1
|
Wei X, Yang X, Hu C, Li Q, Liu Q, Wu Y, Xie L, Ning X, Li F, Cai T, Zhu Z, Zhang YHPJ, Zhang Y, Chen X, You C. ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA. Nat Commun 2024; 15:3267. [PMID: 38627361 PMCID: PMC11021460 DOI: 10.1038/s41467-024-46871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.
Collapse
Affiliation(s)
- Xinlei Wei
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Congcong Hu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiangzi Li
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Qianqian Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yue Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Leipeng Xie
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Xiao Ning
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Fei Li
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Tao Cai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Yi-Heng P Job Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Xuejun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Chun You
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
2
|
Slavić MŠ, Kojić M, Margetić A, Stanisavljević N, Gardijan L, Božić N, Vujčić Z. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. Int J Biol Macromol 2023; 249:126055. [PMID: 37524287 DOI: 10.1016/j.ijbiomac.2023.126055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60-80 °C and is active and stable over a wide pH range (4.0-9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.
Collapse
Affiliation(s)
- Marinela Šokarda Slavić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia.
| | - Milan Kojić
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Republic of Serbia; University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Aleksandra Margetić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia
| | - Nemanja Stanisavljević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Lazar Gardijan
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Nataša Božić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia
| | - Zoran Vujčić
- University of Belgrade, Faculty of Chemistry, Department of Biochemistry, Belgrade, Republic of Serbia
| |
Collapse
|
3
|
Pouyan S, Lagzian M, Sangtarash MH. Enhancing thermostabilization of a newly discovered α-amylase from Bacillus cereus GL96 by combining computer-aided directed evolution and site-directed mutagenesis. Int J Biol Macromol 2022; 197:12-22. [PMID: 34920075 DOI: 10.1016/j.ijbiomac.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
This study has described the characterization of a new a-amylase from the recently isolated Bacillus cereus GL96. Subsequently, an in-silico approach was taken into account to redesign the enzyme to meet higher thermal stability. Finally, the engineered enzyme was constructed experimentally using side-directed mutagenesis (SDM) and characterized accordingly. The enzyme was stable over pH 4-11, with the highest activity at 9.5. The temperature profile of the wild-type enzyme showed optimum activity at 50 °C plus 40% of stability at temperatures up to 70 °C. The in-silico result was indicated D162W, D162R, and D162K as the three stabilizing mutations. Among them, D162K showed better results, especially in the molecular dynamics simulation, and therefore, it was constructed by SDM. This variant was shown 5 °C higher optimum temperature (55 °C) with increasing activity than the native enzyme. In addition, it was significantly more stable than the native form. For example, while the latter almost wholly lost its function at a temperature above 70 °C, the D162K can retain more than 40% of its initial activity up to 80 °C. Considering the promising properties that the mutant enzyme showed, it can be considered for further investigation to meet the industrial requirement completely.
Collapse
Affiliation(s)
- Soroosh Pouyan
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
4
|
Meng Y, Yao Z, Le HG, Lee SJ, Jeon HS, Yoo JY, Kim JH. Characterization of a salt-resistant fibrinolytic protease of Bacillus licheniformis HJ4 isolated from Hwangseokae jeotgal, a traditional Korean fermented seafood. Folia Microbiol (Praha) 2021; 66:787-795. [PMID: 34128186 DOI: 10.1007/s12223-021-00878-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022]
Abstract
Bacillus licheniformis HJ4 showing strong fibrinolytic activity was isolated from Hwangseokae jeotgal. aprEHJ4, a major fibrinolytic gene, was cloned by PCR, and an ORF consisting of 379 amino acids was located. The mature enzyme was expected to be 27 kDa in size after processing, but a 24-kDa protein was observed by SDS-PAGE and fibrin zymography, indicating additional processing. RT-qPCR showed that expression level of aprEHJ4 in culture with 0% salt (control) was the highest followed by culture with 8% salt (89.7% of control) and 5% salt (74.2%) at 84 h. The expression level in culture with 15% salt was 46.9%. The results matched with the fibrinolytic activity measurements of cultures and indicated that AprEHJ4 maintained significant activity in the presence of salt up to 15% (w/v). AprEHJ4 was overproduced in Escherichia coli, and mature 27 kDa protein was purified after in vitro renaturation. The optimum pH and temperature of AprEHJ4 were pH 8 and 40 ℃, respectively.
Collapse
Affiliation(s)
- Yu Meng
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea
| | - Zhuang Yao
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea
| | - Huong Giang Le
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea
| | - Se Jin Lee
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea
| | - Hye Sung Jeon
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea
| | - Ji Yeon Yoo
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea
| | - Jeong Hwan Kim
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
5
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Lin M, Tan J, Xu Z, Huang J, Tian Y, Chen B, Wu Y, Tong Y, Zhu Y. Computational design of enhanced detoxification activity of a zearalenone lactonase from Clonostachys rosea in acidic medium. RSC Adv 2019; 9:31284-31295. [PMID: 35527979 PMCID: PMC9072336 DOI: 10.1039/c9ra04964a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Computational design of pH-activity profiles for enzymes is of great importance in industrial applications. In this research, a computational strategy was developed to engineer the pH-activity profile of a zearalenone lactonase (ZHD101) from Clonostachys rosea to promote its activity in acidic medium. The active site pK a values of ZHD101 were computationally designed by introducing positively charged lysine mutations on the enzyme surface, and the experimental results showed that two variants, M2(D157K) and M9(E171K), increased the catalytic efficiencies of ZHD101 modestly under acidic conditions. Moreover, two variants, M8(D133K) and M9(E171K), were shown to increase the turnover numbers by 2.73 and 2.06-fold with respect to wild type, respectively, though their apparent Michaelis constants were concomitantly increased. These results imply that the active site pK a value change might affect the pH-activity profile of the enzyme. Our computational strategy for pH-activity profile engineering considers protein stability; therefore, limited experimental validation is needed to discover beneficial mutations under shifted pH conditions.
