1
|
Gonçalves MWA, Maciel TF, Lavareze L, Egal ESA, Altemani A, Sperandio M, Mariano FV. Insights into the use of DNA content in head and neck squamous cell carcinoma as a method for patient stratification and targeted therapy: Revisiting old concepts and exploring new possibilities. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:102260. [PMID: 39862962 DOI: 10.1016/j.jormas.2025.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND This review aimed to emphasize the implications of DNA content in head and neck squamous cell carcinoma (HNSCC), focusing on its predictive value, role in patient stratification, and potential as a therapeutic target for this malignancy. METHODS A narrative review of the literature was conducted through electronic database searches. RESULTS In conventional HNSCC, aneuploid tumors are associated with increased lymph node metastasis, locoregional recurrences, poor response to radiotherapy and chemotherapy, and worse prognosis. Few studies specifically address the role of DNA content in young HNSCC patients. These studies reveal that young patients exhibit high DNA content abnormalities, suggesting significant genomic instability and potential genetic differences compared to older patients. Regarding HPV and DNA content, no difference was found between HPV-associated and HPV-independent tumors. More research is needed to understand the role of DNA content in histological subtypes, surgical margins, and targeted therapy. CONCLUSION This review highlights the findings related to DNA content in HNSCC, suggesting its usefulness in patient stratification and outcome prediction.
Collapse
Affiliation(s)
- Moisés Willian Aparecido Gonçalves
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Tayná Figueiredo Maciel
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, Utah, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Sperandio
- Department of Oral Medicine and Pathology, Faculdade São Leopoldo Mandic, Research Institute, Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Wu L, Li J, Wang H, Chang X, Kong Q. Identification of the oncogenic role of centromere protein M in non-small cell lung cancer via CDC20/MYBL2/Wnt signaling pathways. J Mol Histol 2025; 56:144. [PMID: 40285932 PMCID: PMC12033124 DOI: 10.1007/s10735-025-10423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 04/29/2025]
Abstract
Lung cancer remains the most prevalent carcinoma with a high mortality rate, yet the underlying mechanisms driving pulmonary neoplasia and disease progression are not fully understood. In our study, we conducted a comprehensive analysis of the transcriptome profiles and clinicopathological characteristics of 515 patients diagnosed with non-small cell lung cancer (NSCLC) from the TCGA database. We identified a significant upregulation of centromere protein M (CENPM) in NSCLC tissues, which was positively correlated with poor prognosis. Furthermore, overexpression of CENPM markedly promoted cell proliferation and increased the tumorigenic potential of NSCLC cell lines (A549/NCI-H1299), leading to accelerated tumor progression and reduced survival time in tumor-bearing mice. Mechanistically, CENPM activated the Wnt/β-catenin signaling pathway via the cell division cycle 20 (CDC20)/MYB proto-oncogene-like 2 (MYBL2) axis. Inhibition of either Wnt signaling or the CDC20/MYBL2 axis attenuated the tumorigenic potential and proliferative effects induced by CENPM. Our findings underscore the critical role of CENPM in driving NSCLC development and suggest that CENPM could serve as a novel biomarker for predicting NSCLC progression in clinical settings.
Collapse
Affiliation(s)
- Ling Wu
- Department of pharmacy, Affiliated Central Hospital of Dalian University of Technology, Dalian, China
| | - Jun Li
- Department of Thoracic Surgery, Affiliated Central Hospital of Dalian University of Technology, Dalian, China
| | - Haoyu Wang
- Department of Thoracic Surgery, Affiliated Central Hospital of Dalian University of Technology, Dalian, China
| | - Xu Chang
- Department of Thoracic Surgery, Affiliated Central Hospital of Dalian University of Technology, Dalian, China
| | - Qinglong Kong
- Department of Thoracic Surgery, Affiliated Central Hospital of Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. Proc Natl Acad Sci U S A 2024; 121:e2414963121. [PMID: 39475646 PMCID: PMC11551467 DOI: 10.1073/pnas.2414963121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
The female reproductive lifespan is highly dependent on egg quality, especially the presence of a normal number of chromosomes in an egg, known as euploidy. Mistakes in meiosis leading to egg aneuploidy are frequent in humans. Yet, knowledge of the precise genetic landscape that causes egg aneuploidy in women is limited, as phenotypic data on the frequency of human egg aneuploidy are difficult to obtain and therefore absent in public genetic datasets. Here, we identify genetic determinants of reproductive aging via egg aneuploidy in women using a biobank of individual maternal exomes linked with maternal age and embryonic aneuploidy data. Using the exome data, we identified 404 genes bearing variants enriched in individuals with pathologically elevated egg aneuploidy rates. Analysis of the gene ontology and protein-protein interaction network implicated genes encoding the kinesin protein family in egg aneuploidy. We interrogate the causal relationship of the human variants within candidate kinesin genes via experimental perturbations and demonstrate that motor domain variants increase aneuploidy in mouse oocytes. Finally, using a knock-in mouse model, we validate that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings reveal additional functional mechanisms of reproductive aging and shed light on how genetic variation underlies individual heterogeneity in the female reproductive lifespan, which might be leveraged to predict reproductive longevity. Together, these results lay the groundwork for the noninvasive biomarkers for egg quality, a first step toward personalized fertility medicine.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Katarzyna M. Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Mansour Aboelenain
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura35516, Egypt
| | - Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Iva Dundović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb1000, Croatia
| | - Kruno Vukušić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb1000, Croatia
| | - Jason Liu
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | | | - Min Xu
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | | | - Xin Tao
- Juno Genetics US, Basking Ridge, NJ07920
| | - Iva M. Tolić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb1000, Croatia
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
4
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.04.24309950. [PMID: 39006445 PMCID: PMC11245073 DOI: 10.1101/2024.07.04.24309950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The female reproductive lifespan depends on egg quality, particularly euploidy. Mistakes in meiosis leading to egg aneuploidy are common, but the genetic landscape causing this is not well understood due to limited phenotypic data. We identify genetic determinants of reproductive aging via egg aneuploidy using a biobank of maternal exomes linked with maternal age and embryonic aneuploidy data. We found 404 genes with variants enriched in individuals with high egg aneuploidy rates and implicate kinesin protein family genes in aneuploidy risk. Experimental perturbations showed that motor domain variants in these genes increase aneuploidy in mouse oocytes. A knock-in mouse model validated that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings suggest potential non-invasive biomarkers for egg quality, aiding personalized fertility medicine. One sentence summary The study identifies novel genetic determinants of reproductive aging linked to egg aneuploidy by analyzing maternal exomes and demonstrates that variants in kinesin genes, specifically KIF18A , contribute to increased aneuploidy and accelerated reproductive aging, offering potential for personalized fertility medicine.
