1
|
Morante K, Caaveiro JM, Viguera AR, Tsumoto K, González-Mañas JM. Functional characterization of Val60, a key residue involved in the membrane-oligomerization of fragaceatoxin C, an actinoporin fromActinia fragacea. FEBS Lett 2015; 589:1840-6. [DOI: 10.1016/j.febslet.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
|
2
|
Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 2009; 41:708-11. [PMID: 19412176 PMCID: PMC2803042 DOI: 10.1038/ng.372] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/05/2009] [Indexed: 11/09/2022]
Abstract
Narcolepsy with cataplexy, characterized by sleepiness and rapid onset into REM sleep, affects 1 in 2,000 individuals. Narcolepsy was first shown to be tightly associated with HLA-DR2 (ref. 3) and later sublocalized to DQB1*0602 (ref. 4). Following studies in dogs and mice, a 95% loss of hypocretin-producing cells in postmortem hypothalami from narcoleptic individuals was reported. Using genome-wide association (GWA) in Caucasians with replication in three ethnic groups, we found association between narcolepsy and polymorphisms in the TRA@ (T-cell receptor alpha) locus, with highest significance at rs1154155 (average allelic odds ratio 1.69, genotypic odds ratios 1.94 and 2.55, P < 10(-21), 1,830 cases, 2,164 controls). This is the first documented genetic involvement of the TRA@ locus, encoding the major receptor for HLA-peptide presentation, in any disease. It is still unclear how specific HLA alleles confer susceptibility to over 100 HLA-associated disorders; thus, narcolepsy will provide new insights on how HLA-TCR interactions contribute to organ-specific autoimmune targeting and may serve as a model for over 100 other HLA-associated disorders.
Collapse
|
3
|
Wang Z, Moult J. Three-dimensional structural location and molecular functional effects of missense SNPs in the T cell receptor V? domain. Proteins 2003; 53:748-57. [PMID: 14579365 DOI: 10.1002/prot.10522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms by which human single nucleotide polymorphisms (SNPs) influence susceptibility to disease are not yet well understood. In a previous study, we developed a structure-based model that may be used to identify which missense SNPs are neutral and which are deleterious to protein function and so potentially involved in disease (Wang and Moult, Hum Mutat 2001;263-270). The model has now been applied to a set of 54 missense cSNPs in the 46 functional T-cell receptor Vbeta-genes. Most of these missense cSNPs are found to be neutral, but 10 are identified as likely deleterious to protein function. Only one was previously associated with disease. We suggest that the others may be disease related but that redundancy in the T-cell response prevents any simple, monogenic effect. Therefore, these SNPs are the most likely contributors to complex, polygenic disease traits. It has been noted that there is a surprisingly high (74%) fraction of nonsynonymous SNPs in these genes. Contrary to expectation, the analysis shows that these are not associated with an unusually high fraction of deleterious SNPs, nor do they significantly contribute to a larger range of antigen recognition or a reduced superantigen-binding repertoire.
Collapse
MESH Headings
- Binding Sites
- Genes, Immunoglobulin
- Genetic Predisposition to Disease
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Models, Molecular
- Mutation, Missense
- Polymorphism, Single Nucleotide
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Zhen Wang
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
4
|
Charini WA, Kuroda MJ, Schmitz JE, Beaudry KR, Lin W, Lifton MA, Krivulka GR, Necker A, Letvin NL. Clonally diverse CTL response to a dominant viral epitope recognizes potential epitope variants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4996-5003. [PMID: 11673507 DOI: 10.4049/jimmunol.167.9.4996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA viruses undergo rapid sequence variation as the result of error-prone RNA replication mechanisms. When viable mutations arise in RNA regions encoding B or T cell epitopes, mutant viruses that can evade immune detection may be selected. In the carefully studied CTL response to the Gag p11C(C-M) epitope in SIVmac-infected Mamu-A*01(+) rhesus monkeys, it has been shown that CTL recognition of that epitope can occur even in the face of accruing mutations. To explore the underlying mechanism for this breadth of recognition, we have constructed Mamu-A*01 tetramers which discriminate T cells specific for epitope variants. Using these reagents we have defined discrete subsets of p11C(C-M)-specific T cells that cross-react with cells presenting variant peptides. We have found that individual Mamu-A*01(+) monkeys differ functionally in their ability to recognize epitope variants despite consistently strong recognition of the p11C(C-M) epitope. This functional difference is accounted for by the relative number of variant-specific T cells and by differences in the functionally relevant TCR repertoire of the infected monkeys. We have also found that monkeys immunized with DNA vaccine constructs encoding only the wild-type epitope sequence develop p11C(C-M)-specific CTL cross-reactive with variant peptides. Thus, cross-reactive CTL do not merely arise secondary to the emergence and immune presentation of viral CTL escape mutants but rather arise de novo following priming with a dominant epitope peptide sequence. Taken together, our results support the concept that the CTL response to a dominant viral epitope, although highly focused, can be clonally diverse and recognize potential epitope variants.