Collapse
Affiliation(s)
- Min Lin
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jian Tan
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO) Beijing 102209 China
- Beijing Key Lab of Nutrition, Health and Food Safety Beijing 102209 China
- Beijing Livestock Products Quality and Safety Source Control Engineering Technology Research Center Beijing 102209 China
| | - Zhaobin Xu
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jin Huang
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO) Beijing 102209 China
- Beijing Key Lab of Nutrition, Health and Food Safety Beijing 102209 China
- Beijing Livestock Products Quality and Safety Source Control Engineering Technology Research Center Beijing 102209 China
| | - Ye Tian
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Bo Chen
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO) Beijing 102209 China
- Beijing Key Lab of Nutrition, Health and Food Safety Beijing 102209 China
- Beijing Livestock Products Quality and Safety Source Control Engineering Technology Research Center Beijing 102209 China
| | - Yandong Wu
- National Engineering Research Center of Corn Deep Processing Changchun 130033 Jilin China
| | - Yi Tong
- National Engineering Research Center of Corn Deep Processing Changchun 130033 Jilin China
| | - Yushan Zhu
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
- MOE Key Lab of Industrial Biocatalysis, Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Agirre J, Moroz O, Meier S, Brask J, Munch A, Hoff T, Andersen C, Wilson KS, Davies GJ. The structure of the AliC GH13 α-amylase from Alicyclobacillus sp. reveals the accommodation of starch branching points in the α-amylase family. Acta Crystallogr D Struct Biol 2019; 75:1-7. [PMID: 30644839 PMCID: PMC6333287 DOI: 10.1107/s2059798318014900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/21/2018] [Indexed: 10/06/2023] Open
Abstract
α-Amylases are glycoside hydrolases that break the α-1,4 bonds in starch and related glycans. The degradation of starch is rendered difficult by the presence of varying degrees of α-1,6 branch points and their possible accommodation within the active centre of α-amylase enzymes. Given the myriad industrial uses for starch and thus also for α-amylase-catalysed starch degradation and modification, there is considerable interest in how different α-amylases might accommodate these branches, thus impacting on the potential processing of highly branched post-hydrolysis remnants (known as limit dextrins) and societal applications. Here, it was sought to probe the branch-point accommodation of the Alicyclobacillus sp. CAZy family GH13 α-amylase AliC, prompted by the observation of a molecule of glucose in a position that may represent a branch point in an acarbose complex solved at 2.1 Å resolution. Limit digest analysis by two-dimensional NMR using both pullulan (a regular linear polysaccharide of α-1,4, α-1,4, α-1,6 repeating trisaccharides) and amylopectin starch showed how the Alicyclobacillus sp. enzyme could accept α-1,6 branches in at least the -2, +1 and +2 subsites, consistent with the three-dimensional structures with glucosyl moieties in the +1 and +2 subsites and the solvent-exposure of the -2 subsite 6-hydroxyl group. Together, the work provides a rare insight into branch-point acceptance in these industrial catalysts.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Olga Moroz
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Astrid Munch
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Tine Hoff
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | | | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| |
Collapse
|
8
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
9
|
Enhanced acidic adaptation of Bacillus subtilis Ca-independent alpha-amylase by rational engineering of pKa values. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Parashar D, Satyanarayana T. An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases From Acidophiles. Front Bioeng Biotechnol 2018; 6:125. [PMID: 30324103 PMCID: PMC6172347 DOI: 10.3389/fbioe.2018.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
Most of the extracellular enzymes of acidophilic bacteria and archaea are stable at acidic pH with a relatively high thermostability. There is, however, a dearth of information on their acid stability. Although several theories have been postulated, the adaptation of acidophilic proteins to low pH has not been explained convincingly. This review highlights recent developments in understanding the structure and biochemical characteristics, and production of acid-stable and calcium-independent α-amylases by acidophilic bacteria with special reference to that of Bacillus acidicola.
Collapse
Affiliation(s)
- Deepak Parashar
- Functional Genomic Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Tulasi Satyanarayana
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
11
|
Wu X, Wang Y, Tong B, Chen X, Chen J. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol 2017; 109:329-337. [PMID: 29233713 DOI: 10.1016/j.ijbiomac.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 11/28/2022]
Abstract
Novel thermostable amylase need to be continuously explored with the improvement of industrial requirements. A new acidophilic and thermostable amylase producing bacterium isolated from spring was identified as Bacillus strain on the basis of 16S rDNA. The amylase was purified by ammonium sulphate precipitation, gel chromatography and anion exchange chromatography. SDS-PAGE revealed that the enzyme was monomeric with a molecular weight of 58 kDa. The amylase exhibited optimal activity at pH 5.0 and temperature 100 °C. Then the enzyme showed high stability in pH ranges 4.0-10.0 and more than 90% of maximal activity was found from 20 °C to 80 °C. Apart from good stability toward SDS and non-ionic detergent, the purified enzyme exhibited high compatibility with some inhibitors such as urea and EDTA. The results demonstrated the stability of the enzyme in different organic solvents. Moreover, we determined the amylase gene, compared the structure with α-amylase BAA and BLA and found some thermostability determinants in our enzyme. Overall, presenting various properties were including high thermostability, Ca2+-independency, broad temperature and pH profiles, organic-solvent tolerance as well as excellent stability with detergents. Such characteristics have not been reported for this type of enzyme, and the α-amylase will be a suitable candidate in industrial fields.