Collapse
|
5
|
Luna-Maldonado F, Andonegui-Elguera MA, Díaz-Chávez J, Herrera LA. Mitotic and DNA Damage Response Proteins: Maintaining the Genome Stability and Working for the Common Good. Front Cell Dev Biol 2021; 9:700162. [PMID: 34966733 PMCID: PMC8710681 DOI: 10.3389/fcell.2021.700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular function is highly dependent on genomic stability, which is mainly ensured by two cellular mechanisms: the DNA damage response (DDR) and the Spindle Assembly Checkpoint (SAC). The former provides the repair of damaged DNA, and the latter ensures correct chromosome segregation. This review focuses on recently emerging data indicating that the SAC and the DDR proteins function together throughout the cell cycle, suggesting crosstalk between both checkpoints to maintain genome stability.
Collapse
Affiliation(s)
- Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Marco A. Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
6
|
Wang Z, Guo M, Ai X, Cheng J, Huang Z, Li X, Chen Y. Identification of Potential Diagnostic and Prognostic Biomarkers for Colorectal Cancer Based on GEO and TCGA Databases. Front Genet 2021; 11:602922. [PMID: 33519906 PMCID: PMC7841465 DOI: 10.3389/fgene.2020.602922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common neoplastic diseases worldwide. With a high recurrence rate among all cancers, treatment of CRC only improved a little over the last two decades. The mortality and morbidity rates can be significantly lessened by earlier diagnosis and prompt treatment. Available biomarkers are not sensitive enough for the diagnosis of CRC, whereas the standard diagnostic method, endoscopy, is an invasive test and expensive. Hence, seeking the diagnostic and prognostic biomarkers of CRC is urgent and challenging. With that order, we screened the overlapped differentially expressed genes (DEGs) of GEO (GSE110223, GSE110224, GSE113513) and TCGA datasets. Subsequent protein-protein interaction network analysis recognized the hub genes among these DEGs. Further functional analyses including Gene Ontology and KEGG pathway analysis and gene set enrichment analysis were processed to investigate the role of these genes and potential underlying mechanisms in CRC. Kaplan-Meier analysis and Cox hazard ratio analysis were carried out to clarify the diagnostic and prognostic role of these genes. In conclusion, our present study demonstrated that CCNA2, MAD2L1, DLGAP5, AURKA, and RRM2 are all potential diagnostic biomarkers for CRC and may also be potential treatment targets for clinical implication in the future.
Collapse
Affiliation(s)
- Zhenjiang Wang
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Mingyi Guo
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Xinbo Ai
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Jianbin Cheng
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Zaiwei Huang
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Yuping Chen
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| |
Collapse
|
7
|
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020; 12:247. [PMID: 32848716 PMCID: PMC7426063 DOI: 10.3389/fnagi.2020.00247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Abstract
PURPOSE DLG7 (disc large homolog 7) is a microtubule-associated protein encoded by DLGAP5 (DLG associated protein 5) gene and has an important role during spindle assembly. Spindle assembly deregulation is a well-known cause of genomic instability. The aim of this study was to investigate the influence of DLGAP5 expression on survival and to evaluate its potential use as a biomarker in colorectal cancer (CRC). METHODS DLGAP5 expression was measured in the primary tumor and corresponding normal mucosa samples from 109 patients with CRC and correlated to clinical and pathological data. The results were validated in a second, publically available patient cohort. Molecular effects of DLG7/DLGAP5 in CRC were analyzed via functional assays in knockdown cell lines. RESULTS DLGAP5 downregulation led to a significant reduction of the invasion and migration potential in CRC. In addition, DLGAP5 expression correlates with nodal status and advanced UICC stage (III-IV).Subgroup analyses revealed a correlation between DLGAP5 overexpression and poor survival in patients with non-metastatic disease (M0). Furthermore, overexpression of DLGAP5 is associated with worse overall survival in distinct molecular CRC subtypes. CONCLUSIONS The results of this study suggest the importance of DLGAP5 in defining a more aggressive CRC phenotype. DLG7/DLGAP5 represents a potential biomarker for CRC in molecular subgroups of CRC.
Collapse
|
9
|
Khumukcham SS, Samanthapudi VSK, Penugurti V, Kumari A, Kesavan PS, Velatooru LR, Kotla SR, Mazumder A, Manavathi B. Hematopoietic PBX-interacting protein is a substrate and an inhibitor of the APC/C-Cdc20 complex and regulates mitosis by stabilizing cyclin B1. J Biol Chem 2019; 294:10236-10252. [PMID: 31101654 DOI: 10.1074/jbc.ra118.006733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/27/2019] [Indexed: 02/04/2023] Open
Abstract
Proper cell division relies on the coordinated regulation between a structural component, the mitotic spindle, and a regulatory component, anaphase-promoting complex/cyclosome (APC/C). Hematopoietic PBX-interacting protein (HPIP) is a microtubule-associated protein that plays a pivotal role in cell proliferation, cell migration, and tumor metastasis. Here, using HEK293T and HeLa cells, along with immunoprecipitation and immunoblotting, live-cell imaging, and protein-stability assays, we report that HPIP expression oscillates throughout the cell cycle and that its depletion delays cell division. We noted that by utilizing its D box and IR domain, HPIP plays a dual role both as a substrate and inhibitor, respectively, of the APC/C complex. We observed that HPIP enhances the G2/M transition of the cell cycle by transiently stabilizing cyclin B1 by preventing APC/C-Cdc20-mediated degradation, thereby ensuring timely mitotic entry. We also uncovered that HPIP associates with the mitotic spindle and that its depletion leads to the formation of multiple mitotic spindles and chromosomal abnormalities, results in defects in cytokinesis, and delays mitotic exit. Our findings uncover HPIP as both a substrate and an inhibitor of APC/C-Cdc20 that maintains the temporal stability of cyclin B1 during the G2/M transition and thereby controls mitosis and cell division.
