1
|
Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PLoS One 2013; 8:e69973. [PMID: 23875012 PMCID: PMC3715498 DOI: 10.1371/journal.pone.0069973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA). The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most “active” fungi (as recovered via RNA). Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production). Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.
Collapse
|
2
|
Manter DK, Delgado JA, Holm DG, Stong RA. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. MICROBIAL ECOLOGY 2010; 42:35-59. [PMID: 20414647 DOI: 10.1146/annurev.phyto.42.040803.140408] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 05/20/2023]
Abstract
In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 +/- 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 +/- 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (integral-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 +/- 0.019) and abundance (0.420 +/- 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < -0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.
Collapse
Affiliation(s)
- Daniel K Manter
- USDA-ARS, Soil-Plant-Nutrient Research Unit, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
3
|
Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer KH, Fried J. The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 2009; 68:246-54. [PMID: 19573204 DOI: 10.1111/j.1574-6941.2009.00660.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aerobic sewage granules are dense, spherical biofilms, regarded as a useful and promising tool in wastewater treatment processes. Recent studies revealed that fungi can be implemented in biofilm formation. This study attempts to uncover the fungal diversity in aerobic granules by sequence analysis of the 18S and 5.8S rRNA genes and the internal transcribed spacer regions. For this purpose, appropriate PCR and sequencing primer sets were selected and an improved DNA isolation protocol was used. The sequences of 41 isolates were assigned to the taxonomic groups Pleosporaceae, Xylariales, Theleobolaceae, Claviceps, Aureobasidium, Candida boleticola, and Tremellomycetes within the fungi. It turned out that the fungal community composition in granules depended on the wastewater type and the phase of granule development.
Collapse
Affiliation(s)
- Silvia D Weber
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska M, Druzhinina IS, Kubicek CP, Berg G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME JOURNAL 2008; 3:79-92. [DOI: 10.1038/ismej.2008.87] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F. Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Viebahn M, Veenman C, Wernars K, van Loon LC, Smit E, Bakker PAHM. Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 2005; 53:245-53. [PMID: 16329944 DOI: 10.1016/j.femsec.2004.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 10/29/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022] Open
Abstract
To assess effects of plant crop species on rhizosphere ascomycete communities in the field, we compared a wheat monoculture and an alternating crop rotation of wheat and potato. Rhizosphere soil samples were taken at different time points during the growing season in four consecutive years (1999-2002). An ascomycete-specific primer pair (ITS5-ITS4A) was used to amplify internal transcribed spacer (ITS) sequences from total DNA extracts from rhizosphere soil. Amplified DNA was analyzed by denaturing gradient gel electrophoresis (DGGE). Individual bands from DGGE gels were sequenced and compared with known sequences from public databases. DGGE gels representing the ascomycete communities of the continuous wheat and the rotation site were compared and related to ascomycetes identified from the field. The effect of crop rotation exceeded that of the spatial heterogeneity in the field, which was evident after the first year. Significant differences between the ascomycete communities from the rhizospheres of wheat in monoculture and one year after a potato crop were found, indicating a long-term effect of potato. Sequencing of bands excised from the DGGE gels revealed the presence of ascomycetes that are common in agricultural soils.
Collapse
Affiliation(s)
- Mareike Viebahn
- Section of Phytopathology, Faculty of Biology, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Malosso E, Waite IS, English L, Hopkins DW, O’Donnell AG. Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 2005. [DOI: 10.1007/s00300-005-0088-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb. Appl Environ Microbiol 2005; 71:4203-13. [PMID: 16085804 PMCID: PMC1183293 DOI: 10.1128/aem.71.8.4203-4213.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed.