Collapse
Affiliation(s)
- Xiangrong Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxia Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Bending Tong
- Department of Pharmacy, Jiangs u Cancer Hospital, Nanjing 210009, China
| | - Xianghua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Li Z, Duan X, Chen S, Wu J. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B. PLoS One 2017; 12:e0173187. [PMID: 28253342 PMCID: PMC5333897 DOI: 10.1371/journal.pone.0173187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase.
Collapse
Affiliation(s)
- Zhu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xuguo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Department of Food Science and Engineering, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Mehta D, Satyanarayana T. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Front Microbiol 2016; 7:1129. [PMID: 27516755 PMCID: PMC4963412 DOI: 10.3389/fmicb.2016.01129] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
14
|
Zhang YHP. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnol Adv 2015; 33:1467-83. [DOI: 10.1016/j.biotechadv.2014.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
|
15
|
Offen WA, Viksoe-Nielsen A, Borchert TV, Wilson KS, Davies GJ. Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus α-amylase at 1.9 Å resolution. Acta Crystallogr F Struct Biol Commun 2015; 71:66-70. [PMID: 25615972 PMCID: PMC4304751 DOI: 10.1107/s2053230x14026508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022] Open
Abstract
The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments.
Collapse
Affiliation(s)
- Wendy A. Offen
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | | | | | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| |
Collapse
|
16
|
Wang L, Li X, Yuan L, Wang H, Chen H, Brash JL. Improving the protein activity and stability under acidic conditions via site-specific conjugation of a pH-responsive polyelectrolyte. J Mater Chem B 2014; 3:498-504. [PMID: 32262053 DOI: 10.1039/c4tb01741b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Maintaining the protein activity and stability under acidic conditions is important in bioengineering and biomedical applications. Polyelectrolyte conjugation as a means of stabilizing proteins has received much recent attention. Retention of protein activity, and especially, improvement of protein stability by minimizing the number of polymer chains in the conjugate, as well as by choosing the optimal site for conjugation, is critical in practical applications. In this research, the cationic polyelectrolyte poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA) was conjugated to the inorganic pyrophosphatase (PPase) site specifically. Conjugation of pDMAEMA to the specific site N124 on the protein surface led to a significant increase in activity at acidic pH. At pH 4.0, the activity of the pDMAEMA-conjugated protein was increased 3-fold relative to the unconjugated one. Dynamic light scattering (DLS) measurements showed that the aggregation state of the protein depended on the polymer charge as the pH was varied. Protein aggregation at low pH was prevented by pDMAEMA conjugation, resulting in an increase in protein stability under acidic conditions. The conjugate retained 60% of its initial activity after 4 h at pH 4.0, whereas the unconjugated protein lost 40% of its initial activity within 15 min at this pH. These results suggest an approach for preserving the protein activity and stability at low pH based on site-specific polyelectrolyte conjugation to the protein surface, thereby providing a new strategy for expanding the use of proteins in an acidic environment.
Collapse
Affiliation(s)
- Lei Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Pirrung MC, Biswas G, De Howitt N, Liao J. Synthesis and bioluminescence of difluoroluciferin. Bioorg Med Chem Lett 2014; 24:4881-3. [PMID: 25239851 DOI: 10.1016/j.bmcl.2014.08.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
A new synthesis route to firefly luciferin analogs was developed via the synthesis of 5',7'-difluoroluciferin. As a luciferase substrate, it produces maximal bioluminescence at a much lower pH than is optimal for native luciferin, and at lower pH it gives much more of the red-shifted emission that is characteristic of the phenolate. These features are attributed to the enhanced acidity of the o,o-difluorophenol.
Collapse
Affiliation(s)
- Michael C Pirrung
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA; Stem Cell Center, University of California-Riverside, Riverside, CA 92521, USA.
| | - Goutam Biswas
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Natalie De Howitt
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Jiayu Liao
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, USA; Stem Cell Center, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu. Biochem Biophys Res Commun 2014; 451:541-7. [PMID: 25117441 DOI: 10.1016/j.bbrc.2014.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
To understand the role of His and Glu in the catalytic activity of Bacillus licheniformis α-amylase (BLA), His235 was replaced with Glu. The mutant enzyme, H235E, was characterized in terms of its mode of action using labeled and unlabeled maltooctaose (Glc8). H235E predominantly produced maltotridecaose (Glc13) from Glc8, exhibiting high substrate transglycosylation activity, with Km=0.38mM and kcat/Km=20.58mM(-1)s(-1) for hydrolysis, and Km2=18.38mM and kcat2/Km2=2.57mM(-1)s(-1) for transglycosylation, while the wild-type BLA exhibited high hydrolysis activity exclusively. Glu235-located on a wide open groove near subsite +1-is likely involved in transglycosylation via formation of an α-1,4-glycosidic linkage and may recognize and stabilize the non-reducing end glucose of the acceptor molecule.
Collapse
|
19
|
Park JT, Suwanto A, Tan I, Nuryanto T, Lukman R, Wang K, Jane JL. Molecular cloning and characterization of a thermostable α-amylase exhibiting an unusually high activity. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-014-0017-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Purification and biochemical characterization of an acidophilic amylase from a newly isolated Bacillus sp. DR90. Extremophiles 2013; 17:339-48. [PMID: 23430382 DOI: 10.1007/s00792-013-0520-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
An acidophilic and Ca(2+)-independent amylase was purified from a newly isolated Bacillus sp. DR90 by ion-exchange chromatography, and exhibited a molecular weight of 68.9 kDa by SDS-PAGE. The optimum pH and temperature of the enzyme were found to be 4.0 and 45 °C, respectively. The enzyme activity was increased by Ba(2+), Fe(2+) and Mg(2+), and decreased by Hg(2+) and Zn(2+), while it was not affected by Na(+), K(+), phenylmethylsulfonyl fluoride and β-mercaptoethanol. Ca(2+) and EDTA did not have significant effect on the enzyme activity and thermal stability. The values of K m and V max for starch as substrate were 4.5 ± 0.13 mg/ml and 307 ± 12 μM/min/mg, respectively. N,N-dialkylimidazolium-based ionic liquids such as 1-hexyl-3-methylimidazolium bromide [HMIM][Br] have inhibitory effect on the enzyme activity. Thin layer chromatography analyses displayed that maltose and glucose are the main products of the enzyme reaction on starch. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.