Collapse
Affiliation(s)
| | | | - Vasudevarao Penugurti
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Anita Kumari
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - P S Kesavan
- the Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500107, Telangana, India
| | - Loka Reddy Velatooru
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Siva Reddy Kotla
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Aprotim Mazumder
- the Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500107, Telangana, India
| | - Bramanandam Manavathi
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| |
Collapse
|
10
|
Deng M, Li L, Zhao J, Yuan S, Li W. Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib. Cancer Chemother Pharmacol 2018. [PMID: 29532153 DOI: 10.1007/s00280-018-3547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE MBRI-001 is a novel synthetic derivative of plinabulin. In this study, our purpose is to investigate the inhibition effects of MBRI-001 on human hepatocellular carcinoma as monotherapy or in combination with sorafenib. METHODS HCCLM3 and Bel-7402 cell lines were used for activity evaluation in vitro. The anti-proliferative activity of MBRI-001 was assessed by MTT assay. The morphological change of microtubules was determined by immunofluorescence assay. The cell cycle was measured by flow cytometer. The expression of cyclin B1 (CCNB1) was analyzed by RT-qPCR and western blotting assays. The antitumor activities in vivo were evaluated with human HCC xenograft mice model. RESULTS Our data demonstrated that MBRI-001 had better anti-proliferative activities than that of plinabulin against HCCLM3 and Bel-7402 cell lines. MBRI-001 inhibited the formation of microtubules and induced G2/M arrest with the downregulation of CCNB1. In vivo orthotopic mice model demonstrated that MBRI-001 significantly inhibited the growth of HCCLM3 with the apoptosis and necrosis observed in tumor. The combination treatment of MBRI-001 with sorafenib in subcutaneous mice model exhibited a higher antitumor inhibition rate at 72.0%, in comparison with MBRI-001 or sorafenib as monotherapy at 40.7% or 47.7%, respectively. CONCLUSION MBRI-001 had better inhibition effects on microtubules and human hepatocellular carcinoma than that of plinabulin. The combination treatment of MBRI-001 and sorafenib exhibited a higher antitumor effect, which could provide a new strategy to treat HCC in the future.
Collapse
Affiliation(s)
- Mengyan Deng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Linna Li
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jianchun Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Shoujun Yuan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wenbao Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China. .,Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
11
|
Cheng JM, Liu YX. Age-Related Loss of Cohesion: Causes and Effects. Int J Mol Sci 2017; 18:E1578. [PMID: 28737671 PMCID: PMC5536066 DOI: 10.3390/ijms18071578] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Aneuploidy is a leading genetic cause of birth defects and lower implantation rates in humans. Most errors in chromosome number originate from oocytes. Aneuploidy in oocytes increases with advanced maternal age. Recent studies support the hypothesis that cohesion deterioration with advanced maternal age represents a leading cause of age-related aneuploidy. Cohesin generates cohesion, and is established only during the premeiotic S phase of fetal development without any replenishment throughout a female's period of fertility. Cohesion holds sister chromatids together until meiosis resumes at puberty, and then chromosome segregation requires the release of sister chromatid cohesion from chromosome arms and centromeres at anaphase I and anaphase II, respectively. The time of cohesion cleavage plays an important role in correct chromosome segregation. This review focuses specifically on the causes and effects of age-related cohesion deterioration in female meiosis.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Al-Khafaji ASK, Marcus MW, Davies MPA, Risk JM, Shaw RJ, Field JK, Liloglou T. AURKA mRNA expression is an independent predictor of poor prognosis in patients with non-small cell lung cancer. Oncol Lett 2017; 13:4463-4468. [PMID: 28588715 DOI: 10.3892/ol.2017.6012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
Abstract
Deregulation of mitotic spindle genes has been reported to contribute to the development and progression of malignant tumours. The aim of the present study was to explore the association between the expression profiles of Aurora kinases (AURKA, AURKB and AURKC), cytoskeleton-associated protein 5 (CKAP5), discs large-associated protein 5 (DLGAP5), kinesin-like protein 11 (KIF11), microtubule nucleation factor (TPX2), monopolar spindle 1 kinase (TTK), and β-tubulins (TUBB) and (TUBB3) genes and clinicopathological characteristics in human non-small cell lung carcinoma (NSCLC). Reverse transcription-quantitative polymerase chain reaction-based RNA gene expression profiles of 132 NSCLC and 44 adjacent wild-type tissues were generated, and Cox's proportional hazard regression was used to examine associations. With the exception of AURKC, all genes exhibited increased expression in NSCLC tissues. Of the 10 genes examined, only AURKA was significantly associated with prognosis in NSCLC. Multivariate Cox's regression analysis demonstrated that AURKA mRNA expression [hazard ratio (HR), 1.81; 95% confidence interval (CI), 1.16-2.84; P=0.009], age (HR, 1.03; 95% CI, 1.00-1.06; P=0.020), pathological tumour stage 2 (HR, 2.43; 95% CI, 1.16-5.10; P=0.019) and involvement of distal nodes (pathological node stage 2) (HR, 3.14; 95% CI, 1.24-7.99; P=0.016) were independent predictors of poor prognosis in patients with NSCLC. Poor prognosis of patients with increased AURKA expression suggests that those patients may benefit from surrogate therapy with AURKA inhibitors.