Collapse
Affiliation(s)
- Gabriele Berg
- University of Rostock, Fachbereich Biowissenschaften, Microbiology, D-18051 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Oros-Sichler M, Gomes NCM, Neuber G, Smalla K. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbiol Methods 2005; 65:63-75. [PMID: 16102860 DOI: 10.1016/j.mimet.2005.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 06/07/2005] [Accepted: 06/24/2005] [Indexed: 11/26/2022]
Abstract
The analysis of soil fungal communities by molecular fingerprinting and subsequent identification of the underlying populations require the amplification of a phylogenetically informative gene fragment. In this study we tested the reliability and suitability of the previously published fungal primer combination (NS1/FR1-GC) that amplifies almost the entire 18S rRNA gene for the DGGE analysis of fungal communities in soil samples from 36 sites. This direct PCR system failed to amplify the fragment of interest from the total DNA extracted from most of the soils tested. Thus, we developed a new semi-nested PCR system based on the initial amplification of over 1,700 bp of the 18S rRNA gene with a new primer combination, followed by a subsequent amplification with NS1/FR1-GC. By means of the PCR approach developed in this study distinct 18S rRNA gene amplicons could be reproducibly generated for all soil samples. Amplification tests with 101 soil fungal isolates showed that with the new semi-nested system 18S rRNA gene fragments could be obtained from more fungi than with the direct approach. The subsequent DGGE separation of community amplicons resulted in a high resolution and revealed reproducible complex soil fungal communities specific for each site, despite a minor variability between replicates of the same sample. The semi-nested PCR system developed in this study, coupled with DGGE fingerprinting, offers a robust, reliable and sensitive tool for the analysis of soil fungal community structure.
Collapse
Affiliation(s)
- Miruna Oros-Sichler
- Biologische Bundesanstalt für Land-und Forstwirtschaft (BBA), Institut für Pflanzenvirologie, Mikrobiologie und biologische Sicherheit, Messeweg 11-12, 38104 Braunschweig, Germany
| | | | | | | |
Collapse
|
10
|
|
11
|
Mauchline TH, Kerry BR, Hirsch PR. The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. ACTA ACUST UNITED AC 2004; 108:161-9. [PMID: 15119353 DOI: 10.1017/s095375620300889x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A RAPD-PCR assay was developed and used to test for competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (I) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils: free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S in PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.
Collapse
|
12
|
Dent KC, Stephen JR, Finch-Savage WE. Molecular profiling of microbial communities associated with seeds of Beta vulgaris subsp. Vulgaris (sugar beet). J Microbiol Methods 2004; 56:17-26. [PMID: 14706747 DOI: 10.1016/j.mimet.2003.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The composition of microbial communities on and within seeds may effect their storage and field performance, whether they are indigenous or applied as biocontrol agents. In this study, we have explored the usefulness of profiling small subunit ribosomal (SSR) gene fragments for studying the microflora associated with seeds. DNA was amplified by the polymerase chain reaction (PCR) and the amplicons separated using denaturing gradient gel electrophoresis (DGGE). Primers targeting eukaryotic SSRs were used to investigate fungal communities, and primers targeting bacterial SSRs were employed to study the eubacterial microflora. As a case study, we attempted to profile the fungi and bacteria associated with seeds of Beta vulgaris (sugar beet) to permit an insight into the varying field performance of several well-characterised commercial seed lots. Serious interference with the microbial signals was observed from the plant's own nuclear 18S rRNA genes and chloroplast 16S rRNA genes using standard PCR conditions and DNA extracted from whole seeds as template. Hot-start and touchdown PCR made no appreciable improvement to these signals. Seed imbibition and dissection into operculum and fruit wall and true seed prior to DNA extraction improved signal recovery in the fruit fraction. With primer modification, bacteria and fungi were detected in an excess of plant DNA of 100:1 and 10:1, respectively. With this method, microbial communities on seeds could be profiled, however, it is likely that targeted depletion of plant rDNA targets will be a necessary extra step before this approach can be used to screen seeds routinely.
