmacologic inhibition of reverse transcription. This form of Cre transfer required the retroviral packaging signal, cap-proximal positioning of the translation unit, as well as gag and env expression in producer cells, revealing retroviral mRNA transfer as the underlying mechanism. Thus, retrovirally delivered mRNA may serve as an immediate translation template if not being reverse transcribed. This approach allows multiple modifications for targeted and reversible cell manipulation with nucleic acids.
Collapse
Affiliation(s)
- Melanie Galla
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
29
|
Vanderbyl S, MacDonald GN, Sidhu S, Gung L, Telenius A, Perez C, Perkins E. Transfer and Stable Transgene Expression of a Mammalian Artificial Chromosome into Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells 2004; 22:324-33. [PMID: 15153609 DOI: 10.1634/stemcells.22-3-324] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian artificial chromosomes (ACEs) transferred to autologous adult stem cells (SCs) provide a novel strategy for the ex vivo gene therapy of a variety of clinical indications. Unlike retroviral vectors, ACEs are stably maintained, autonomous, and nonintegrating. In this report we assessed the delivery efficiency of ACEs and evaluated the subsequent differentiation potential of ACE-transfected bone marrow-derived human mesenchymal stem cells (hMSCs). For this, an ACE carrying multiple copies of the red fluorescent protein (RFP) reporter gene was transferred under optimized conditions into hMSCs using standard cationic transfection reagents. RFP expression was detectable in 11% of the cells 4-5 days post-transfection. The RFP-expressing hMSCs were enriched by high-speed flow cytometry and maintained their potential to differentiate along adipogenic or osteogenic lineages. Fluorescent in situ hybridization and fluorescent microscopy demonstrated that the ACEs were stably maintained as single chromosomes and expressed the RFP transgenes in both differentiated cultures. These findings demonstrate the potential utility of ACEs for human adult SC ex vivo gene therapy.
Collapse
Affiliation(s)
- S Vanderbyl
- Chromos Molecular Systems Inc., Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kaczmarczyk SJ, Green JE. Induction of cre recombinase activity using modified androgen receptor ligand binding domains: a sensitive assay for ligand-receptor interactions. Nucleic Acids Res 2003; 31:e86. [PMID: 12888538 PMCID: PMC169976 DOI: 10.1093/nar/gng087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Novel systems of inducible gene expression are presented in which CRE-M, an altered form of cre recombinase (cre), is fused to and activated by ligand binding to two forms of the androgen receptor (AR) ligand binding domain (LBD). Selective activation or inactivation of gene transcription is induced upon the addition of appropriate ligand. The coupling of this cre-LBD system with our previously reported highly sensitive assay to measure cre activity in vitro using a dual fluorescent gene switch reporter provides a novel, high-throughput assay system for identifying compounds that bind to and activate various forms of the LBD of androgen receptor. This method can similarly be applied to screen compounds for their activating properties on other steroid hormone LBDs. Three different forms of the AR-LBD were fused to CRE-M, including the wild-type AR-LBD (wt), a non-ligand binding truncated form, LBD (T), and a mutated form (Thr-->Ala substitution) identified in the LNCaP prostate cancer cell line, LBD (LNCaP). We demonstrate a 10-fold induction of cre activity by the addition of androgen agonists to the CRE-M-AR-LBD(wt) fusion protein, but not in the presence of the anti-androgen, flutamide. However, cre activity can be induced by flutamide with the CRE-M-AR-LBD(LNCaP) fusion protein. Similar activation properties were obtained when these fusion proteins were expressed using adenoviral vectors. When combined with our previously reported cre-lox gene switch system, the CRE-M-AR-LBD system can be utilized in gene therapy systems in which a therapeutic product may be initially expressed, replaced by a second product, or turned-off following exposure to ligand. This provides an important, additional level of regulation to gene therapy systems.
Collapse
Affiliation(s)
- Stanislaw J Kaczmarczyk
- Transgenic Oncogenesis Group, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
31
|
Akopian A, He J, Boocock MR, Stark WM. Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci U S A 2003; 100:8688-91. [PMID: 12837939 PMCID: PMC166373 DOI: 10.1073/pnas.1533177100] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific recombination typically occurs only between DNA sequences that have co-evolved with a natural recombinase enzyme to optimize sequence recognition, catalytic efficiency, and regulation. Here, we show that the sequence recognition and the catalysis functions of a recombinase can be specified by unrelated protein domains. We describe chimeric recombinases with a catalytic domain from an activated multiple mutant of the bacterial enzyme Tn3 resolvase, fused to a DNA recognition domain from the mouse transcription factor Zif268. These proteins catalyze efficient recombination specifically at synthetic target sites recognized by two Zif268 domains. Our results demonstrate the functional autonomy of the resolvase catalytic domain and open the way to creating "custom-built" recombinases that act at chosen natural target sequences.