Collapse
Affiliation(s)
- Ahmed S K Al-Khafaji
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK.,Department of Biology, College of Science, University of Baghdad, Al-Jadriya, Baghdad 10070, Iraq
| | - Michael W Marcus
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Janet M Risk
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard J Shaw
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - John K Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
13
|
Jacobs K, Van de Velde H, De Paepe C, Sermon K, Spits C. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until Day 5 of development. Mol Hum Reprod 2017; 23:321-329. [DOI: 10.1093/molehr/gax007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
|
14
|
Yuan YF, Ren YX, Yuan P, Yan LY, Qiao J. TRAIP is involved in chromosome alignment and SAC regulation in mouse oocyte meiosis. Sci Rep 2016; 6:29735. [PMID: 27405720 PMCID: PMC4942609 DOI: 10.1038/srep29735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022] Open
Abstract
Recent whole-exome sequencing (WES) studies demonstrated that TRAIP is associated with primordial dwarfism. Although TRAIP was partially studied in mitosis, its function in oocyte meiosis remained unknown. In this study, we investigated the roles of TRAIP during mouse oocyte meiosis. TRAIP was stably expressed during oocytes meiosis and co-localized with CREST at the centromere region. Knockdown of TRAIP led to DNA damage, as revealed by the appearance of γH2AX. Although oocytes meiotic maturation was not affected, the proportions of misaligned chromosomes and aneuploidy were elevated after TRAIP knockdown, suggesting TRAIP is required for stable kinetochore–microtubule (K-MT) attachment. TRAIP knockdown decreased the accumulation of Mad2 on centromeres, potentially explaining why oocyte maturation was not affected following formation of DNA lesions. Securin, a protein which was prevent from precocious degradation by Mad2, was down-regulated after TRAIP knockdown. Inhibition of TRAIP by microinjection of antibody into pro-metaphase I (pro-MI) stage oocytes resulted in precocious first polar body (PB1) extrusion, and live-cell imaging clearly revealed misaligned chromosomes after TRAIP knockdown. Taken together, these data indicate that TRAIP plays important roles in oocyte meiosis regulation.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yi-Xin Ren
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Peng Yuan
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Li-Ying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| |
Collapse
|
15
|
Isouronium and N -hydroxyguanidinium derivatives as Cell growth inhibitors: A comparative study. Eur J Med Chem 2016; 117:269-82. [DOI: 10.1016/j.ejmech.2016.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/21/2022]
|
16
|
van der Voet M, Harich B, Franke B, Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry 2016; 21:565-73. [PMID: 25962619 PMCID: PMC4804182 DOI: 10.1038/mp.2015.55] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options.
Collapse
Affiliation(s)
- M van der Voet
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - B Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, The Netherlands
| | - A Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Ohashi A, Ohori M, Iwai K, Nambu T, Miyamoto M, Kawamoto T, Okaniwa M. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity. PLoS One 2015; 10:e0144675. [PMID: 26649895 PMCID: PMC4674098 DOI: 10.1371/journal.pone.0144675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023] Open
Abstract
Centromere-associated protein E (CENP-E) regulates both chromosome congression and the spindle assembly checkpoint (SAC) during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A). Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- * E-mail:
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Maki Miyamoto
- DMPK Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomohiro Kawamoto
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masanori Okaniwa
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
18
|
Buoli Comani G, Panceri R, Dinelli M, Biondi A, Mancuso C, Meneveri R, Barisani D. miRNA-regulated gene expression differs in celiac disease patients according to the age of presentation. GENES & NUTRITION 2015; 10:482. [PMID: 26233308 PMCID: PMC4522246 DOI: 10.1007/s12263-015-0482-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/17/2015] [Indexed: 12/17/2022]
Abstract
Celiac disease is an intestinal disease which shows different symptoms and clinical manifestations among pediatric and adult patients. These variations could be imputable to age-related changes in gut architecture and intestinal immune system, which could be characterized by gene expression differences possibly regulated by miRNAs. We analyzed a panel of miRNAs and their target genes in duodenal biopsies of Marsh 3AB and 3C pediatric celiac patients, compared to controls. Moreover, to assess variation of expression in plasma samples, we evaluated circulating miRNA levels in controls and patients at diagnosis or on gluten-free diet. We detected a decreased miR-192-5p expression in celiac patients, but no variations in NOD2 and CXCL2, targets previously identified in adults. Conversely, we detected a significant increase in mRNA and protein levels of another target, MAD2L1, protein related to cell cycle control. miR-31-5p and miR-338-3p were down-regulated and their respective targets, FOXP3 and RUNX1, involved in Treg function, resulted up-regulated in celiac patients. Finally, we detected, in celiac patients, an increased expression of miR-21-5p, possibly caused by a regulatory loop with its putative target STAT3, which showed an increased activation in Marsh 3C patients. The analysis of plasma revealed a trend similar to that observed in biopsies, but in presence of gluten-free diet we could not detect circulating miRNAs values comparable to controls. miRNAs and their gene targets showed an altered expression in duodenal mucosa and plasma of celiac disease pediatric patients, and these alterations could be different from adult ones.