Collapse
|
21
|
Sharma A, Satyanarayana T. Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ben Hlima H, Aghajari N, Ben Ali M, Haser R, Bejar S. Engineered glucose isomerase from Streptomyces sp. SK is resistant to Ca2+ inhibition and Co2+ independent. ACTA ACUST UNITED AC 2012; 39:537-46. [DOI: 10.1007/s10295-011-1061-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
Abstract
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- grid.412124.0 0000000123235644 Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax B.P 1177 Route de Sidi Mansour Km 6 3018 Sfax Tunisia
| | - Nushin Aghajari
- grid.25697.3f 0000 0001 2172 4233 Laboratoire de BioCristallographie et Biologie Structurale des Cibles Thérapeutiques, Bases Moléculaires et Structurales des Systèmes Infectieux UMR 5086–CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines FR3302, 7 Passage du Vercors 69367 Lyon cedex 07 France
| | - Mamdouh Ben Ali
- grid.412124.0 0000000123235644 Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax B.P 1177 Route de Sidi Mansour Km 6 3018 Sfax Tunisia
| | - Richard Haser
- grid.25697.3f 0000 0001 2172 4233 Laboratoire de BioCristallographie et Biologie Structurale des Cibles Thérapeutiques, Bases Moléculaires et Structurales des Systèmes Infectieux UMR 5086–CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines FR3302, 7 Passage du Vercors 69367 Lyon cedex 07 France
| | - Samir Bejar
- grid.412124.0 0000000123235644 Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax B.P 1177 Route de Sidi Mansour Km 6 3018 Sfax Tunisia
| |
Collapse
|
23
|
Pinto MDS, Ghaedian R, Shinde R, Shetty K. Potential of cranberry powder for management of hyperglycemia using in vitro models. J Med Food 2011; 13:1036-44. [PMID: 20626248 DOI: 10.1089/jmf.2009.0225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aqueous solutions of two different cranberry powders (CP and CP-SAB) were evaluated for organic acids, sugars, total phenolics, antioxidant activity based on the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, and functionality such as in vitro inhibition of α-amylase, α-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension linked to type 2 diabetes. The total phenolics content was 11 and 51 mg/g of sample dry weight for CP and CP-SAB, respectively. p-Coumaric acid and quercetin derivatives were the main phenolic compounds identified in the cranberry powders. CP-SAB had α-glucosidase inhibitory activity that increased with increased dose (1-5 mg/mL) from 60% to 100% inhibition. There was limited amount of α-amylase inhibitory activity that reached a maximum of 40% inhibition at 5 mg/mL treatment. Significant ACE inhibitory activity was detected for CP-SAB at 100 and 200 mg/mL sample concentrations. These in vitro results indicate the potential of cranberry powders as dietary supplement and food-based strategies for potential hyperglycemia management. This biochemical rationale provides the basis for further design of animal and clinical studies using standardized extracts.
Collapse
|
24
|
Determining the safety of enzymes used in animal feed. Regul Toxicol Pharmacol 2010; 56:332-42. [DOI: 10.1016/j.yrtph.2009.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
|
25
|
alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2009; 160:2401-14. [PMID: 19763902 DOI: 10.1007/s12010-009-8735-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.
Collapse
|
26
|
One-step production of immobilized alpha-amylase in recombinant Escherichia coli. Appl Environ Microbiol 2009; 75:2012-6. [PMID: 19201981 DOI: 10.1128/aem.02782-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable alpha-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting alpha-amylase activity. The alpha-amylase beads were assessed with respect to alpha-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized alpha-amylase showed Michaelis-Menten enzyme kinetics exerting a V(max) of about 506 mU/mg of bead protein with a K(m) of about 5 microM, consistent with that of free alpha-amylase. The stability of the enzyme at 85 degrees C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized alpha-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli.
Collapse
|
27
|
Liu YH, Lu FP, Li Y, Wang JL, Gao C. Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Appl Microbiol Biotechnol 2008; 80:795-803. [DOI: 10.1007/s00253-008-1580-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
28
|
Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 2008; 78:85-94. [DOI: 10.1007/s00253-007-1287-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
29
|
Priyadharshini R, Gunasekaran P. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Biotechnol Lett 2007; 29:1493-9. [PMID: 17598074 DOI: 10.1007/s10529-007-9428-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Amylases that are active under acidic conditions (pH <6), at higher temperatures (>70 degrees C) and have less reliance on Ca(2+) are required for starch hydrolysis. The alpha-amylase gene of Bacillus licheniformis MTCC 6598 was cloned and expressed in Escherichia coli BL21. The calcium-binding site spanning amino acid residues from 104 to 200 in the loop regions of domain B and D430 in domain C of amylase were changed by site-directed mutagenesis and the resultant mutant amylases were analyzed. Calcium-binding residues, N104, D161, D183, D200 and D430, were replaced with D104 and N161, N183, N200 and N430, respectively. Mutant amylase with N104D had a slightly decreased activity at 30 degrees C but a significantly improved specific activity at pH 5 and 70 degrees C, which is desirable character for a food enzyme. The amylase mutants with D183N or D200N lost all activity while the mutant amylase with D161N retained its activity at 30 degrees C but had significantly less activity at 70 degrees C. On the other hand, the activity of the mutant amylase with D430N was not changed at 30 degrees C but had an improved activity at 70 degrees C.