Collapse
Affiliation(s)
- Katherine C Dent
- Plant Establishment and Vegetation Management, Horticulture Research International, Wellesbourne, Warwick, CV35 9EF, UK
| | | | | |
Collapse
|
13
|
Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 2003; 69:3758-66. [PMID: 12839741 PMCID: PMC165189 DOI: 10.1128/aem.69.7.3758-3766.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal population dynamics in soil and in the rhizospheres of two maize cultivars grown in tropical soils were studied by a cultivation-independent analysis of directly extracted DNA to provide baseline data. Soil and rhizosphere samples were taken from six plots 20, 40, and 90 days after planting in two consecutive years. A 1.65-kb fragment of the 18S ribosomal DNA (rDNA) amplified from the total community DNA was analyzed by denaturing gradient gel electrophoresis (DGGE) and by cloning and sequencing. A rhizosphere effect was observed for fungal populations at all stages of plant development. In addition, pronounced changes in the composition of fungal communities during plant growth development were found by DGGE. Similar types of fingerprints were observed in two consecutive growth periods. No major differences were detected in the fungal patterns of the two cultivars. Direct cloning of 18S rDNA fragments amplified from soil or rhizosphere DNA resulted in 75 clones matching 12 dominant DGGE bands. The clones were characterized by their HinfI restriction patterns, and 39 different clones representing each group of restriction patterns were sequenced. The cloning and sequencing approach provided information on the phylogeny of dominant amplifiable fungal populations and allowed us to determine a number of fungal phylotypes that contribute to each of the dominant DGGE bands. Based on the sequence similarity of the 18S rDNA fragment with existing fungal isolates in the database, it was shown that the rhizospheres of young maize plants seemed to select the Ascomycetes order Pleosporales, while different members of the Ascomycetes and basidiomycetic yeast were detected in the rhizospheres of senescent maize plants.
Collapse
Affiliation(s)
- Newton C Marcial Gomes
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenvirologie, Mikrobiologie und biologische Sicherheit, Messeweg 11-12, 38104 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Schubert R, Raidl S, Funk R, Bahnweg G, Müller-Starck G, Agerer R. Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst. by ITS1-based fluorescent PCR. MYCORRHIZA 2003; 13:159-165. [PMID: 12836084 DOI: 10.1007/s00572-002-0212-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Accepted: 11/19/2002] [Indexed: 05/24/2023]
Abstract
A real-time quantitative TaqMan-PCR was established for the absolute quantification of extramatrical hyphal biomass of the ectomycorrhizal fungus Piloderma croceum in pure cultures as well as in rhizotron samples with non-sterile peat substrate. After cloning and sequencing of internal transcribed spacer (ITS) sequences ITS1/ITS2 and the 5.8S rRNA gene from several fungi, including Tomentellopsis submollis, Paxillus involutus, and Cortinarius obtusus, species-specific primers and a dual-labelled fluorogenic probe were designed for Piloderma croceum. The dynamic range of the TaqMan assay spans seven orders of magnitude, producing an online-detectable fluorescence signal during the cycling run that is directly related to the starting number of ITS copies present. To test the confidence of the PCR-based quantification results, the hyphal length of Piloderma croceum was counted under the microscope to determine the recovery from two defined but different amounts of agar-cultivated mycelia. Inspection of the registered Ct values (defined as that cycle number at which a statistically significant increase in the reporter fluorescence can first be detected) in a 10-fold dilution series of template DNA represents a suitable and stringent quality control standard for exclusion of false PCR-based quantification results. The fast real-time PCR approach enables high throughput of samples, making this method well suited for quantitative analysis of ectomycorrhizal fungi in communities of natural and artificial ecosystems, so long as applicable DNA extraction protocols exist for different types of soil.