Collapse
Affiliation(s)
- Gaia Buoli Comani
- />Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, MB Italy
| | - Roberto Panceri
- />Fondazione MBBM, Azienda Ospedaliera S.Gerardo, Monza, Italy
| | - Marco Dinelli
- />Unità Endoscopia Digestiva, Azienda Ospedaliera S.Gerardo, Monza, Italy
| | - Andrea Biondi
- />Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, MB Italy
- />Fondazione MBBM, Azienda Ospedaliera S.Gerardo, Monza, Italy
| | - Clara Mancuso
- />Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, MB Italy
| | - Raffaella Meneveri
- />Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, MB Italy
| | - Donatella Barisani
- />Department of Health Sciences, School of Medicine, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, MB Italy
| |
Collapse
|
19
|
Mussini JM, Magot A, Hantaï D, Sternberg D, Chevessier F, Péréon Y. Atypical nuclear abnormalities in a patient with Brody disease. Neuromuscul Disord 2015; 25:773-9. [PMID: 26248958 DOI: 10.1016/j.nmd.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/09/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Brody disease was first described as a benign pseudo-myotonic disorder with muscular stiffness, which increased with exercise. Biochemical and genetic studies have pointed out its close relationship to a functional defect of the fast-twitch sarcoplasmic reticulum Ca(++) ATPase pump (SERCA1) encoded by the ATP2A1 gene located on chromosome 16. The histopathological features in this form of myopathy were generally described as non-specific, i.e. moderate degree of type 2 fibre atrophy and excess of internal nuclei. We here present the clinical and histopathological features of a patient with Brody disease over a 19-year follow-up period. This patient had two heterozygous ATP2A1 mutations and complained about muscle stiffness immediately after effort. He had suffered from this since early childhood and exhibited clinical symptoms mimicking myotonia. Histological, ultrastructural and cytogenetic analyses revealed morphologically abnormal nuclei with polyploidy. In this report, we discuss the possible links between the consequences of the genetic abnormality and the peculiar aspect of the nuclei.
Collapse
Affiliation(s)
- Jean-Marie Mussini
- Laboratoire d'Anatomie Pathologique, CHU de Nantes, Nantes, France; Centre de Référence Maladies Neuromusculaires Nantes-Angers, CHU de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires Nantes-Angers, CHU de Nantes, Nantes, France; Atlantic Gene Therapies - Biotherapy Institute for Rare Diseases, Nantes, France
| | - Daniel Hantaï
- Institut de Myologie, Hôpital de La Salpêtrière, Paris, France
| | - Damien Sternberg
- Institut de Myologie, Hôpital de La Salpêtrière, Paris, France; Laboratoire de Biochimie, Hôpital de La Salpêtrière, Paris, France
| | - Frédéric Chevessier
- Institut de Myologie, Hôpital de La Salpêtrière, Paris, France; Neuropathologisches Institut, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires Nantes-Angers, CHU de Nantes, Nantes, France; Atlantic Gene Therapies - Biotherapy Institute for Rare Diseases, Nantes, France.
| |
Collapse
|
20
|
Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, Kawamoto T, Miyamoto M, Hirayama T, Okaniwa M, Banno H, Ishikawa T, Kandori H, Iwata K. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun 2015; 6:7668. [PMID: 26144554 PMCID: PMC4506520 DOI: 10.1038/ncomms8668] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations—misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis failure without a strong anti-proliferative effect. In contrast, CENP-E inhibition causes p53-mediated post-mitotic apoptosis triggered by chromosome missegregation. Pharmacological studies reveal that aneuploidy caused by the CENP-E inhibitor, Compound-A, in SAC-attenuated cells causes substantial proteotoxic stress and DNA damage. Polyploidy caused by the Eg5 inhibitor does not produce this effect. Furthermore, p53-mediated post-mitotic apoptosis is accompanied by aneuploidy-associated DNA damage response and unfolded protein response activation. Because Compound-A causes p53 accumulation and antitumour activity in an SAC-impaired xenograft model, CENP-E inhibitors could be potential anticancer drugs effective against SAC-impaired tumours. CENP-E regulates chromosome alignment during mitosis to distribute chromosomes equally into daughter cells. Here, the authors show that CENP-E inhibition causes p53-mediated post-mitotic apoptosis in tumours where the spindle assembly checkpoint is compromised, suggesting that CENP-E is a therapeutic target for these cancers.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Yusuke Nakayama
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Daisuke Morishita
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Maki Miyamoto
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Takaharu Hirayama
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Masanori Okaniwa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Hiroshi Banno
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Tomoyasu Ishikawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Hitoshi Kandori
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Kentaro Iwata
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| |
Collapse
|
21
|
Yaginuma Y, Yoshimoto M, Eguchi A, Tokuda A, Takahashi S. The human papillomavirus18 E7 protein inhibits CENP-C binding to α-satellite DNA. Virus Res 2015; 205:27-32. [PMID: 25997930 DOI: 10.1016/j.virusres.2015.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) infection leads to aneuploidy, a numerical chromosomal aberration that is caused by dysregulation of chromosomal segregation. We previously found that the E7 proteins of high-risk HPVs, but not of low-risk HPVs, could bind to centromere protein-C (CENP-C). In this study, we first found that CENP-C could bind centromere α-satellite DNAs using ChIP analysis and HA-tagged CENP-C/nuc transfected 293T cells. We then investigated if HA-CENP-C/nuc binding to α-satellite DNAs was affected by the E7 proteins of high- or low-risk HPVs. We found that transfection of the FLAG tagged HPV18 E7 inhibited the binding of HA-CENP-C/nuc to α-satellite DNAs. This finding was confirmed in HeLa S3 cells transfected with siRNA targeted to HPV18 E7 expression. We therefore speculate that altered function of kinetochores as a result of inhibition of CENP-C and α-satellite DNAs binding may be associated with the chromosomal abnormalities observed in HPV18-positive cancers.
Collapse
Affiliation(s)
- Yuji Yaginuma
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan.
| | - Masafumi Yoshimoto
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| | - Ayami Eguchi
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| | - Aoi Tokuda
- School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| | - Shoko Takahashi
- School of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuouku, Kumamoto 862-0976, Japan
| |
Collapse
|
22
|
Chromosomal instability causes sensitivity to metabolic stress. Oncogene 2014; 34:4044-55. [PMID: 25347746 DOI: 10.1038/onc.2014.344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Chromosomal INstability (CIN), a hallmark of cancer, refers to cells with an increased rate of gain or loss of whole chromosomes or chromosome parts. CIN is linked to the progression of tumors with poor clinical outcomes such as drug resistance. CIN can give tumors the diversity to resist therapy, but it comes at the cost of significant stress to tumor cells. To tolerate this, cancer cells must modify their energy use to provide adaptation against genetic changes as well as to promote their survival and growth. In this study, we have demonstrated that CIN induction causes sensitivity to metabolic stress. We show that mild metabolic disruption that does not affect normal cells, can lead to high levels of oxidative stress and subsequent cell death in CIN cells because they are already managing elevated stress levels. Altered metabolism is a differential characteristic of cancer cells, so our identification of key regulators that can exploit these changes to cause cell death may provide cancer-specific potential drug targets, especially for advanced cancers that exhibit CIN.
