1
|
Aman R, Syed MM, Saleh A, Melliti F, Gundra S, Wang Q, Marsic T, Mahas A, Mahfouz M. Peptide nucleic acid-assisted generation of targeted double-stranded DNA breaks with T7 endonuclease I. Nucleic Acids Res 2024; 52:3469-3482. [PMID: 38421613 PMCID: PMC11014363 DOI: 10.1093/nar/gkae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Gene-editing technologies have revolutionized biotechnology, but current gene editors suffer from several limitations. Here, we harnessed the power of gamma-modified peptide nucleic acids (γPNAs) to facilitate targeted, specific DNA invasion and used T7 endonuclease I (T7EI) to recognize and cleave the γPNA-invaded DNA. Our data show that T7EI can specifically target PNA-invaded linear and circular DNA to introduce double-strand breaks (DSBs). Our PNA-Guided T7EI (PG-T7EI) technology demonstrates that T7EI can be used as a programmable nuclease capable of generating single or multiple specific DSBs in vitro under a broad range of conditions and could be potentially applied for large-scale genomic manipulation. With no protospacer adjacent motif (PAM) constraints and featuring a compact protein size, our PG-T7EI system will facilitate and expand DNA manipulations both in vitro and in vivo, including cloning, large-fragment DNA assembly, and gene editing, with exciting applications in biotechnology, medicine, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Muntjeeb M Syed
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ahmed Saleh
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Firdaws Melliti
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sivakrishna Rao Gundra
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Qiaochu Wang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Genetics, Harvard University, Boston, MA 02115, USA
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Öztürk Ö, Lessl AL, Höhn M, Wuttke S, Nielsen PE, Wagner E, Lächelt U. Peptide nucleic acid-zirconium coordination nanoparticles. Sci Rep 2023; 13:14222. [PMID: 37648689 PMCID: PMC10469198 DOI: 10.1038/s41598-023-40916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Collapse
Affiliation(s)
- Özgür Öztürk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Genetic and Bio Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Anna-Lina Lessl
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Stefan Wuttke
- Basque Center for Materials (BCMaterials), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany.
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Zheng H, Clausse V, Amarasekara H, Mazur SJ, Botos I, Appella DH. Variation of Tetrahydrofurans in Thyclotides Enhances Oligonucleotide Binding and Cellular Uptake of Peptide Nucleic Acids. JACS AU 2023; 3:1952-1964. [PMID: 37502163 PMCID: PMC10369417 DOI: 10.1021/jacsau.3c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Harsha Amarasekara
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Sharlyn J. Mazur
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Istvan Botos
- Laboratory
of Molecular Biology, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
5
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [PMID: 35421892 DOI: 10.1039/d1nr04239d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral polyamide oligomers having extremely favorable thermal stability and high affinity to cell membranes when coupled with cationic cell-penetrating peptides (CPPs), as well as the encouraging antisense and antigene activity in cell-free systems. The study of the mechanical properties of short PNA molecules is rare both in experiments and theoretical calculations. Here, we studied the microscopic structures and elastic properties; namely, persistence length, stretch modulus, twist-stretch coupling, and structural crookedness of double-stranded PNA (dsPNA) and their hybrid derivatives using all-atom MD simulation and compared them with those of double-stranded DNA (dsDNA) and double-stranded RNA (dsRNA). The stretch modulus of the dsPNA is found to be ∼160 pN, an order of magnitude lower than that of dsDNA and smaller than dsRNA, respectively. Similarly, the persistence length of dsPNA is found to be ∼35 nm, significantly smaller than those of dsDNA and dsRNA. The PNA-DNA and PNA-RNA hybrid duplexes have elastic properties lying between that of dsPNA and dsDNA/dsRNA. We argue that the neutral backbones of the PNA make it less stiff than dsDNA and dsRNA molecules. Measurement of structural crookedness and principal component analysis additionally support the bending flexibility of dsPNA. Detailed analysis of the helical-rise coupled to helical-twist indicates that the PNA-DNA hybrid over-winds like dsDNA, while PNA-PNA and PNA-RNA unwind like dsRNA upon stretching. Because of the highly flexible nature of PNA, it can bind other biomolecules by adopting a wide range of conformations and is believed to be crucial for future nanobiotechnology research studies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
7
|
Amarasekara H, Oshaben KM, Jeans KB, Sangsari PR, Morgan NY, O’Farrell B, Appella DH. Cyclopentane peptide nucleic acid: Gold nanoparticle conjugates for the detection of nucleic acids in a microfluidic format. Biopolymers 2022; 113:e23481. [PMID: 34812507 PMCID: PMC8957522 DOI: 10.1002/bip.23481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
Routine patient testing for viral infections is critical to identify infected individuals for treatment and to prevent spreading of infections to others. Developing robust and reliable diagnostic tools to detect nucleic acids of viruses at the point-of-care could greatly assist the clinical management of viral infections. The remarkable stability and high binding affinity of peptide nucleic acids (PNAs) to target nucleic acids could make PNA-based biosensors an excellent starting point to develop new nucleic acid detection technologies. We report the application of cyclopentane-modified PNAs to capture target nucleic acids in a microfluidic channel, and the use of bioorthogonal PNAs conjugated to gold nanoparticles as probes to semi-quantitatively signal the presence of a target nucleic acid derived from HIV-1. The basic results presented could be used to develop more advanced devices to detect nucleic acids from viruses such as HIV, SARS-CoV-2, and a wide range of other human diseases.
Collapse
Affiliation(s)
- Harsha Amarasekara
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Kaylyn M. Oshaben
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA,Altratech Ltd., Forge House, Forge Hill, Cork, T12 F867, Ireland
| | - Kendra B. Jeans
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Y. Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian O’Farrell
- Altratech Ltd., Forge House, Forge Hill, Cork, T12 F867, Ireland
| | - Daniel H. Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [DOI: https:/doi.org/10.1039/d1nr04239d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Peptide nucleic acids are charge-neutral polyamide oligomers with extremely flexible backbones that have a strong affinity for hybridization with complementary DNA or RNA, as well as encouraging antisense and antigene activity in cell-free systems.