Collapse
Affiliation(s)
- Roland Schubert
- Department of Plant Sciences, Section of Forest Genetics, Weihenstephan Center of Life and Food Sciences, Technical University of Munich, Am Hochanger 13, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Nikolcheva LG, Cockshutt AM, Bärlocher F. Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 2003; 69:2548-54. [PMID: 12732520 PMCID: PMC154547 DOI: 10.1128/aem.69.5.2548-2554.2003] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Traditional microscope-based estimates of species richness of aquatic hyphomycetes depend upon the ability of the species in the community to sporulate. Molecular techniques which detect DNA from all stages of the life cycle could potentially circumvent the problems associated with traditional methods. Leaf disks from red maple, alder, linden, beech, and oak as well as birch wood sticks were submerged in a stream in southeastern Canada for 7, 14, and 28 days. Fungal biomass, estimated by the amount of ergosterol present, increased with time on all substrates. Alder, linden, and maple leaves were colonized earlier and accumulated the highest fungal biomass. Counts and identifications of released conidia suggested that fungal species richness increased, while community evenness decreased, with time (up to 11 species on day 28). Conidia of Articulospora tetracladia dominated. Modifications of two molecular methods-denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) analysis-suggested that both species richness and community evenness decreased with time. The dominant ribotype matched that of A. tetracladia. Species richness estimates based on DGGE were consistently higher than those based on T-RFLP analysis and exceeded those based on spore identification on days 7 and 14. Since traditional and molecular techniques assess different aspects of the fungal organism, both are essential for a balanced view of fungal succession on leaves decaying in streams.
Collapse
Affiliation(s)
- Liliya G Nikolcheva
- Department of Biology, Mount Allison University, 63B York Street, Sackville, New Brunswick, Canada E4L 1G7
| | | | | |
Collapse
|
16
|
Kowalchuk GA, de Souza FA, van Veen JA. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 2002; 11:571-81. [PMID: 11928709 DOI: 10.1046/j.0962-1083.2001.01457.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach for the detection and characterization of arbuscular mycorrhizal fungi (AMF) 18S ribosomal DNA (rDNA) was developed and applied to the study of AMF communities associated with the main sand-stabilizing plant species of the Dutch sand dunes, marram grass (Ammophila arenaria, L.). DNA was extracted directly from plant roots, soil or isolated AMF spores, and prominent bands resulting from AMF-specific DGGE profiles were excised for sequence analysis. This strategy provided a robust means of detecting and identifying AMF-like species without the use of trap plant cultivation methods. A number of Glomus-like and Scutellospora-like sequences was detected, including a putatively novel Glomus species, and differences were observed in the dominant AMF-like populations detected in healthy vs. degenerating stands of A. arenaria and in bulk sand dune soil. It has previously been suggested that plant pathogens, such as fungi and nematodes, may contribute to the decline of A. arenaria. Although no causal relationship can be drawn between the observed differences in the dominantly detected AMF-like populations and the vitality of plant growth, these results indicate that mutualistic interactions between this plant and AMF should not be overlooked when examining the role of soil-borne microorganisms in vegetation dynamics. In addition, there were discrepancies observed between the AMF-like groups detected in spore populations vs. direct 18S rDNA analysis of root material, corroborating previous suggestions that spore inspection alone may poorly represent actual AMF population structure.
Collapse
Affiliation(s)
- George A Kowalchuk
- Netherlands Institute of Ecology, Center for Terrestrial Ecology, Heteren, The Netherlands.
| | | | | |
Collapse
|
17
|
Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S. Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Methods 2001; 47:345-54. [PMID: 11714525 DOI: 10.1016/s0167-7012(01)00344-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Besides lichens and bacteria, fungi play a crucial role in the biodeterioration of historical glass. In the present paper, the fungal diversity on the surface of two historical church window glasses was investigated by 18S rDNA-based denaturing gradient gel electrophoresis (DGGE) analysis. 566-bp 18S rDNA-specific clone libraries were constructed with primer set NS1/NS2+10. Positive clones were reamplified with primer sets EF4/518rGC (426-bp fragments) and NS26/518rGC (316-bp fragments), amplicons were screened by DGGE and clustered according to their position in DGGE. Results indicated that fungal 18S rDNA clone libraries should be screened with at least two different primer sets to obtain the maximum number of different clones. For phylogenetic sequence analyses, clone inserts were sequenced and compared with 18S rDNA sequences listed in the EMBL database. Similarity values ranged from 93.7% to 99.81% to known fungi. Analyses revealed complex fungal communities consisting of members and relatives of the genera Aspergillus, Aureobasidium, Coniosporum, Capnobotryella, Engyodontium, Geomyces, Kirschsteiniothelia, Leptosphaeria, Rhodotorula, Stanjemonium, Ustilago, and Verticillium. The genera Geomyces and Aureobasidium were present on both glass surfaces. Some genera had not been detected on historical glass so far.