Collapse
|
23
|
Lactaptin induces p53-independent cell death associated with features of apoptosis and autophagy and delays growth of breast cancer cells in mouse xenografts. PLoS One 2014; 9:e93921. [PMID: 24710119 PMCID: PMC3978064 DOI: 10.1371/journal.pone.0093921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Lactaptin, the proteolytic fragment of human milk kappa-casein, induces the death of various cultured cancer cells. The mechanisms leading to cell death after lactaptin treatment have not been well characterized. In this study the in vivo and in vitro effects of a recombinant analogue of lactaptin (RL2) were examined. Following treatment with the recombinant analogue of lactaptin strong caspase -3, -7 activation was detected. As a consequence of caspase activation we observed the appearance of a sub-G1 population of cells with subdiploid DNA content. Dynamic changes in the mRNA and protein levels of apoptosis-related genes were estimated. No statistically reliable differences in p53 mRNA level or protein level were found between control and RL2-treated cells. We observed that RL2 constitutively suppressed bcl-2 mRNA expression and down regulated Bcl-2 protein expression in MDA-MB-231 cells. We demonstrated that RL2 penetrates cancer and non-transformed cells. Identification of the cellular targets of the lactaptin analogue revealed that α/β-tubulin and α-actinin-1 were RL2-bound proteins. As the alteration in cellular viability in response to protein stimulus can be realized not only by way of apoptosis but also by autophagy, we examined the implications of autophagy in RL2-dependent cell death. We also found that RL2 treatment induces LC3-processing, which is a hallmark of autophagy. The autophagy inhibitor chloroquine enhanced RL2 cytotoxicity to MDA-MB-231 cells, indicating the pro-survival effect of RL2-dependent autophagy. The antitumour potential of RL2 was investigated in vivo in mouse xenografts bearing MDA-MB-231 cells. We demonstrated that the recombinant analogue of lactaptin significantly suppressed the growth of solid tumours. Our results indicate that lactaptin could be a new molecule for the development of anticancer drugs.
Collapse
|
24
|
Gabrielli B, Brown M. Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv Cancer Res 2013; 116:1-37. [PMID: 23088867 DOI: 10.1016/b978-0-12-394387-3.00001-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase inhibitors exhibit pleiotropic effects on cell functions, both in vivo and in vitro. One of the more dramatic effects of these drugs is their ability to disrupt normal mitotic division, which is a significant contributor to the anticancer properties of these drugs. The most important feature of the disrupted mitosis is that drug treatment overcomes the mitotic spindle assembly checkpoint and drives mitotic slippage, but in a manner that triggers apoptosis. The mechanism by which histone deacetylase inhibitors affect mitosis is now becoming clearer through the identification of a number of chromatin and nonchromatin protein targets that are critical to the regulation of normal mitotic progression and cell division. These proteins are directly regulated by acetylation and deacetylation, or in some cases indirectly through the acetylation of essential partner proteins. There appears to be little contribution from deacetylase inhibitor-induced transcriptional changes to the mitotic effects of these drugs. The overall mitotic phenotype of drug treatment appears to be the sum of these disrupted mechanisms.
Collapse
Affiliation(s)
- Brian Gabrielli
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|
25
|
Lee CG, Park GY, Han YK, Lee JH, Chun SH, Park HY, Lim KH, Kim EG, Choi YJ, Yang K, Lee CW. Roles of 14-3-3η in mitotic progression and its potential use as a therapeutic target for cancers. Oncogene 2012; 32:1560-9. [DOI: 10.1038/onc.2012.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Bayram S. RASSF1A Ala133Ser polymorphism is associated with increased susceptibility to hepatocellular carcinoma in a Turkish population. Gene 2012; 498:264-9. [PMID: 22394463 DOI: 10.1016/j.gene.2012.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 01/08/2023]
Abstract
AIM The tumor suppressor gene Ras association domain family 1 isoform A (RASSF1A) regulates cell cycle regulation, apoptosis and microtubule stability and is inactivated by promoter hypermethylation at a high frequency in hepatocellular carcinoma (HCC). A guanine (G)/thymine (T) common single nucleotide polymorphism (SNP) at first position of codon 133 in RASSF1A gene determines an alanine (Ala) to serine (Ser) (Ala133Ser) amino acidic substitution which may alter cancer risk by influencing the function of RASSF1A protein. METHODS To determine the association of the RASSF1A Ala133Ser polymorphism with the risk of HCC development in a Turkish population, a hospital-based case-control study was designed consisting of 236 subjects with HCC and 236 cancer-free control subjects matched for age, gender, smoking and alcohol status. The genotype frequency of the RASSF1A Ala133Ser polymorphism was determined by using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. RESULTS Allele and genotype associations of RASSF1A Ala133Ser polymorphism with HCC susceptibility were observed in comparisons between the patient and control samples (P<0.001). Risk of HCC development in this Turkish population was significantly increased in carriers of the Ser133 variant allele of Ala133Ser polymorphism (Ala/Ser and Ser/Ser genotypes) when compared with homozygote Ala/Ala genotype (OR=5.47, 95% CI=3.63-8.25, P=0.001). CONCLUSION Because our results suggest for the first time that the Ser133 allele of RASSF1A Ala133Ser polymorphism may be a genetic susceptibility factor for HCC in the Turkish population, further independent studies are required to validate our findings in a larger series, as well as in patients of different ethnic origins.