Collapse
Affiliation(s)
- Khadka B. Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Heidari A, Hermann M, Hudson RHE. A simple fluorescent assay for the detection of peptide nucleic acid-directed double strand duplex invasion. Biopolymers 2021; 113:e23475. [PMID: 34529824 DOI: 10.1002/bip.23475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Peptide nucleic acid (PNA) is a mimic of nucleic acids that is able to bind complementary oligonucleotides with high affinity and excellent selectivity. As such, the use of PNA has been proposed in numerous applications in biochemistry, medicine, and biotechnology. Sequences of pseudo-complementary PNAs containing diaminopurine (D)-2-thiouracil (S U) base pairs bind to complementary regions within double-stranded DNA targets. This type of binding is termed "double duplex invasion" and involves unwinding of the duplex accompanied by simultaneous hybridization of both DNA strands by the two pseudo-complementary PNAs. In this study, a simple method of assaying DNA strand invasion by pseudo-complementary PNAs was developed. This method is based on the incorporation of a single fluorescent cytidine analog, phenylpyrrolocytidine (PhpC), into the double-stranded DNA target such that upon invasion by PNA, the PhpC is displaced to a single-stranded region resulting in the turn-on of fluorescence emission. This fluorescent assay is applicable to studies both at equilibrium and approach-to-equilibrium (time-dependent) conditions.
Collapse
Affiliation(s)
- Ali Heidari
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Mason Hermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Luchian T, Mereuta L, Park Y, Asandei A, Schiopu I. Single-molecule, hybridization-based strategies for short nucleic acids detection and recognition with nanopores. Proteomics 2021; 22:e2100046. [PMID: 34275186 DOI: 10.1002/pmic.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of detection and discovery of DNAs, and solid phase synthesis to increase the chemical functionalities on nucleic acids, leading to the emergence of novel and sophisticated in features, nucleic acids-based biopolymers. Arguably, nanopores developed for fast and direct detection of a large variety of molecules, are part of a revolutionary technological evolution which led to cheaper, smaller and considerably easier to use devices enabling DNA detection and sequencing at the single-molecule level. Through their versatility, the nanopore-based tools proved useful biomedicine, nanoscale chemistry, biology and physics, as well as other disciplines spanning materials science to ecology and anthropology. This mini-review discusses the progress of nanopore- and hybridization-based DNA detection, and explores a range of state-of-the-art applications afforded through the combination of certain synthetically-derived polymers mimicking nucleic acids and nanopores, for the single-molecule biophysics on short DNA structures.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Institute, Sciences Department, "Alexandru I. Cuza" University, Iasi, Romania
| |
Collapse
|
11
|
Characterizing Microbiomes via Sequencing of Marker Loci: Techniques To Improve Throughput, Account for Cross-Contamination, and Reduce Cost. mSystems 2021; 6:e0029421. [PMID: 34254828 PMCID: PMC8409480 DOI: 10.1128/msystems.00294-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
New approaches to characterizing microbiomes via high-throughput sequencing provide impressive gains in efficiency and cost reduction compared to approaches that were standard just a few years ago. However, the speed of method development has been such that staying abreast of the latest technological advances is challenging. Moreover, shifting laboratory protocols to include new methods can be expensive and time consuming. To facilitate adoption of new techniques, we provide a guide and review of recent advances that are relevant for single-locus sequence-based study of microbiomes—from extraction to library preparation—including a primer regarding the use of liquid-handling automation in small-scale academic settings. Additionally, we describe several amendments to published techniques to improve throughput, track contamination, and reduce cost. Notably, we suggest adding synthetic DNA molecules to each sample during nucleic acid extraction, thus providing a method of documenting incidences of cross-contamination. We also describe a dual-indexing scheme for Illumina sequencers that allows multiplexing of many thousands of samples with minimal PhiX input. Collectively, the techniques that we describe demonstrate that laboratory technology need not impose strict limitations on the scale of molecular microbial ecology studies. IMPORTANCE New methods to characterize microbiomes reduce technology-imposed limitations to study design, but many new approaches have not been widely adopted. Here, we present techniques to increase throughput and reduce contamination alongside a thorough review of current best practices.
Collapse
|
12
|
Kumar S, Dhami I, Thadke SA, Ly DH, Taylor RE. Rapid self-assembly of γPNA nanofibers at constant temperature. Biopolymers 2021; 112:e23463. [PMID: 34214178 DOI: 10.1002/bip.23463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported that γ-modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self-assembling nanofibers in select polar aprotic organic solvent mixtures. Here we demonstrate that distinct γPNA strands, each with a high density of γ-modifications can form complex nanostructures at constant temperatures within 30 minutes. Additionally, we demonstrate DNA-assisted isothermal growth of γPNA nanofibers, thereby overcoming a key hurdle for future scale-up of applications related to nanofiber growth and micropatterning.
Collapse
Affiliation(s)
- Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Isha Dhami
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Shivaji A Thadke
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Danith H Ly
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Chen C, He R, Zhang Z, Chen Y. Dual-recognition-based determination of ctDNA via the clamping function of peptide nucleic acid and terminal protection of small-molecule-linked DNA. Analyst 2021; 145:7603-7608. [PMID: 32990694 DOI: 10.1039/d0an01305f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new dual-recognition fluorescent biosensor for circulating tumor DNA (ctDNA) detection has been developed, which combines the clamping function of peptide nucleic acid (PNA) and terminal protection of small-molecule-linked DNA (TPSMLD). Taking the tumor-specific E542K mutation and methylation of the PIK3CA gene as the target ctDNA, a low detection limit of 0.3161 pM ctDNA is achieved with good selectivity. This study not only offers a sensitive, selective and accurate ctDNA detection method, but can also be used to detect the target in complex biological samples.