Collapse
Affiliation(s)
- Aram Akopian
- Institute of Biomedical and Life Sciences, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland
| | | | | | | |
Collapse
|
32
|
Martin SS, Chu VC, Baldwin E. Modulation of the active complex assembly and turnover rate by protein-DNA interactions in Cre-LoxP recombination. Biochemistry 2003; 42:6814-26. [PMID: 12779336 PMCID: PMC2885442 DOI: 10.1021/bi0272306] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cre promotes recombination at the 34 bp LoxP sequence. Substitution of a critical C-G base pair in LoxP with an A-T base pair, to give LoxAT, reduced Cre binding in vitro and abolished recombination in vivo [Hartung, M., and Kisters-Woike, B. (1998) J. Biol. Chem. 273, 22884-22891].We demonstrated that LoxAT can be recombined in vitro. However, Cre discriminates against this substrate both before and after DNA binding. The preference for LoxP over LoxAT is the result of reduced binding and a slower turnover rate, amplified by changes in cooperativity of complex assembly. With LoxAT, similar levels of substrate turnover required 2-2.5-fold higher protein-DNA concentrations compared to LoxP, but the sigmoidal behavior of the concentration dependence was more pronounced. Further, the Cre-LoxAT complexes reacted 4-5-fold more slowly. In the 2.3 A resolution Cre-LoxAT complex structure, the major groove Arg259-guanine interaction was disrupted, explaining the reduced binding. Overall structural shifts and mobility changes indicate more favorable interactions between subunits, providing a hypothesis for the reduced turnover rate. Concomitant with the displacement of Arg259 from the DNA, adjacent charged residues Glu262 and Glu266 shifted to form salt bridges with the Arg259 guanidinium moiety. Substitution of Glu262 and Glu266 with glutamine increased Cre complex assembly efficiency and reaction rates with both LoxAT and LoxP, but diminished Cre's ability to distinguish them. The increased rate of this variant suggests that DNA substrate binding and turnover are coupled. The improved efficiency, made at some expense of sequence discrimination, may be useful for enhancing recombination in vivo.
Collapse
Affiliation(s)
- Shelley S. Martin
- Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616
| | - Victor C. Chu
- Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616
| | - Enoch Baldwin
- Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616
- To whom correspondence should be addressed. . Phone: (530) 752-1108. Fax: (530) 752-3085
| |
Collapse
|
33
|
Van den Plas D, Ponsaerts P, Van Tendeloo V, Van Bockstaele DR, Berneman ZN, Merregaert J. Efficient removal of LoxP-flanked genes by electroporation of Cre-recombinase mRNA. Biochem Biophys Res Commun 2003; 305:10-5. [PMID: 12732189 DOI: 10.1016/s0006-291x(03)00669-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction of Cre-recombinase in target cells is currently achieved by transfection of plasmid DNA or by viral-mediated transduction. However, efficiency of non-viral DNA transfection is often low in many cell types, and the use of viral vectors for transduction implies a more complex and laborious manipulation associated with safety issues. We have developed a non-viral non-DNA technique for rapid and highly efficient excision of LoxP-flanked DNA sequences based on electroporation of in vitro transcribed mRNA encoding Cre-recombinase. A K562-DSRed[EGFP] cell line was developed in order to measure Cre-mediated recombination by flow cytometric analysis. These cells have a stable integrated DSRed reporter gene flanked by two LoxP sites, and an EGFP reporter gene, which could only be transcribed when the coding sequence for DSRed was removed. The presented data show recombination efficiencies, as measured by appearance of EGFP-fluorescence, of up to 85% in Cre-recombinase mRNA-electroporated K562-DSRed[EGFP] cells. In conclusion, mRNA electroporation of Cre-recombinase is a powerful, safe, and clinically applicable alternative to current technologies used for excision of stably integrated LoxP-flanked DNA sequences.