Collapse
Affiliation(s)
- W A Charini
- Division of. Viral Pathogenesis, Harvard Medical School, Beth Israel-Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Simon A, Dosztányi ZS, Rajnavölgyi E, Simon I. Function-related regulation of the stability of MHC proteins. Biophys J 2000; 79:2305-13. [PMID: 11053110 PMCID: PMC1301118 DOI: 10.1016/s0006-3495(00)76476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteins must be stable to accomplish their biological function and to avoid enzymatic degradation. Constitutive proteolysis, however, is the main source of free amino acids used for de novo protein synthesis. In this paper the delicate balance of protein stability and degradability is discussed in the context of function of major histocompatibility complex (MHC) encoded protein. Classical MHC proteins are single-use peptide transporters that carry proteolytic degradation products to the cell surface for presenting them to T cells. These proteins fulfill their function as long as they bind their dissociable ligand, the peptide. Ligand-free MHC molecules on the cell surface are practically useless for their primary biological function, but may acquire novel activity or become an important source of amino acids when they lose their compact stable structure, which resists proteolytic attacks. We show in this paper that one or more of the stabilization centers responsible for the stability of MHC-peptide complexes is composed of residues of both the protein and the peptide, therefore missing in the ligand-free protein. This arrangement of stabilization centers provides a simple means of regulation; it makes the useful form of the protein stable, whereas the useless form of the same protein is unstable and therefore degradable.
Collapse
Affiliation(s)
- A Simon
- Institute of Enzymology, Hungarian Academy of Sciences, H-1518 Budapest, P.O. Box 7, Hungary
| | | | | | | |
Collapse
|
6
|
Teyton L, Apostolopoulos V, Cantu C, Celia H, Mallet-Désigné V, Stefanko R, Stramann T, Wallace M. Function and dysfunction of T cell receptor: structural studies. Immunol Res 2000; 21:325-30. [PMID: 10852133 DOI: 10.1385/ir:21:2-3:325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The engagement of the T cell receptor (TCR) to its ligand, the major histocompatibility complex (MHC)-peptide complex, leads to T cell activation. The molecular mechanisms leading to this activation are still unknown. Dimerization or substantial conformational changes following TCR ligation have not been observed by classical biochemical methods or by X-ray crystallography of the TCR/MHC complex. However, most of these experiments have used reductionist approaches in which only MHC and TCR molecules were taken into account. In fact, the TCR is only one of many molecules forming the TCR complex (TCRC), and the interplay among the components of this larger complex have not been studied in depth. The reconstitution of a complete TCRC using recombinant molecules is our goal and will be the first step to new structural and functional studies.
Collapse
Affiliation(s)
- L Teyton
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
De Oliveira DB, Harfouch-Hammoud E, Otto H, Papandreou NA, Stern LJ, Cohen H, Boehm BO, Bach J, Caillat-Zucman S, Walk T, Jung G, Eliopoulos E, Papadopoulos GK, van Endert PM. Structural analysis of two HLA-DR-presented autoantigenic epitopes: crucial role of peripheral but not central peptide residues for T-cell receptor recognition. Mol Immunol 2000; 37:813-25. [PMID: 11257303 DOI: 10.1016/s0161-5890(00)00109-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specific and major histocompatibility complex (MHC)-restricted T-cell recognition of antigenic peptides is based on interactions of the T-cell receptor (TCR) with the MHC alpha helices and solvent exposed peptide residues termed TCR contacts. In the case of MHC class II-presented peptides, the latter are located in the positions p2/3, p5 and p7/8 between MHC anchor residues. For numerous epitopes, peptide substitution studies have identified the central residue p5 as primary TCR contact characterized by very low permissiveness for peptide substitution, while the more peripheral positions generally represent auxiliary TCR contacts. In structural studies of TCR/peptide/MHC complexes, this has been shown to be due to intimate contact between the TCR complementarity determining region (CDR) three loops and the central peptide residue. We asked whether this model also applied to two HLA-DR presented epitopes derived from an antigen targeted in type 1 diabetes. Large panels of epitope variants with mainly conservative single substitutions were tested for human leukocyte antigen (HLA) class II binding affinity and T cell stimulation. Both epitopes bind with high affinity to the presenting HLA-DR molecules. However, in striking contrast to the standard distribution of TCR contacts, recognition of the central p5 residue displayed high permissiveness even for non-conservative substitutions, while the more peripheral p2 and p8 TCR contacts showed very low permissiveness for substitution. This suggests that intimate TCR interaction with the central peptide residue is not always required for specific antigen recognition and can be compensated by interactions with positions normally acting as auxiliary contacts.