Collapse
Affiliation(s)
- Chaohui Chen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, P. R. China.
| | | | | | | |
Collapse
|
14
|
Oliveira R, Azevedo AS, Mendes L. Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. Methods Mol Biol 2021; 2246:69-86. [PMID: 33576983 DOI: 10.1007/978-1-0716-1115-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities' structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2'-O-methyl RNA (2'OMe), and phosphorothioates (PS). In this chapter, we describe a protocol using PNA and LNA/2'OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luzia Mendes
- FMDUP - Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Oliveira R, Almeida C, Azevedo NF. Detection of Microorganisms by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid. Methods Mol Biol 2021; 2105:217-230. [PMID: 32088873 DOI: 10.1007/978-1-0716-0243-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a 30-year-old technology that has evolved continuously and is now one of the most well-established molecular biology techniques. Traditionally, DNA probes are used for in situ hybridization. However, synthetic molecules are emerging as very promising alternatives, providing better hybridization performance and making FISH procedures easier and more efficient. In this chapter, we describe a universal FISH protocol, using nucleic acid probes, for the detection of bacteria. This protocol should be easily applied to different microorganisms as a way of identifying in situ relevant microorganisms (including pathogens) and their distribution patterns in different types of samples.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Salkar AV, Naik AP, Bhosale SV, Morajkar PP. Designing a Rare DNA-Like Double Helical Microfiber Superstructure via Self-Assembly of In Situ Carbon Fiber-Encapsulated WO 3-x Nanorods as an Advanced Supercapacitor Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1288-1300. [PMID: 33356091 DOI: 10.1021/acsami.0c21105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Double helical DNA structure is one of the most beautiful and fascinating nanoarchitecture nature has produced. Mimicking nature's design by the tailored synthesis of semiconductor nanomaterials such as WO3 into a DNA-like double helical superstructure could impart special properties, such as enhanced stability, electrical conductivity, information storage, signal processing, and catalysis, owing to the synergistic interaction across helices. However, double helical WO3 synthesis is extremely challenging and has never been reported earlier. This investigation presents the first-ever report on a facile synthesis route for designing a DNA-like double helical WO3-x/C microfiber superstructure via self-assembly of in situ carbon fiber-encapsulated WO3-x nanorods. This innovative design strategy is completely template-free and does not require predesigned helical templates or hydro/solvothermal treatment. Detailed spectroscopic material characterization and electrochemical studies confirmed that the double helical structure with carbon fiber-WO3-x heterostructures enabled effective induction and distribution of oxygen vacancies along with W5+/W6+ redox surface states. Furthermore, faster electrode-electrolyte interfacial kinetics, improved electrical conductivity, and cycling stability has been observed in the carbon fiber-WO3-x heterostructures which resulted in a high area specific capacitance of 401 mF cm-2 at 2 mA cm-2 with excellent capacitance retention of >94% for more than 5000 cycles. Additionally, the carbon fiber-WO3-x heterostructures demonstrated promising performance when fabricated in a solid-state asymmetric supercapacitor device with the power density of 498 W kg-1 at an energy density of 15.4 W h kg-1. Therefore, the rare DNA-like double helical WO3-x/C superstructure synthesized in this study could open new doorways toward in situ, facile fabrication of double helical superstructures for energy and environmental applications.
Collapse
Affiliation(s)
- Akshay V Salkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| | - Amarja P Naik
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| |
Collapse
|
17
|
Das A, Pradhan B. A facile route to synthesize N-(Boc-Aminoethylglycin)thymine Ethyl Ester, application to the synthesis of PNA-oligonucleotide conjugates. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Muangkaew P, Vilaivan T. Pyrrolidinyl Peptide Nucleic Acid Probes Capable of Crosslinking with DNA: Effects of Terminal and Internal Modifications on Crosslink Efficiency. Chembiochem 2020; 22:241-252. [PMID: 32889765 DOI: 10.1002/cbic.202000589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/03/2020] [Indexed: 12/27/2022]
Abstract
In this study, we describe a furan-modified acpcPNA as a probe that can form an interstrand crosslink (ICL) with its DNA target upon activation with N-bromosuccinimide (NBS). To overcome the problem of furan instability under acidic conditions, a simple and versatile post-synthetic methodology for the attachment of the furan group to the PNA probe was developed. Unlike in other designs, the furan was placed at the end of the PNA molecule or tethered to the PNA backbone with all the base pairs in the PNA ⋅ DNA duplexes fully preserved. Hence, the true reactivity of each nucleobase towards the crosslinking could be compared. We show that all DNA bases except T could participate in the crosslinking reaction when the furan was placed at the end of the PNA strand. The crosslinking process was sensitive to mispairing, and lower crosslinking efficiency was observed in the presence of a base-mismatch in the PNA ⋅ DNA duplex. In contrast, when the furan was placed at internal positions of the acpcPNA ⋅ DNA duplex, no ICL was observed; this was explained by the inability of a hydrogen-bonded nucleobase to participate in the crosslinking reaction. The crosslinking efficiency was considerably improved, despite lower duplex stability, when an unpaired base (in the form of C-insertion) was present in the complementary DNA strand close to the furan modification site.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
19
|
Salmain M, Fischer-Durand N, Rudolf B. Bioorthogonal Conjugation of Transition Organometallic Complexes to Peptides and Proteins: Strategies and Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michèle Salmain
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Nathalie Fischer-Durand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Bogna Rudolf
- Department of Organic Chemistry; Faculty of Chemistry; University of Lodz; 91-403 Lodz Poland
| |
Collapse
|
20
|
Nguyen TJD, Manuguerra I, Kumar V, Gothelf KV. Toehold-Mediated Strand Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of Polymerase Activity and Protein Expression. Chemistry 2019; 25:12303-12307. [PMID: 31373735 DOI: 10.1002/chem.201903496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Triplex forming oligonucleotides are used as a tool for gene regulation and in DNA nanotechnology. By incorporating artificial nucleic acids, target affinity and biological stability superior to that of natural DNA may be obtained. This work demonstrates how a chimeric clamp consisting of acyclic (L)-threoninol nucleic acid (aTNA) and DNA can bind DNA and RNA by the formation of a highly stable triplex structure. The (L)-aTNA clamp is released from the target again by the addition of a releasing strand in a strand displacement type of reaction. It is shown that the clamp efficiently inhibits Bsu and T7 RNA polymerase activity and that polymerase activity is reactivated by displacing the clamp. The clamp was successfully applied to the regulation of luciferase expression by reversible binding to the mRNA. When targeting a sequence in the double stranded plasmid, 40 % downregulation of protein expression is achieved.