Collapse
Affiliation(s)
- Ramachandran Priyadharshini
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | |
Collapse
|
30
|
Abstract
The ability to re-engineer enzymatic pH-activity profiles is of importance for industrial applications of enzymes. We theoretically explore the feasibility of re-engineering enzymatic pH-activity profiles by changing active site pK(a) values using point mutations. We calculate the maximum achievable DeltapK(a) values for 141 target titratable groups in seven enzymes by introducing conservative net-charge altering point mutations. We examine the importance of the number of mutations introduced, their distance from the target titratable group, and the characteristics of the target group itself. The results show that multiple mutations at 10A can change pK(a) values up to two units, but that the introduction of a requirement to keep other pK(a) values constant reduces the magnitude of the achievable DeltapK(a). The algorithm presented shows a good correlation with existing experimental data and is available for download and via a web server at http://enzyme.ucd.ie/pKD.
Collapse
Affiliation(s)
- Barbara Mary Tynan-Connolly
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
31
|
Lee S, Oneda H, Minoda M, Tanaka A, Inouye K. Comparison of Starch Hydrolysis Activity and Thermal Stability of Two Bacillus licheniformis α-Amylases and Insights into Engineering α-Amylase Variants Active under Acidic Conditions. ACTA ACUST UNITED AC 2006; 139:997-1005. [PMID: 16788050 DOI: 10.1093/jb/mvj113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bacillus licheniformis alpha-amylase (BLA) is widely used in various procedures of starch degradation in the food industry, and a BLA species with improved activity at higher temperature and under acidic conditions is desirable. Two BLA species, designated as PA and MA, have been isolated from the wild-type B. licheniformis strain and a mutant strain, respectively. In this study, their starch-hydrolysis activity and thermal stability were examined. MA showed higher activity than PA, especially at acidic pH (pH 5.0-5.5), and even after 1 h of treatment at 90 degrees C. MA was active in the range of pH 4.0-8.0, which is much wider than that (pH 4.5-7.5) of PA. It was shown that the proton dissociation constants on the acidic and alkaline sides (pKa1 and pKa2) were shifted to more acidic and basic values, respectively, by the mutation of PA to MA. The activation energy and thermodynamic parameters for their thermal inactivation indicate that MA is more thermally stable and catalytically active than PA, suggesting that MA could be useful for glucose-production process coupled with reactions catalyzed by beta-amylase.
Collapse
Affiliation(s)
- Seunjae Lee
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | | | | | | | | |
Collapse
|
32
|
Gilis D. In silico analysis of the thermodynamic stability changes of psychrophilic and mesophilic alpha-amylases upon exhaustive single-site mutations. J Chem Inf Model 2006; 46:1509-16. [PMID: 16711770 DOI: 10.1021/ci050473v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying sequence modifications that distinguish psychrophilic from mesophilic proteins is important for designing enzymes with different thermodynamic stabilities and to understand the underlying mechanisms. The PoPMuSiC algorithm is used to introduce, in silico, all the single-site mutations in four mesophilic and one psychrophilic chloride-dependent alpha-amylases and to evaluate the changes in thermodynamic stability. The analysis of the distribution of the sequence positions that could be stabilized upon mutation shows a clear difference between the three domains of psychrophilic and mesophilic alpha-amylases. Most of the mutations stabilizing the psychrophilic enzyme are found in domains B and C, contrary to the mesophilic proteins where they are preferentially situated in the catalytic domain A. Moreover, the calculations show that the environment of some residues responsible for the activity of the psychrophilic protein has evolved to reinforce favorable interactions with these residues. In the second part, these results are exploited to propose rationally designed mutations that are predicted to confer to the psychrophilic enzyme mesophilic-like thermodynamic properties. Interestingly, most of the mutations found in domain C strengthen the interactions with domain A, in agreement with suggestions made on the basis of structural analyses. Although this study focuses on single-site mutations, the thermodynamic effects of the recommended mutations should be additive if the mutated residues are not close in space.
Collapse
Affiliation(s)
- Dimitri Gilis
- Genomic and Structural Bioinformatics, Université Libre de Bruxelles, Avenue F. Roosevelt 50 CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
33
|
Lee SJ, Lee DW, Choe EA, Hong YH, Kim SB, Kim BC, Pyun YR. Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Appl Environ Microbiol 2006; 71:7888-96. [PMID: 16332764 PMCID: PMC1317409 DOI: 10.1128/aem.71.12.7888-7896.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The araA gene encoding L-arabinose isomerase (AI) from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius was cloned, sequenced, and expressed in Escherichia coli. Analysis of the sequence revealed that the open reading frame of the araA gene consists of 1,491 bp that encodes a protein of 497 amino acid residues with a calculated molecular mass of 56,043 Da. Comparison of the deduced amino acid sequence of A. acidocaldarius AI (AAAI) with other AIs demonstrated that AAAI has 97% and 66% identities (99% and 83% similarities) to Geobacillus stearothermophilus AI (GSAI) and Bacillus halodurans AI (BHAI), respectively. The recombinant AAAI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The purified enzyme showed maximal activity at pH 6.0 to 6.5 and 65 degrees C under the assay conditions used, and it required divalent cations such as Mn2+, Co2+, and Mg2+ for its activity. The isoelectric point (pI) of the enzyme was about 5.0 (calculated pI of 5.5). The apparent Km values of the recombinant AAAI for L-arabinose and D-galactose were 48.0 mM (Vmax, 35.5 U/mg) and 129 mM (Vmax, 7.5 U/mg), respectively, at pH 6 and 65 degrees C. Interestingly, although the biochemical properties of AAAI are quite similar to those of GSAI and BHAI, the three AIs from A. acidocaldarius (pH 6), G. stearothermophilus (pH 7), and B. halodurans (pH 8) exhibited different pH activity profiles. Based on alignment of the amino acid sequences of these homologous AIs, we propose that the Lys-269 residue of AAAI may be responsible for the ability of the enzyme to act at low pH. To verify the role of Lys-269, we prepared the mutants AAAI-K269E and BHAI-E268K by site-directed mutagenesis and compared their kinetic parameters with those of wild-type AIs at various pHs. The pH optima of both AAAI-K269E and BHAI-E268K were rendered by 1.0 units (pH 6 to 7 and 8 to 7, respectively) compared to the wild-type enzymes. In addition, the catalytic efficiency (kcat/Km) of each mutant at different pHs was significantly affected by an increase or decrease in Vmax. From these results, we propose that the position corresponding to the Lys-269 residue of AAAI could play an important role in the determination of the pH optima of homologous AIs.