Collapse
Affiliation(s)
- D B De Oliveira
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Boniface JJ, Reich Z, Lyons DS, Davis MM. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc Natl Acad Sci U S A 1999; 96:11446-51. [PMID: 10500196 PMCID: PMC18053 DOI: 10.1073/pnas.96.20.11446] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antigen-dependent activation of T lymphocytes requires T cell receptor (TCR)-mediated recognition of specific peptides, together with the MHC molecules to which they are bound. To achieve this recognition in a reasonable time frame, the TCR must scan and discriminate rapidly between thousands of MHC molecules differing from each other only in their bound peptides. Kinetic analysis of the interaction between a TCR and its cognate peptide-MHC complex indicates that both association and dissociation depend heavily on the temperature, indicating the presence of large energy barriers in both phases. Thermodynamic analysis reveals changes in heat capacity and entropy that are characteristic of protein-ligand associations in which local folding is coupled to binding. Such an "induced-fit" mechanism is characteristic of sequence-specific DNA-binding proteins that must also recognize specific ligands in the presence of a high background of competing elements. Here, we propose that induced fit may endow the TCR with its requisite discriminatory capacity and suggest a model whereby the loosely structured antigen-binding loops of the TCR rapidly explore peptide-MHC complexes on the cell surface until some critical structural complementarity is achieved through localized folding transitions. We further suggest that conformational changes, implicit in this model, may also propagate beyond the TCR antigen-binding site and directly affect self-association of ligated TCRs or TCR-CD3 interactions required for signaling.
Collapse
Affiliation(s)
- J J Boniface
- Department of Microbiology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA
| | | | | | | |
Collapse
|
9
|
van Regenmortel MH. Molecular design versus empirical discovery in peptide-based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure-function relationships in immunology. Vaccine 1999; 18:216-21. [PMID: 10506645 DOI: 10.1016/s0264-410x(99)00192-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In view of our increased understanding of the molecular basis of immunological recognition, it is commonly believed that it should be possible to apply molecular design strategies to the development of peptide-based vaccines. The stated aim is to transform the development of a vaccine from a trial and error empirical operation into a so-called rational, structure-based process. In the present review, it is argued that it is misleading to oppose rational and empirical approaches in vaccine research since both are needed in the practice of experimental science. Many reasons are given for the view that the molecular design of synthetic vaccines is not a realistic scientific enterprise. The capacity of a peptide to induce a protective immune response depends on many extrinsic factors and regulatory mechanisms of the recipient host which are not amenable to molecular design of the peptide immunogen. It seems safe to predict that the development of peptide-based vaccines will continue to be driven by empirical discovery rather than by so-called rational design.
Collapse
|
10
|
Abstract
Exciting breakthroughs in the last two years have begun to elucidate the structural basis of cellular immune recognition. Crystal structures have been determined for full-length and truncated forms of alpha beta T cell receptor (TCR) heterodimers, both alone and in complex with their peptide-MHC (pMHC) ligands or with anti-TCR antibodies. In addition, a truncated CD8 coreceptor has been visualized with a pMHC. Aided in large part by the substantial body of knowledge accumulated over the last 25 years on antibody structure, a number of general conclusions about TCR structure and its recognition of antigen can already be derived from the relatively few TCR structures that have been determined. Small, but important, variations between TCR and antibody structures bear on their functional differences as well as on their specific antigen recognition requirements. As observed in antibodies, canonical CDR loop structures are already emerging for some of the TCR CDR loops. Highly similar docking orientations of the TCR V alpha domains in the TCR/pMHC complex appear to play a primary role in dictating orientation, but the V beta positions diverge widely. Similar TCR contact positions, but whose exact amino acid content can vary, coupled with relatively poor interface shape complementarity, may explain the flexibility and short half-lives of many TCR interactions with pMHC. Here we summarize the current state of this field, and suggest that the knowledge gap between the three-dimensional structure and the signaling function of the TCR can be bridged through a synthesis of molecular biological and biophysical techniques.
Collapse
Affiliation(s)
- K C Garcia
- Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|