Collapse
Affiliation(s)
- Süleyman Bayram
- Adıyaman University, Adıyaman School of Health, Department of Nursing, 02040 Adıyaman, Turkey.
| |
Collapse
|
27
|
Giovinazzi S, Lindsay CR, Morozov VM, Escobar-Cabrera E, Summers MK, Han HS, McIntosh LP, Ishov AM. Regulation of mitosis and taxane response by Daxx and Rassf1. Oncogene 2012; 31:13-26. [PMID: 21643015 PMCID: PMC3954566 DOI: 10.1038/onc.2011.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/26/2011] [Accepted: 04/15/2011] [Indexed: 01/06/2023]
Abstract
Current theories suggest that mitotic checkpoint proteins are essential for proper cellular response to taxanes, a widely used family of chemotherapeutic compounds. We recently showed that absence or depletion of protein Daxx increases cellular taxol (paclitaxel) resistance-a common trait of patients diagnosed with several malignancies, including breast cancer. Further investigation of Daxx-mediated taxol response revealed that Daxx is important for the proper timing of mitosis progression and cyclin B stability. Daxx interacts with mitotic checkpoint protein RAS-association domain family protein 1 (Rassf1) and partially colocalizes with this protein during mitosis. Rassf1/Daxx depletion or expression of Daxx-binding domain of Rassf1 elevates cyclin B stability and increases taxol resistance in cells and mouse xenograft models. In breast cancer patients, we observed the inverse correlation between Daxx and clinical response to taxane-based chemotherapy. These data suggest that Daxx and Rassf1 define a mitotic stress checkpoint that enables cells to exit mitosis as micronucleated cells (and eventually die) when encountered with specific mitotic stress stimuli, including taxol. Surprisingly, depletion of Daxx or Rassf1 does not change the activity of E3 ubiquitin ligase anaphase promotion complex/C in in vitro settings, suggesting the necessity of mitotic cellular environment for proper activation of this checkpoint. Daxx and Rassf1 may become useful predictive markers for the proper selection of patients for taxane chemotherapy.
Collapse
Affiliation(s)
- Serena Giovinazzi
- University of Florida Department of Anatomy and Cell Biology and Shands Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL 32610, USA
| | - Cory R. Lindsay
- University of Florida Department of Anatomy and Cell Biology and Shands Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL 32610, USA
| | - Viacheslav M. Morozov
- University of Florida Department of Anatomy and Cell Biology and Shands Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL 32610, USA
| | - Eric Escobar-Cabrera
- Department of Biochemistry & Molecular Biology and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew K. Summers
- Department of Cellular Regulation, Genentech Inc., South San Francisco, CA, USA. Current Address: Lerner Research Institute Department of Cancer Biology, Cleveland, Ohio 44195
| | - Hyo Sook Han
- H.Lee Moffitt Cancer Center & Research Institute, University of South Florida College of Medicine, Tampa, FL 33612 USA
| | - Lawrence P. McIntosh
- Department of Biochemistry & Molecular Biology and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alexander M. Ishov
- University of Florida Department of Anatomy and Cell Biology and Shands Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Díaz-Rodríguez E, Álvarez-Fernández S, Chen X, Paiva B, López-Pérez R, García-Hernández JL, San Miguel JF, Pandiella A. Deficient spindle assembly checkpoint in multiple myeloma. PLoS One 2011; 6:e27583. [PMID: 22132115 PMCID: PMC3223182 DOI: 10.1371/journal.pone.0027583] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/19/2011] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is a hematological disease characterized by an abnormal accumulation of plasma cells in the bone marrow. These cells have frequent cytogenetic abnormalities including translocations of the immunoglobulin heavy chain gene and chromosomal gains and losses. In fact, a singular characteristic differentiating MM from other hematological malignancies is the presence of a high degree of aneuploidies. As chromosomal abnormalities can be generated by alterations in the spindle assembly checkpoint (SAC), the functionality of such checkpoint was tested in MM. When SAC components were analyzed in MM cell lines, the RNA levels of most of them were conserved. Nevertheless, the protein content of some key constituents was very low in several cell lines, as was the case of MAD2 or CDC20 in RPMI-8226 or RPMI-LR5 cells. The recovery of their cellular content did not substantially affect cell growth, but improved their ability to segregate chromosomes. Finally, SAC functionality was tested by challenging cells with agents disrupting microtubule dynamics. Most of the cell lines analyzed exhibited functional defects in this checkpoint. Based on the data obtained, alterations both in SAC components and their functionality have been detected in MM, pointing to this pathway as a potential target in MM treatment.
Collapse
Affiliation(s)
- Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun SC, Kim NH. Spindle assembly checkpoint and its regulators in meiosis. Hum Reprod Update 2011; 18:60-72. [DOI: 10.1093/humupd/dmr044] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
30
|
Yang C, Wang H, Xu Y, Brinkman KL, Ishiyama H, Wong STC, Xu B. The kinetochore protein Bub1 participates in the DNA damage response. DNA Repair (Amst) 2011; 11:185-91. [PMID: 22071147 DOI: 10.1016/j.dnarep.2011.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The DNA damage response (DDR) and the spindle assembly checkpoint (SAC) are two critical mechanisms by which mammalian cells maintain genome stability. There is a growing body of evidence that DDR elements and SAC components crosstalk. Here we report that Bub1 (budding uninhibited by benzimidazoles 1), one of the critical kinetochore proteins essential for SAC, is required for optimal DDRs. We found that knocking-down Bub1 resulted in prolonged H2AX foci and comet tail formation as well as hypersensitivity in response to ionizing radiation (IR). Further, we found that Bub1-mediated Histone H2A Threonine 121 phosphorylation was induced after IR in an ATM-dependent manner. We demonstrated that ATM phosphorylated Bub1 on serine 314 in response to DNA damage in vivo. Finally, we showed that ATM-mediated Bub1 serine 314 phosphorylation was required for IR-induced Bub1 activation and for the optimal DDR. Together, we elucidate the molecular mechanism of DNA damage-induced Bub1 activation and highlight a critical role of Bub1 in DDR.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang X, Yin Q, Ling Y, Zhang Y, Ma R, Ma Q, Cao C, Zhong H, Liu X, Xu Q. Two LXXLL motifs in the N terminus of Mps1 are required for Mps1 nuclear import during G(2)/M transition and sustained spindle checkpoint responses. Cell Cycle 2011; 10:2742-50. [PMID: 21778823 DOI: 10.4161/cc.10.16.15927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G 2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.