Collapse
MESH Headings
- Art
- Cloning, Molecular
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Electrophoresis, Polyacrylamide Gel/methods
- Fungi/classification
- Fungi/genetics
- Fungi/isolation & purification
- Glass
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- C Schabereiter-Gurtner
- Institute of Microbiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
18
|
Theelen B, Silvestri M, Guého E, van Belkum A, Boekhout T. Identification and typing of Malassezia yeasts using amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE). FEMS Yeast Res 2001; 1:79-86. [PMID: 12702352 DOI: 10.1111/j.1567-1364.2001.tb00018.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Three molecular tools, amplified fragment length polymorphism (AFLP), denaturing gradient gel electrophoresis (DGGE) and random amplified polymorphic DNA (RAPD) analysis, were explored for their usefulness to identify isolates of Malassezia yeasts. All seven species could be separated by AFLP and DGGE. Using AFLP, four genotypes could be distinguished within M. furfur. AFLP genotype 4 contained only isolates from deep human sources, and ca. 80% of these isolates were from patients with systemic disease. Most of the systemic isolates belonged to a single RAPD genotype. This suggests that systemic conditions strongly select for a particular genotype. Although the clinical use of DGGE may be limited due to technical demands, it remains a powerful tool for the analysis of complex clinical samples.
Collapse
Affiliation(s)
- B Theelen
- Centraalbureau voor Schimmelcultures, Yeast Division, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Martin RR, James D, Lévesque CA. Impacts of Molecular Diagnostic Technologies on Plant Disease Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:207-239. [PMID: 11701842 DOI: 10.1146/annurev.phyto.38.1.207] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Detection and diagnosis of plant viruses has included serological laboratory tests since the 1960s. Relatively little work was done on serological detection of plant pathogenic bacteria and fungi prior to the development of ELISA and monoclonal antibody technologies. Most applications for laboratory-based tests were directed at virus detection with relatively little emphasis on fungal and bacterial pathogens, though there was some good work done with other groups of plant pathogens. With the advent of molecular biology and the ability to compare regions of genomic DNA representing conserved sequences, the development of laboratory tests increased at an amazing rate for all groups of plant pathogens. Comparison of ITS regions of bacteria, fungi, and nematodes has proven useful for taxonomic purposes. Sequencing of conserved genes has been used to develop PCR-based detection with varying levels of specificity for viruses, fungi, and bacteria. Combinations of ELISA and PCR technologies are used to improve sensitivity of detection and to avoid problems with inhibitors or PCR often found in plants. The application of these technologies in plant pathology has greatly improved our ability to detect plant pathogens and is increasing our understanding of, their ecology and epidemiology.
Collapse
Affiliation(s)
- Robert R Martin
- USDA-ARS Horticulture Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, Oregon 97330; e-mail:
| | - Delano James
- Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, British Columbia V8l 1H3, Canada; e-mail:
| | - C André Lévesque
- Eastern Cereal and Oilseed Research Center (ECORC), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada; e-mail:
| |
Collapse
|
20
|
Redman RS, Litvintseva A, Sheehan KB, Henson JM, Rodriguez R. Fungi from geothermal soils in Yellowstone National Park. Appl Environ Microbiol 1999; 65:5193-7. [PMID: 10583964 PMCID: PMC91704 DOI: 10.1128/aem.65.12.5193-5197.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Accepted: 09/07/1999] [Indexed: 11/20/2022] Open
Abstract
Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70 degrees C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22 degrees C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.
Collapse
Affiliation(s)
- R S Redman
- Western Fisheries Research Center, USGS/BRD, Seattle, Washington 98115, USA
| | | | | | | | | |
Collapse
|