Collapse
Affiliation(s)
- Thuy J D Nguyen
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Ilenia Manuguerra
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Vipin Kumar
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Kurt V Gothelf
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
21
|
Investigation of the Stereochemical-Dependent DNA and RNA Binding of Arginine-Based Nucleopeptides. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nucleopeptides represent an intriguing class of nucleic acid analogues, in which nucleobases are placed in a peptide structure. The incorporation of D- and/or L-amino acids in nucleopeptide molecules allows the investigation of the role of backbone stereochemistry in determining the formation of DNA and RNA hybrids. Circular Dichroism (CD) spectroscopic studies indicated the nucleopeptide as having fully l-backbone configuration-formed stable hybrid complexes with RNA molecules. Molecular Dynamics (MD) simulations suggested a potential structure of the complex resulting from the interaction between the l-nucleopeptide and RNA strand. From this study, both the backbone (ionics and H-bonds) and nucleobases (pairing and π-stacking) of the chiral nucleopeptide appeared to be involved in the hybrid complex formation, highlighting the key role of the backbone stereochemistry in the formation of the nucleopeptide/RNA complexes.
Collapse
|
22
|
Whitehouse WL, Noble JE, Ryadnov MG, Howorka S. Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjug Chem 2019; 30:1836-1844. [PMID: 30821443 DOI: 10.1021/acs.bioconjchem.9b00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA nanostructures constitute a rapidly advancing tool-set for exploring cell-membrane functions and intracellular sensing or advancing delivery of biomolecular cargo into cells. Chemical conjugation with lipid anchors can mediate binding of DNA nanostructures to synthetic lipid bilayers, yet how such structures interact with biological membranes and internalize cells has not been shown. Here, an archetypal 6-duplex nanobundle is used to investigate how lipid conjugation influences DNA cell binding and internalization kinetics. Cellular interactions of DNA nanobundles modified with one and three cholesterol anchors were assessed using flow cytometry and confocal microscopy. Nuclease digestion was used to distinguish surface-bound DNA, which is nuclease accessible, from internalized DNA. Three cholesterol anchors were found to enhance cellular association by up to 10-fold when compared with unmodified DNA. The bundles were endocytosed efficiently within 24 h. The results can help design controlled DNA binding and trafficking into cells.
Collapse
Affiliation(s)
- William L Whitehouse
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| | - James E Noble
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Stefan Howorka
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| |
Collapse
|
23
|
Zheng H, Saha M, Appella DH. Synthesis of Fmoc-Protected ( S, S)- trans-Cyclopentane Diamine Monomers Enables the Preparation and Study of Conformationally Restricted Peptide Nucleic Acids. Org Lett 2018; 20:7637-7640. [PMID: 30460846 DOI: 10.1021/acs.orglett.8b03374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthesis of Fmoc-protected ( S, S)- trans-cyclopentane PNA ( tcypPNA) monomers starting from mono-Boc-protected ( S, S)-1,2-cyclopentanediamine is reported. A general synthetic strategy was developed so that tcypPNA monomers with each nucleobase can be made in sufficient quantity and purity for use in solid-phase peptide synthesis (SPPS). The newly synthesized monomers were then successfully incorporated into 10-residue PNA oligomers using standard Fmoc chemistry for SPPS. The different tcypPNAs allow different positions in the sequence to be conformationally constrained with ( S, S)- trans-cyclopentane to determine the effects on binding to complementary DNA.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| | - Mrinmoy Saha
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) , National Institutes of Health , 8 Center Drive, Room 404 , Bethesda , Maryland 20892 , United States
| |
Collapse
|
24
|
Montazersaheb S, Hejazi MS, Nozad Charoudeh H. Potential of Peptide Nucleic Acids in Future Therapeutic Applications. Adv Pharm Bull 2018; 8:551-563. [PMID: 30607328 PMCID: PMC6311635 DOI: 10.15171/apb.2018.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Peptide nucleic acids (PNA) are synthetic analog of DNA with a repeating N-(2-aminoethyl)-glycine peptide backbone connected to purine and pyrimidine nucleobases via a linker. Considering the unique properties of PNA, including resistance to enzymatic digestion, higher biostability combined with great hybridization affinity toward DNA and RNA, it has attracted great attention toward PNA- based technology as a promising approach for gene alteration. However, an important challenge in utilizing PNA is poor intracellular uptake. Therefore, some strategies have been developed to enhance the delivery of PNA in order to reach cognate site. Although PNAs primarily demonstrated to act as an antisense and antigene agents for inhibition of transcription and translation of target genes, more therapeutic applications such as splicing modulation and gene editing are also used to produce specific genome modifications. Hence, several approaches based on PNAs technology have been designed for these purposes. This review briefly presents the properties and characteristics of PNA as well as different gene modulation mechanisms. Thereafter, current status of successful therapeutic applications of PNA as gene therapeutic intervention in different research areas with special interest in medical application in particular, anti-cancer therapy are discussed. Then it focuses on possible use of PNA as anti-mir agent and PNA-based strategies against clinically important bacteria.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
25
|
Gadre S, Peters MS, Serrano A, Schrader T. A Synthetic Methodology Toward Pyrrolo[2,3-b]pyridones for GC Base Pair Recognition. Org Lett 2018; 20:6961-6964. [DOI: 10.1021/acs.orglett.8b03111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shubhankar Gadre
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Max Sena Peters
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Alvaro Serrano
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| |
Collapse
|
26
|