Collapse
Affiliation(s)
- Sang-Jae Lee
- Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
López-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisán JM, Fernández-Lafuente R. Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J Biotechnol 2005; 116:1-10. [PMID: 15652425 DOI: 10.1016/j.jbiotec.2004.09.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/14/2004] [Accepted: 09/24/2004] [Indexed: 11/18/2022]
Abstract
The surface carboxylic groups of penicillin G acylase and glutaryl acylase were chemically aminated in a controlled way by reaction with ethylenediamine via the 1-ethyl-3-(dimethylamino-propyl) carbodiimide coupling method. Then, both proteins were immobilized on glyoxyl agarose. In both cases, the immobilization of the chemically modified enzymes improved the enzyme stability compared to the stability of the immobilized but non-modified enzyme (by a four-fold factor in the case of PGA and a 20-fold factor in the case of GA). The chemical modification presented a deleterious effect on soluble enzyme stability. Therefore, the improved stability should be related to a higher multipoint covalent attachment, involving both the lysine amino groups and also the new amino groups chemically introduced on the enzyme. Moreover, the lower pK(a) of the new amino groups permitted to immobilize the enzyme under milder conditions. In fact, the aminated proteins could be immobilized even at pH 9, while the non-modified enzymes could only be immobilized at pH over 10.
Collapse
Affiliation(s)
- Fernando López-Gallego
- Departamento de Biocatálisis, Instituto de Catálisis, CSIC, Campus Universidad Autonoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sandgren M, Ståhlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 89:246-91. [PMID: 15950056 DOI: 10.1016/j.pbiomolbio.2004.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this review we will describe how we have gathered structural and biochemical information from several homologous cellulases from one class of glycoside hydrolases (GH family 12), and used this information within the framework of a protein-engineering program for the design of new variants of these enzymes. These variants have been characterized to identify some of the positions and the types of mutations in the enzymes that are responsible for some of the biochemical differences in thermal stability and activity between the homologous enzymes. In this process we have solved the three-dimensional structure of four of these homologous GH 12 cellulases: Three fungal enzymes, Humicola grisea Cel12A, Hypocrea jecorina Cel12A and Hypocrea schweinitzii Cel12A, and one bacterial, Streptomyces sp. 11AG8 Cel12A. We have also determined the three-dimensional structures of the two most stable H. jecorina Cel12A variants. In addition, four ligand-complex structures of the wild-type H. grisea Cel12A enzyme have been solved and have made it possible to characterize some of the interactions between substrate and enzyme. The structural and biochemical studies of these related GH 12 enzymes, and their variants, have provided insight on how specific residues contribute to protein thermal stability and enzyme activity. This knowledge can serve as a structural toolbox for the design of Cel12A enzymes with specific properties and features suited to existing or new applications.
Collapse
Affiliation(s)
- Mats Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
37
|
Bessler C, Schmitt J, Maurer KH, Schmid RD. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci 2004; 12:2141-9. [PMID: 14500872 PMCID: PMC2366932 DOI: 10.1110/ps.0384403] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
alpha-Amylases, in particular, microbial alpha-amylases, are widely used in industrial processes such as starch liquefaction and pulp processes, and more recently in detergency. Due to the need for alpha-amylases with high specific activity and activity at alkaline pH, which are critical parameters, for example, for the use in detergents, we have enhanced the alpha-amylase from Bacillus amyloliquefaciens (BAA). The genes coding for the wild-type BAA and the mutants BAA S201N and BAA N297D were subjected to error-prone PCR and gene shuffling. For the screening of mutants we developed a novel, reliable assay suitable for high throughput screening based on the Phadebas assay. One mutant (BAA 42) has an optimal activity at pH 7, corresponding to a shift of one pH unit compared to the wild type. BAA 42 is active over a broader pH range than the wild type, resulting in a 5-fold higher activity at pH 10. In addition, the activity in periplasmic extracts and the specific activity increased 4- and 1.5-fold, respectively. Another mutant (BAA 29) possesses a wild-type-like pH profile but possesses a 40-fold higher activity in periplasmic extracts and a 9-fold higher specific activity. The comparison of the amino acid sequences of these two mutants with other homologous microbial alpha-amylases revealed the mutation of the highly conserved residues W194R, S197P, and A230V. In addition, three further mutations were found K406R, N414S, and E356D, the latter being present in other bacterial alpha-amylases.