Collapse
Affiliation(s)
- Dave Van den Plas
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 2003; 81:631-9. [PMID: 12529877 DOI: 10.1002/bit.10517] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the most important criteria for successful generation of a therapeutic protein from a recombinant cell is to obtain a cell line that maintains stability of production. If this is not achieved it can generate problems for process yields, effective use of time and money, and for regulatory approval of products. However, selection of a cell line that sustains stability of production over the required time period may be difficult to achieve during development of a therapeutic protein. There are several studies in the literature that have reported on the instability of protein production from recombinant cell lines. The causes of instability of production are varied and, in many cases, the exact molecular mechanisms are unknown. The production of proteins by cells is modulated by molecular events at levels ranging from transcription, posttranscriptional processing, translation, posttranslational processing, to secretion. There is potential for regulation of stability of protein production at many or all of these stages. In this study we review published information on stability of protein production for three industrially important cell lines: hybridoma, Chinese hamster ovary (CHO), and nonsecreting (NS0) myeloma cell lines. We highlight the most likely molecular loci at which instability may be engendered and indicate other areas of protein production that may affect stability from mammalian cells. We also outline approaches that could help to overcome the problems associated with unpredictable expression levels and maximized production, and indicate the consequences these might have for stability of production.
Collapse
Affiliation(s)
- Louise M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
35
|
Cooke H. Mammalian artificial chromosomes as vectors: progress and prospects. CLONING AND STEM CELLS 2002; 3:243-9. [PMID: 11945234 DOI: 10.1089/15362300152725963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Artificial chromosomes have long been touted as the ideal vector for gene therapy and biotechnology purposes based on the idea that such a chromosome would mimic the natural state of DNA in the cell. This, it is argued, would mean that essentially unlimited amounts of DNA could be incorporated into such a vector enabling either large genes or whole metabolic pathways to be provided to the recipient cell or organism. Additionally, such a vector would not integrate into the genome of the host cell and so would not cause mutagenesis by insertion and could perhaps be withdrawn from the cell or organism when no longer required. A number of preconditions are implicit in these claims. First, the chromosome should have a segregation efficiency approaching 100% in order to be useful in a cell population undergoing multiple rounds of cell divisions. Second, the chromosome should have a defined structure for regulatory and practical reasons. A defined structure is needed to maximize the control of expression of the genes that it contains. Third, the chromosome should not be so large that delivery becomes a problem. Finally, chromosomal effects such as centromeric or telomeric silencing should not dominate the expression of genes contained in an artificial chromosome. In this article, we discuss our own and others' efforts to achieve these aims using a variety of nonviral approaches to the problem.
Collapse
Affiliation(s)
- H Cooke
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom.
| |
Collapse
|
36
|
Abstract
Transgenic animals have been used for years to study gene function and to create models for the study of human diseases. This approach has become still more justified after the complete sequencing of several genomes. Transgenic animals are ready to become industrial bioreactors for the preparation of pharmaceuticals in milk and probably in the future in egg white. Improvement of animal production by transgenesis is still in infancy. Despite its intensive use, animal transgenesis is still suffering from technical limitations. The generation of transgenics has recently become easier or possible for different species thanks to the use of transposons or retrovirus, to incubation of sperm which DNA followed by fertilization by intracellular sperm injection or not and to the use of the cloning technique using somatic cells in which genes have been added or inactivated. The Cre-LoxP system is more and more used to withdraw a given sequence from the genome or to target the integration of a foreign DNA. The tetracycline system has been improved and can more and more frequently be used to obtain faithful expression of transgenes. Several tools: RNA forming a triple helix with DNA, antisense RNA including double strand RNA inducing RNA interference and ribozymes, and also expression of proteins having a negative transdominant effect, are tentatively being improved to inhibit specifically the expression of host or viral genes.All these techniques are expected to offer experimenters new and more precise models to study gene function even in large animals. Improvement of breeding by transgenesis has become more plausible including through the precise allele replacement in farm animals.
Collapse
Affiliation(s)
- Louis-Marie Houdebine
- Biologie du Développement et Biotechnologies, Institut National de la Recherche Agronomique, 78352 Jouy en JosasCedex, France.
| |
Collapse
|
37
|
Abstract
Mobile genetic elements are often employed for constructing gene fusions or to perform mutagenesis. mariner transposons are well-suited to such applications because of their low site specificity, in vitro activity, and exceptionally broad host range. This report describes a mariner-based method for rapidly creating a large number of insertion mutants that can be converted to in-frame epitope fusions in a single step. First, a mariner-based vector is used to deliver a FLP recombinase substrate randomly into a target molecule. Expression of the FLP recombinase is then induced to catalyse the excision of sequences flanked by FLP recombinase target recognition sites, leaving behind a triple-FLAG epitope. The reversibility of the excision event provides opportunities for using genomic targeting methods easily to create transcriptional or translational fusions to genes of interest.