Yang D, Fa M, Gao L, Zhao R, Luo Y, Yao X. The effect of DNA on the oxidase activity of nanoceria with different morphologies. NANOTECHNOLOGY 2018; 29:385101. [PMID: 29949520 DOI: 10.1088/1361-6528/aacf86] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many nanomaterials have been reported to have enzyme-like activities and are considered as nanozymes. As a multifunctional nanozyme, nanoceria has received much attention due to the dual oxidation states of Ce3+/Ce4+ which facilitate redox reactions at the particle surface. Despite the advantages of nanozymes, their limited activity and lack of enzyme specificity are still problems to be resolved. DNA is used to modulate the oxidase activity of nanoceria because it has recently become an important molecule in bionanotechnology. However, the current research on the effect of DNA on the oxidase mimetic activity of nanoceria is contradictory. It has been discovered that nanoceria used in recent works are different, including in particle size, doping and concentration, and these differences may affect the interaction between DNA and nanoceria, and then affect the oxidase mimetic activity of nanoceria. Hence, it is important to clarify the factors that affect the interaction between DNA with nanoceria. In this work, the interactions between DNA and nanoceria with three different morphologies (nanoparticles, nanocubes, and nanorods) have been investigated. Experimental results show that DNA has different influences on the oxidase mimetic activity of nanoceria with different morphologies. The oxidase mimetic activity of CeO2 nanoparticles and nanocubes increased, but that of CeO2 nanorods decreased, after DNA modification. The mechanism of these experimental results has been explored, and it has been found that it is the interaction between cerium and the phosphate backbone of DNA that changes with the different morphologies, resulting in the varying effect of DNA on the oxidase mimetic activity of nanoceria. These results may provide a better understanding of the effect of DNA on the oxidase mimetic activity of nanoceria and promote the applications of nanoceria.
Collapse
Affiliation(s)
- Dingding Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Influence of the fixation/permeabilization step on peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria. PLoS One 2018; 13:e0196522. [PMID: 29851961 PMCID: PMC5979007 DOI: 10.1371/journal.pone.0196522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/14/2018] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in situ Hybridization (FISH) is a versatile, widespread and widely- used technique in microbiology. The first step of FISH—fixation/permeabilization—is crucial to the outcome of the method. This work aimed to systematically evaluate fixation/permeabilization protocols employing ethanol, triton X-100 and lysozyme in conjugation with paraformaldehyde for Peptide Nucleic Acid (PNA)-FISH. Response surface methodology was used to optimize these protocols for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). In general, the optimal PNA-FISH fluorescent outcome in Gram-positive bacteria was obtained employing harsher permeabilization conditions when compared to Gram-negative optimal protocols. The observed differences arise from the intrinsic cell envelope properties of each species and the ability of the fixation/permeabilization compounds to effectively increase the permeability of these structures while maintaining structural integrity. Ultimately, the combination of paraformaldehyde and ethanol proved to have significantly superior performance for all tested bacteria, especially for Gram-positive species (p<0.05).
Collapse
|
28
|
Malamgari SR, Manikandan P, Ramani P, Katta VR. Synthesis of Peptide Nucleic Acid Monomers via N
-Alkylation of Nosyl-protected Amino Acids with N
-Boc Bromoethyl Amine. ChemistrySelect 2018. [DOI: 10.1002/slct.201800202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sudhakar Reddy Malamgari
- Dhanvanthri Lab; Department of Sciences; Amrita School of Engineering; Coimbatore, Amrita Vishwa Vidyapeetham India
- Department of Medicinal Chemistry; GVK Biosciences Pvt. Ltd, IDA Mallapur, Hyderabad,; 500076 T.S. India
| | - Priyadharshini Manikandan
- Dhanvanthri Lab; Department of Sciences; Amrita School of Engineering; Coimbatore, Amrita Vishwa Vidyapeetham India
| | - Prasanna Ramani
- Dhanvanthri Lab; Department of Sciences; Amrita School of Engineering; Coimbatore, Amrita Vishwa Vidyapeetham India
| | - Vishweshwar Rao Katta
- Department of Medicinal Chemistry; GVK Biosciences Pvt. Ltd, IDA Mallapur, Hyderabad,; 500076 T.S. India
| |
Collapse
|
29
|
Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Vilaivan T, Thavarungkul P. Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor. Biosens Bioelectron 2017; 102:217-225. [PMID: 29149687 DOI: 10.1016/j.bios.2017.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/22/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
Abstract
A label-free electrochemical miRNA biosensor was developed based on a pyrrolidinyl peptide nucleic acid (acpcPNA)/polypyrrole (PPy)/silver nanofoam (AgNF) modified electrode. The AgNF was electrodeposited as redox indicator on a gold electrode, which was then functionalized with an electropolymerized layer of PPy, a conducting polymer, to immobilize the PNA probes. The fabrication process was investigated by electrochemical impedance spectroscopy. The biosensor was used to detect miRNA-21, a biomarker abnormally expressed in most cancers. The signal was monitored by the change in current of the AgNF redox reaction before and after hybridization using cyclic voltammetry. Two PNA probe lengths were investigated and the longer probe exhibited a better performance. Nucleotide overhangs on the electrode side affected the signal more than overhangs on the solution side due to the greater insulation of the sensing surface. Under optimal conditions, the electrochemical signal was proportional to miRNA-21 concentrations between 0.20fM and 1.0nM, with a very low detection limit of 0.20fM. The biosensor showed a high specificity which could discriminate between complementary, single-, doubled-base mismatched, and non-complementary targets. Three out of the seven tested plasma samples provided detectable concentrations (63 ± 4, 111 ± 4 and 164 ± 7fM). The sensor also showed good recoveries (81-119%). The results indicated the possibilities of this biosensor for analysis without RNA extraction and/or amplification, making the sensor potentially useful for both the prognosis and diagnosis of cancer in clinical application.