Collapse
|
38
|
|
39
|
Sandgren M, Gualfetti PJ, Shaw A, Gross LS, Saldajeno M, Day AG, Jones TA, Mitchinson C. Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Sci 2003; 12:848-60. [PMID: 12649442 PMCID: PMC2323842 DOI: 10.1110/ps.0237703] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have studied the biochemical diversity of several GH 12 homologs. The H. schweinitzii Cel12A enzyme differs from the T. reesei Cel12A enzyme by only 14 amino acids (93% sequence identity), but is much less thermally stable. The bacterial Cel12A enzyme from S. sp. 11AG8 shares only 28% sequence identity to the T. reesei enzyme, and is much more thermally stable. Each of the 14 sequence differences from H. schweinitzii Cel12A were introduced in T. reesei Cel12A to determine the effect of these amino acid substitutions on enzyme stability. Several of the T. reesei Cel12A variants were found to have increased stability, and the differences in apparent midpoint of thermal denaturation (T(m)) ranged from a 2.5 degrees C increase to a 4.0 degrees C decrease. The least stable recruitment from H. schweinitzii Cel12A was A35S. Consequently, the A35V substitution was recruited from the more stable S. sp. 11AG8 Cel12A and this T. reesei Cel12A variant was found to have a T(m) 7.7 degrees C higher than wild type. Thus, the buried residue at position 35 was shown to be of critical importance for thermal stability in this structural family. There was a ninefold range in the specific activities of the Cel12 homologs on o-NPC. The most and least stable T. reesei Cel12A variants, A35V and A35S, respectively, were fully active. Because of their thermal tolerance, S. sp. 11AG8 Cel12A and T. reesei Cel12A variant A35V showed a continual increase in activity over the temperature range of 25 degrees C to 60 degrees C, whereas the less stable enzymes T. reesei Cel12A wild type and the destabilized A35S variant, and H. schweinitzii Cel12A showed a decrease in activity at the highest temperatures. The crystal structures of the H. schweinitzii, S. sp. 11AG8, and T. reesei A35V Cel12A enzymes have been determined and compared with the wild-type T. reesei Cel12A enzyme. All of the structures have similar Calpha traces, but provide detailed insight into the nature of the stability differences. These results are an example of the power of homolog recruitment as a method for identifying residues important for stability.
Collapse
Affiliation(s)
- Mats Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, SE-75124 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng Des Sel 2003; 16:287-93. [PMID: 12736372 DOI: 10.1093/proeng/gzg032] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacillus licheniformis alpha-amylase (BLA) is a highly thermostable starch-degrading enzyme that has been extensively studied in both academic and industrial laboratories. For over a decade, we have investigated BLA thermal properties and identified amino acid substitutions that significantly increase or decrease the thermostability. This paper describes the cumulative effect of some of the most beneficial point mutations identified in BLA. Remarkably, the Q264S-N265Y double mutation led to a rather limited gain in stability but significantly improved the amylolytic function. The most hyperthermostable variants combined seven amino acid substitutions and inactivated over 100 times more slowly and at temperatures up to 23 degrees C higher than the wild-type enzyme. In addition, two highly destabilizing mutations were introduced in the metal binding site and resulted in a decrease of 25 degrees C in the half-inactivation temperature of the double mutant enzyme compared with wild-type. These mutational effects were analysed by protein modelling based on the recently determined crystal structure of a hyperthermostable BLA variant. Our engineering work on BLA shows that the thermostability of an already naturally highly thermostable enzyme can be substantially improved and modulated over a temperature range of 50 degrees C through a few point mutations.
Collapse
Affiliation(s)
- Nathalie Declerck
- Génétique Moléculaire et Cellulaire, CNRS-URA1925, INRA-UMR216, F-78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
41
|
Machius M, Declerck N, Huber R, Wiegand G. Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface. J Biol Chem 2003; 278:11546-53. [PMID: 12540849 DOI: 10.1074/jbc.m212618200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored.
Collapse
Affiliation(s)
- Mischa Machius
- University of Texas, Southwestern Medical Center at Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
The effective catalytic properties of enzymes have already promoted their introduction into several industrial products and processes. Recent developments in biotechnology, particularly in areas such as protein engineering and directed evolution, have provided important tools for the efficient development of new enzymes. This has resulted in the development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used.
Collapse
Affiliation(s)
- Ole Kirk
- Research and Development, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark.
| | | | | |
Collapse
|
43
|
van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 2002; 94:137-55. [PMID: 11796168 DOI: 10.1016/s0168-1656(01)00407-2] [Citation(s) in RCA: 696] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.
Collapse
Affiliation(s)
- Marc J E C van der Maarel
- Microbial Physiology Research Group, Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Khajeh K, Ranjbar B, Naderi-Manesh H, Ebrahim Habibi A, Nemat-Gorgani M. Chemical modification of bacterial alpha-amylases: changes in tertiary structures and the effect of additional calcium. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1548:229-37. [PMID: 11513968 DOI: 10.1016/s0167-4838(01)00236-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comparative study was performed on the effect of calcium on native and chemically modified forms of mesophilic and thermophilic alpha-amylases. Circular dichroism (CD) and irreversible thermoinactivation studies were carried out in the absence and presence of 10 mM calcium. From the CD experiments, changes in the tertiary structure of these enzymes, brought about by modification, were concluded. Furthermore, these changes were found to be influenced by the presence of calcium. Sorbitol was very effective in affording protection against irreversible thermoinactivation of native and modified forms of the enzymes, both in the absence and presence of calcium. Results are discussed in terms of the usefulness of this new approach involving a combination of medium and chemical modification for protein stabilization and enhancement of catalytic potential.