Collapse
Affiliation(s)
- Su L Chiang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
38
|
Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 2002; 244:305-18. [PMID: 11944939 DOI: 10.1006/dbio.2002.0597] [Citation(s) in RCA: 1075] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the Cre integrase from bacteriophage P1 has become an essential tool for conditional gene activation and/or inactivation in mouse. In an earlier report, we described a fusion protein between Cre and a mutated form of the ligand binding domain of the estrogen receptor (Cre-ER) that renders Cre activity tamoxifen (TM) inducible, allowing for conditional modification of gene activity in the mammalian neural tube in utero. In the current work, we have generated a transgenic mouse line in which Cre-ER is ubiquitously expressed to permit temporally regulated Cre-mediated recombination in diverse tissues of the mouse at embryonic and adult stages. We demonstrate that a single, intraperitoneal injection of TM into a pregnant mouse at 8.5 days postcoitum leads to detectable recombination in the developing embryo within 6 h of injection and efficient recombination of a reporter gene in derivatives of all three germ layers within 24 h of injection. In addition, by varying the dose of TM injected, the percentage of cells undergoing a recombination event in the embryo can be controlled. Dose-dependent excision induced by TM was also possible in diverse tissues in the adult mouse, including the central nervous system, and in cultured cells derived from the transgenic mouse line. This inducible Cre system will be a broadly useful tool to modulate gene activity in mouse embryos, adults, and culture systems where temporal control is an important consideration.
Collapse
Affiliation(s)
- Shigemi Hayashi
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
39
|
Kisielow M, Kleiner S, Nagasawa M, Faisal A, Nagamine Y. Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem J 2002; 363:1-5. [PMID: 11903040 PMCID: PMC1222444 DOI: 10.1042/0264-6021:3630001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many eukaryotic genes are expressed as multiple isoforms through the differential utilization of transcription/translation initiation sites or alternative splicing. The conventional approach for studying individual isoforms in a clean background (i.e. without the influence of other isoforms) has been to express them in cells or whole organisms in which the target gene has been deleted; this is time-consuming. Recently an efficient post-transcriptional gene-silencing method has been reported that employs a small interfering double-stranded RNA (siRNA). On the basis of this method we report a rapid alternative approach for isoform-specific gene expression. We show how the adaptor protein ShcA can be suppressed and expressed in an isoform-specific manner in a human cell line. ShcA exists in three isoforms, namely p66, p52 and p46, which differ only in their N-terminal regions and are derived from two different transcripts, namely p66 and p52/p46 mRNAs. An siRNA with a sequence shared by the two transcripts suppressed all of them. However, another siRNA whose sequence was present only in p66 mRNA suppressed only the p66 isoform, suggesting that the siRNA signal did not propagate to other regions of the target mRNA. The expression of individual isoforms was achieved by first down-regulating all isoforms by the common siRNA and then transfecting with an expression vector for each isoform that harboured silent mutations at the site corresponding to the siRNA. This allowed functional analysis of individual ShcA isoforms and may be more generally applicable for studying genes encoding multiple proteins.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Down-Regulation
- Gene Silencing
- Genetic Techniques
- HeLa Cells
- Humans
- Kinetics
- Protein Biosynthesis
- Protein Isoforms
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Malgorzata Kisielow
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66 CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Abstract
In recent years, the first attempts have been made to apply gene transfer technology to protect neurons from death following neurological insults. There has been sufficient progress in this area that it becomes plausible to consider similar gene therapy approaches meant to delay aspects of aging of the nervous system. In this review, we briefly consider such progress and how it might be applied to the realm of the aging brain. Specifically, we consider: (a) the means of delivery of such therapeutic genes; (b) the choice of such genes; and (c) technical elaborations in gene delivery systems which can more tightly regulate the magnitude and duration of transgene protection.
Collapse
Affiliation(s)
- W O Ogle
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
41
|
Pagliaro L, Praestegaard M. Transfected cell lines as tools for high throughput screening: a call for standards. JOURNAL OF BIOMOLECULAR SCREENING 2001; 6:133-6. [PMID: 11689108 DOI: 10.1177/108705710100600302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During 1999, Journal of Biomolecular Screening presented a series of Point-Counterpoint articles that addressed a question posed by editor Bill Janzen: "What is the future of HTS?" These articles discussed many of the global issues involved in HTS, such as target identification and library size, as well as the scientific and technical challenges facing the field. In this perspective we address a related, but very focused, issue that is increasingly important for many of us in the HTS community: the use of stably transfected cell lines as an integral part of screening strategies. Transfected cell lines provide powerful tools for assay design, but at the same time they introduce complex variables into the screening system. Although it is difficult to develop precise definitions and standards for biologicals such as cell lines, we propose that the development of guidelines for the nomenclature and use of transfected cell lines is essential for their use in HTS.
Collapse
|