Collapse
Affiliation(s)
- Tawatchai Kangkamano
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Apon Numnuam
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panote Thavarungkul
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
30
|
Ferreira AM, Cruz-Moreira D, Cerqueira L, Miranda JM, Azevedo NF. Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). Biomed Microdevices 2017; 19:11. [PMID: 28144839 DOI: 10.1007/s10544-017-0150-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) is a highly specific molecular method widely used for microbial identification. Nonetheless, and due to the detection limit of this technique, a time-consuming pre-enrichment step is typically required before identification. In here we have developed a lab-on-a-chip device to concentrate cell suspensions and speed up the identification process in yeasts. The PNA-FISH protocol was optimized to target Saccharomyces cerevisiae, a common yeast that is very relevant for several types of food industries. Then, several coin-sized microfluidic devices with different geometries were developed. Using Computational fluid dynamics (CFD), we modeled the hydrodynamics inside the microchannels and selected the most promising options. SU-8 structures were fabricated based on the selected designs and used to produce polydimethylsiloxane-based microchips by soft lithography. As a result, an integrated approach combining microfluidics and PNA-FISH for the rapid identification of S. cerevisiae was achieved. To improve fluid flow inside microchannels and the PNA-FISH labeling, oxygen plasma treatment was applied to the microfluidic devices and a new methodology to introduce the cell suspension and solutions into the microchannels was devised. A strong PNA-FISH signal was observed in cells trapped inside the microchannels, proving that the proposed methodology works as intended. The microfluidic designs and PNA-FISH procedure described in here should be easily adaptable for detection of other microorganisms of similar size.
Collapse
Affiliation(s)
- André M Ferreira
- LEPABE- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal.,CEFT-Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal
| | - Daniela Cruz-Moreira
- LEPABE- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal.,CEFT-Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal
| | - Laura Cerqueira
- LEPABE- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal.,Biomode 2, S.A.-Edifício GNRation, Praça Conde de Agrolongo, n°, 123 4700-312, Braga, Portugal
| | - João M Miranda
- CEFT-Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal
| | - Nuno F Azevedo
- LEPABE- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s, /n 4200-465, Porto, Portugal.
| |
Collapse
|
31
|
Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin 2017; 38:798-805. [PMID: 28414202 DOI: 10.1038/aps.2017.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Peptide nucleic acid (PNA) is an oligomer, in which the phosphate backbone has been replaced by a pseudopeptide backbone that is meant to mimic DNA. Peptide nucleic acids are of the utmost importance in the biomedical field because of their ability to hybridize with neutral nucleic acids and their special chemical and biological properties. In recent years, PNAs have emerged in nanobiotechnology for cancer diagnosis and therapy due to their high affinity and sequence selectivity toward corresponding DNA and RNA. In this review, we summarize the recent progresses that have been made in cancer detection and therapy with PNA biotechnology. In addition, we emphasize nanoparticle PNA-based strategies for the efficient delivery of drugs in anticancer therapies.
Collapse
|
32
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Berger O, Gazit E. Molecular self-assembly using peptide nucleic acids. Biopolymers 2017; 108. [PMID: 27486924 DOI: 10.1002/bip.22930] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies.
Collapse
Affiliation(s)
- Or Berger
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
34
|
Seankongsuk P, Vchirawongkwin V, Bates RW, Padungros P, Vilaivan T. Enantioselective Synthesis of (2S
,3S
)-epi
-Oxetin and Its Incorporation into Conformationally Constrained Pyrrolidinyl PNA with an Oxetane Backbone. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pattarakiat Seankongsuk
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Organic Synthesis Research Unit; Phayathai Road, Patumwan Bangkok 10330 Thailand
| | - Viwat Vchirawongkwin
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Phayathai Road, Patumwan Bangkok 10330 Thailand
| | - Roderick W. Bates
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Panuwat Padungros
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Organic Synthesis Research Unit; Phayathai Road, Patumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Organic Synthesis Research Unit; Phayathai Road, Patumwan Bangkok 10330 Thailand
| |
Collapse
|
35
|
Tao W, Lin P, Hu J, Ke S, Song J, Zeng X. A sensitive DNA sensor based on an organic electrochemical transistor using a peptide nucleic acid-modified nanoporous gold gate electrode. RSC Adv 2017. [DOI: 10.1039/c7ra09832d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An organic electrochemical transistor (OECT) based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate with porous anodic aluminum oxide (AAO) as a gate electrode was proposed for DNA sensing.