Collapse
Affiliation(s)
- K Khajeh
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | | | | | | | | |
Collapse
|
45
|
Nielsen JE, Borchert TV, Vriend G. The determinants of alpha-amylase pH-activity profiles. PROTEIN ENGINEERING 2001; 14:505-12. [PMID: 11522925 DOI: 10.1093/protein/14.7.505] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The glycosyl hydrolases present a large family of enzymes that are of great significance for industry. Consequently, there is considerable interest in engineering the enzymes in this family for optimal performance under a range of very diverse conditions. Until recently, tailoring glycosyl hydrolases for specific industrial processes mainly involved stability engineering, but lately there has also been considerable interest in engineering their pH-activity profiles. We mutated four neutral residues (N190, F290, N326 and Q360) in the chimeric Bacillus Ba2 alpha-amylase to both charged and neutral amino acids. The results show that the pH-activity profile of the Ba2 alpha-amylase can be changed by inserting charged residues close to the active site. The changes in the pH-activity profile for these neutral --> charged mutations do not, however, correlate with the predictions from calculations of the p K(a) values of the active site residues. More surprisingly, the neutral --> neutral mutations change the pH-activity profile as much as the neutral --> charged mutations. From these results, it is concluded that factors other than electrostatics, presumably the dynamic aspects of the active site, are important for the shape of the pH-activity profiles of the alpha-amylases.
Collapse
Affiliation(s)
- J E Nielsen
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
46
|
Teotia S, Khare SK, Gupta MN. An efficient purification process for sweet potato beta-amylase by affinity precipitation with alginate. Enzyme Microb Technol 2001; 28:792-795. [PMID: 11397460 DOI: 10.1016/s0141-0229(01)00338-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
beta-amylases are used in production of maltose syrup. It is shown that sweet potato beta-amylase can be purified by affinity precipitation with alginate with 80% activity yield and 44 fold purification. SDS-PAGE of the purified protein showed a single band and a subunit weight of 50 kDa. Preliminary data with soybean and barley enzymes indicate that this may be a general method for purification of beta-amylases.
Collapse
Affiliation(s)
- S Teotia
- Chemistry Department, Indian Institute of Technology, Hauz Khas, 110016, New Delhi, India
| | | | | |
Collapse
|
47
|
Pariza MW, Johnson EA. Evaluating the Safety of Microbial Enzyme Preparations Used in Food Processing: Update for a New Century. Regul Toxicol Pharmacol 2001; 33:173-86. [PMID: 11350200 DOI: 10.1006/rtph.2001.1466] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microbial enzymes used in food processing are typically sold as enzyme preparations that contain not only a desired enzyme activity but also other metabolites of the production strain, as well as added materials such as preservatives and stabilizers. The added materials must be food grade and meet applicable regulatory standards. The purpose of this report is to present guidelines that can be used to evaluate the safety of the metabolites of the production strain that are also present in the enzyme preparation, including of course, but not limited to, the desired enzyme activity itself. This discussion builds on previously published decision tree mechanisms and includes consideration of new genetic modification technologies, for example, modifying the primary structure of enzymes to enhance specific properties that are commercially useful. The safety of the production strain remains the primary consideration in evaluating enzyme safety, in particular, the toxigenic potential of the production strain. Thoroughly characterized nonpathogenic, nontoxigenic microbial strains, particularly those with a history of safe use in food enzyme manufacture, are logical candidates for generating a safe strain lineage, through which improved strains may be derived via genetic modification by using either traditional/classical or rDNA strain improvement strategies. The elements needed to establish a safe strain lineage include thoroughly characterizing the host organism, determining the safety of all new DNA that has been introduced into the host organism, and ensuring that the procedure(s) that have been used to modify the host organism are appropriate for food use. Enzyme function may be changed by intentionally altering the amino acid sequence (e.g., protein engineering). It may be asked if such modifications might also affect the safety of an otherwise safe enzyme. We consider this question in light of what is known about the natural variation in enzyme structure and function and conclude that it is unlikely that changes which improve upon desired enzyme function will result in the creation of a toxic protein. It is prudent to assess such very small theoretical risks by conducting limited toxicological tests on engineered enzymes. The centerpiece of this report is a decision tree mechanism that updates previous enzyme safety evaluation mechanisms to accommodate advances in enzymology. We have concluded that separate mutagenicity testing is not needed if this decision tree is used to evaluate enzyme safety. Under the criteria of the decision tree, no new food enzyme can enter the market without critical evaluation of its safety.
Collapse
Affiliation(s)
- M W Pariza
- Food Research Institute, Department of Food Microbiology and Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
48
|
Ness JE, Del Cardayré SB, Minshull J, Stemmer WP. Molecular breeding: the natural approach to protein design. ADVANCES IN PROTEIN CHEMISTRY 2001; 55:261-92. [PMID: 11050936 DOI: 10.1016/s0065-3233(01)55006-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
49
|
Nielsen JE, Borchert TV. Protein engineering of bacterial alpha-amylases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:253-274. [PMID: 11150610 DOI: 10.1016/s0167-4838(00)00240-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
alpha-Amylases constitute a very diverse family of glycosyl hydrolases that cleave alpha1-->4 linkages in amylose and related polymers. Recent structural and mutagenic studies of archeael, mammalian and bacterial alpha-amylases have resulted in a wealth of information on the catalytic mechanism and on the structural features of this enzyme class. Because of their high thermo-stability, the Bacillus alpha-amylases have found widespread use in industrial processes, and much attention has been devoted to optimising these enzymes for the very harsh conditions encountered there. Stability has been a major area of focus in this respect, and several remarkably stable bacterial alpha-amylases have been produced by bioengineering techniques. Protein engineering studies of pH-activity profiles and of substrate specificities have also been initiated, although without much success. In the coming years it is likely, however, that the focus of alpha-amylase engineering will shift from engineering stability to these new areas.
Collapse
Affiliation(s)
- J E Nielsen
- EMBL, Meyerhofstrasse 1, 69117 Heidelber, Germany
| | | |
Collapse
|