Collapse
Affiliation(s)
- Wenyan Tao
- Shenzhen Key Laboratory of Special Functional Materials
- Shenzhen Engineering Laboratory for Advance Technology of Ceramics
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials
- Shenzhen Engineering Laboratory for Advance Technology of Ceramics
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials
- Shenzhen Engineering Laboratory for Advance Technology of Ceramics
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
| | - Shanming Ke
- Shenzhen Key Laboratory of Special Functional Materials
- Shenzhen Engineering Laboratory for Advance Technology of Ceramics
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
| | - Jiajun Song
- Shenzhen Key Laboratory of Special Functional Materials
- Shenzhen Engineering Laboratory for Advance Technology of Ceramics
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials
- Shenzhen Engineering Laboratory for Advance Technology of Ceramics
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
| |
Collapse
|
36
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
37
|
Saleh LMA, Dziedzic R, Spokoyny AM. An Inorganic Twist in Nanomaterials: Making an Atomically Precise Double Helix. ACS CENTRAL SCIENCE 2016; 2:685-686. [PMID: 27800550 PMCID: PMC5084070 DOI: 10.1021/acscentsci.6b00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Liban M. A. Saleh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Rafal Dziedzic
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
38
|
Lopes SP, Carvalho DT, Pereira MO, Azevedo NF. Discriminating typical and atypical cystic fibrosis-related bacteria by multiplex PNA-FISH. Biotechnol Bioeng 2016; 114:355-367. [PMID: 27571488 DOI: 10.1002/bit.26085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
Abstract
This study aims to report the development of peptide nucleic acid (PNA) probes to specifically detect the cystic fibrosis (CF)-associated traditional and atypical species Pseudomonas aeruginosa and Inquilinus limosus, respectively. PNA probes were designed in silico, developed and tested in smears prepared in phosphate-buffer saline (PBS), and in artificial sputum medium (ASM). A multiplex fluorescent in situ hybridization (FISH) approach using the designed probes was further validated in artificially contaminated clinical sputum samples and also applied in polymicrobial 24 h-old biofilms involving P. aeruginosa, I. limosus, and other CF-related bacteria. Both probes showed high predictive and experimental specificities and sensitivities. The multiplex PNA-FISH assay, associated with non-specific staining, was successfully adapted in the clinical samples and in biofilms of CF-related bacteria, allowing differentiating the community members and inferring about microbial-microbial interactions within the consortia. This study revealed the great potential of PNA-FISH as a diagnostic tool to discriminate between classical and less common CF-associated bacteria, being suitable to further describe species-dependent prevention strategies and deliver more effective target control therapeutics. Biotechnol. Bioeng. 2017;114: 355-367. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susana P Lopes
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Daniel T Carvalho
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria O Pereira
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno F Azevedo
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
39
|
Rocha R, Santos RS, Madureira P, Almeida C, Azevedo NF. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration. J Biotechnol 2016; 226:1-7. [PMID: 27021959 DOI: 10.1016/j.jbiotec.2016.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/17/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Collapse
Affiliation(s)
- Rui Rocha
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Biomode, Ed. GNRATION, Praça Conde Agrolongo no 123, 4700-312 Braga, Portugal.
| | - Rita S Santos
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Gent, Belgium; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Pedro Madureira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre n.° 823, 4150-180 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Biomode, Ed. GNRATION, Praça Conde Agrolongo no 123, 4700-312 Braga, Portugal
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
40
|
Radford F, Tyagi S, Gennaro ML, Pine R, Bushkin Y. Flow Cytometric Characterization of Antigen-Specific T Cells Based on RNA and Its Advantages in Detecting Infections and Immunological Disorders. Crit Rev Immunol 2016; 36:359-378. [PMID: 28605344 PMCID: PMC5548664 DOI: 10.1615/critrevimmunol.2017018316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescence in situ hybridization coupled with flow cytometry (FISH-Flow) is a highly quantitative, high-throughput platform allowing precise quantification of total mRNA transcripts in single cells. In undiagnosed infections posing a significant health burden worldwide, such as latent tuberculosis or asymptomatic recurrent malaria, an important challenge is to develop accurate diagnostic tools. Antigen-specific T cells create a persistent memory to pathogens, making them useful for diagnosis of infection. Stimulation of memory response initiates T-cell transitions between functional states. Numerous studies have shown that changes in protein levels lag real-time T-cell transitions. However, analysis at the single-cell transcriptional level can determine the differences. FISH-Flow is a powerful tool with which to study the functional states of T-cell subsets and to identify the gene expression profiles of antigen-specific T cells during disease progression. Advances in instrumentation, fluorophores, and FISH methodologies will broaden and deepen the use of FISH-Flow, changing the immunological field by allowing determination of functional immune signatures at the mRNA level and the development of new diagnostic tools.
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Richard Pine
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
41
|
Kirillova Y, Boyarskaya N, Dezhenkov A, Tankevich M, Prokhorov I, Varizhuk A, Eremin S, Esipov D, Smirnov I, Pozmogova G. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding. PLoS One 2015; 10:e0140468. [PMID: 26469337 PMCID: PMC4607454 DOI: 10.1371/journal.pone.0140468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA.
Collapse
Affiliation(s)
- Yuliya Kirillova
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- * E-mail:
| | - Nataliya Boyarskaya
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Andrey Dezhenkov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Mariya Tankevich
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan Prokhorov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Anna Varizhuk
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sergei Eremin
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Dmitry Esipov
- Department of Bioorganic Chemistry, Biology Faculty, Moscow State University, Moscow, Russia
| | - Igor Smirnov
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Galina Pozmogova
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
42
|
Hwang G, Lee H, Lee J. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes. Biochem Biophys Res Commun 2015; 467:328-33. [PMID: 26449454 DOI: 10.1016/j.bbrc.2015.09.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH.
Collapse
Affiliation(s)
- Gyoyeon Hwang
- Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon, Republic of Korea
| | - Hansol Lee
- Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Jiyeon Lee
- Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon, Republic of Korea.
| |
Collapse
|
43
|
|
44
|
Approaches for the detection of harmful algal blooms using oligonucleotide interactions. Anal Bioanal Chem 2014; 407:95-116. [PMID: 25381608 DOI: 10.1007/s00216-014-8193-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
Abstract
Blooms of microscopic algae in our waterways are becoming an increasingly important environmental concern. Many are sources of harmful biotoxins that can lead to death in humans, marine life and birds. Additionally, their biomass can cause damage to ecosystems such as oxygen depletion, displacement of species and habitat alteration. Globally, the number and frequency of harmful algal blooms has increased over the last few decades, and monitoring and detection strategies have become essential for managing these events. This review discusses developments in the use of oligonucleotide-based 'molecular probes' for the selective monitoring of algal cell numbers. Specifically, hybridisation techniques will be a focus.
Collapse
|
45
|
Manicardi A, Guidi L, Ghidini A, Corradini R. Pyrene-modified PNAs: Stacking interactions and selective excimer emission in PNA2DNA triplexes. Beilstein J Org Chem 2014; 10:1495-503. [PMID: 25161706 PMCID: PMC4142857 DOI: 10.3762/bjoc.10.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/03/2014] [Indexed: 12/17/2022] Open
Abstract
Pyrene derivatives can be incorporated into nucleic acid analogs in order to obtain switchable probes or supramolecular architectures. In this paper, peptide nucleic acids (PNAs) containing 1 to 3 1-pyreneacetic acid units (PNA1–6) with a sequence with prevalence of pyrimidine bases, complementary to cystic fibrosis W1282X point mutation were synthesized. These compounds showed sequence-selective switch-on of pyrene excimer emission in the presence of target DNA, due to PNA2DNA triplex formation, with stability depending on the number and positioning of the pyrene units along the chain. An increase in triplex stability and a very high mismatch-selectivity, derived from combined stacking and base-pairing interactions, were found for PNA2, bearing two distant pyrene units.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| | - Lucia Guidi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| | - Alice Ghidini
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410 ; Present Address: Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Hälsovägen 7, 14183, Huddinge, Sweden
| | - Roberto Corradini
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| |
Collapse
|
46
|
Poomsuk N, Siriwong K. Structural properties and stability of PNA with (2′R,4′R)- and (2′R,4′S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbone binding to DNA: A molecular dynamics simulation study. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Wang Q, Chen L, Long Y, Tian H, Wu J. Molecular beacons of xeno-nucleic acid for detecting nucleic acid. Theranostics 2013; 3:395-408. [PMID: 23781286 PMCID: PMC3677410 DOI: 10.7150/thno.5935] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Molecular beacons (MBs) of DNA and RNA have aroused increasing interest because they allow a continuous readout, excellent spatial and temporal resolution to observe in real time. This kind of dual-labeled oligonucleotide probes can differentiate between bound and unbound DNA/RNA in homogenous hybridization with a high signal-to-background ratio in living cells. This review briefly summarizes the different unnatural sugar backbones of oligonucleotides combined with fluorophores that have been employed to sense DNA/RNA. With different probes, we epitomize the fundamental understanding of driving forces and these recognition processes. Moreover, we will introduce a few novel and attractive emerging applications and discuss their advantages and disadvantages. We also highlight several perspective probes in the application of cancer therapeutics.
Collapse
|
48
|
Goda T, Singi AB, Maeda Y, Matsumoto A, Torimura M, Aoki H, Miyahara Y. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes. SENSORS (BASEL, SWITZERLAND) 2013; 13:2267-78. [PMID: 23435052 PMCID: PMC3649381 DOI: 10.3390/s130202267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/15/2013] [Accepted: 02/04/2013] [Indexed: 02/02/2023]
Abstract
Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Ankit Balram Singi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Yasuhiro Maeda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| | - Masaki Torimura
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; E-Mail:
| | - Hiroshi Aoki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; E-Mail:
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; E-Mails: (T.G.); (A.B.S.); (Y.M.); (A.M.)
| |
Collapse
|
49
|
Micklitsch CM, Oquare BY, Zhao C, Appella DH. Cyclopentane-peptide nucleic acids for qualitative, quantitative, and repetitive detection of nucleic acids. Anal Chem 2013; 85:251-7. [PMID: 23214925 PMCID: PMC3535555 DOI: 10.1021/ac3026459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of chemically modified peptide nucleic acids (PNAs) as probes for qualitative and quantitative detection of DNA. The remarkable stability of PNAs toward enzymatic degradation makes this class of molecules ideal to develop as part of a diagnostic device that can be used outside of a laboratory setting. Using an enzyme-linked reporter assay, we demonstrate that excellent levels of detection and accuracy for anthrax DNA can be achieved using PNA probes with suitable chemical components designed into the probe. In addition, we report on DNA-templated cross-linking of PNA probes as a way to preserve genetic information for repetitive and subsequent analysis. This report is the first detailed examination of the qualitative and quantitative properties of chemically modified PNA for nucleic acid detection and provides a platform for studying and optimizing PNA probes prior to incorporation into new technological platforms.
Collapse
|
50
|
Banerjee A, Onyuksel H. Peptide delivery using phospholipid micelles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:562-74. [PMID: 22847908 DOI: 10.1002/wnan.1185] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide based drugs are an important class of therapeutic agents but their development into commercial products is often hampered due to their inherent physico-chemical and biological instabilities. Phospholipid micelles can be used to address these delivery concerns. Peptides self-associate with micelles that serve to thwart the aggregation of these biomolecules. Self-association with micelles does not modify the peptide chemically; therefore the process does not denature or compromise the bioactivity of peptides. Additionally, many amphiphilic peptides adopt α-helical conformation in phospholipid micelles which is not only the most favorable conformation for receptor interaction but also improves their stability against proteolytic degradation, thus making them long-circulating. Furthermore, the nanosize of micelles enables passive targeting of peptides to the desired site of action through leaky vasculature present at tumor and inflamed tissues. All these factors alter the pharmacokinetic and biodistribution profiles of peptides therefore enhance their efficacy, reduce the dose required to obtain a therapeutic response and prevent adverse effects due to interaction of the peptide with receptors present in other physiological sites of the body. These phospholipid micelle based peptide nanomedicines can be easily scaled-up and lyophilized, thus setting the stage for further development of the formulation for clinical use. All things considered, it can be concluded that phospholipid micelles are a safe, stable and effective delivery option for peptide drugs and they form a great promise for future peptide nanomedicines.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|