Collapse
|
32
|
Fang X, Zhang P. Aneuploidy and tumorigenesis. Semin Cell Dev Biol 2011; 22:595-601. [PMID: 21392584 PMCID: PMC3651908 DOI: 10.1016/j.semcdb.2011.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/20/2022]
Abstract
Aneuploidy is a prominent phenotype of cancer. It refers to deviations from the normal number of chromosomes in a cell, as a result of whole-chromosome loss or gain. In most cases, aneuploidy is caused by mitotic errors due to defects in the mechanisms that have evolved to ensure faithful chromosome segregation, such as the spindle assembly checkpoint (SAC). The observation that SAC-deficient mice are tumor prone demonstrates that this checkpoint is important in suppressing tumor formation and suggests that aneuploidy can induce tumorigenesis. In this review, we will summarize our current knowledge about the cause of aneuploidy and discuss the cellular response to aneuploidy in the context of tumorigenesis.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
33
|
Herrera LA, Prada D, Andonegui MA, Dueñas-González A. The epigenetic origin of aneuploidy. Curr Genomics 2011; 9:43-50. [PMID: 19424483 PMCID: PMC2674307 DOI: 10.2174/138920208783884883] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
Theodore Boveri, eminent German pathologist, observed aneuploidy in cancer cells more than a century ago and suggested that cancer cells derived from a single progenitor cell that acquires the potential for uncontrolled continuous proliferation. Currently, it is well known that aneuploidy is observed in virtually all cancers. Gain and loss of chromosomal material in neoplastic cells is considered to be a process of diversification that leads to survival of the fittest clones. According to Darwin’s theory of evolution, the environment determines the grounds upon which selection takes place and the genetic characteristics necessary for better adaptation. This concept can be applied to the carcinogenesis process, connecting the ability of cancer cells to adapt to different environments and to resist chemotherapy, genomic instability being the driving force of tumor development and progression. What causes this genome instability? Mutations have been recognized for a long time as the major source of genome instability in cancer cells. Nevertheless, an alternative hypothesis suggests that aneuploidy is a primary cause of genome instability rather than solely a simple consequence of the malignant transformation process. Whether genome instability results from mutations or from aneuploidy is not a matter of discussion in this review. It is most likely both phenomena are intimately related; however, we will focus on the mechanisms involved in aneuploidy formation and more specifically on the epigenetic origin of aneuploid cells. Epigenetic inheritance is defined as cellular information—other than the DNA sequence itself—that is heritable during cell division. DNA methylation and histone modifications comprise two of the main epigenetic modifications that are important for many physiological and pathological conditions, including cancer. Aberrant DNA methylation is the most common molecular cancer-cell lesion, even more frequent than gene mutations; tumor suppressor gene silencing by CpG island promoter hypermethylation is perhaps the most frequent epigenetic modification in cancer cells. Epigenetic characteristics of cells may be modified by several factors including environmental exposure, certain nutrient deficiencies, radiation, etc. Some of these alterations have been correlated with the formation of aneuploid cells in vivo. A growing body of evidence suggests that aneuploidy is produced and caused by chromosomal instability. We propose and support in this manuscript that not only genetics but also epigenetics, contribute in a major fashion to aneuploid cell formation.
Collapse
Affiliation(s)
- Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer (UIBC)-Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBM)-Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | |
Collapse
|
34
|
Singh AV, Bandi M, Raje N, Richardson P, Palladino MA, Chauhan D, Anderson KC. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 2011; 117:5692-700. [PMID: 21454451 PMCID: PMC3110026 DOI: 10.1182/blood-2010-12-323857] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/24/2011] [Indexed: 12/19/2022] Open
Abstract
Previous studies have established a role of vascular-disrupting agents as anti- cancer agents. Plinabulin is a novel vascular-disrupting agent that exhibits potent interruption of tumor blood flow because of the disruption of tumor vascular endothelial cells, resulting in tumor necrosis. In addition, plinabulin exerts a direct action on tumor cells, resulting in apoptosis. In the present study, we examined the anti-multiple myeloma (MM) activity of plinabulin. We show that low concentrations of plinabulin exhibit a potent antiangiogenic action on vascular endothelial cells. Importantly, plinabulin also induces apoptotic cell death in MM cell lines and tumor cells from patients with MM, associated with mitotic growth arrest. Plinabulin-induced apoptosis is mediated through activation of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase cleavage. Moreover, plinabulin triggered phosphorylation of stress response protein JNK, as a primary target, whereas blockade of JNK with a biochemical inhibitor or small interfering RNA strategy abrogated plinabulin-induced mitotic block or MM cell death. Finally, in vivo studies show that plinabulin was well tolerated and significantly inhibited tumor growth and prolonged survival in a human MM.1S plasmacytoma murine xenograft model. Our study therefore provides the rationale for clinical evaluation of plinabulin to improve patient outcome in MM.
Collapse
Affiliation(s)
- Ajita V Singh
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Rizzardi C, Torelli L, Barresi E, Schneider M, Canzonieri V, Biasotto M, Di Lenarda R, Melato M. BUBR1 expression in oral squamous cell carcinoma and its relationship to tumor stage and survival. Head Neck 2010; 33:727-33. [PMID: 21069850 DOI: 10.1002/hed.21532] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Defects in the mitotic spindle checkpoint have been proposed to contribute to the chromosomal instability observed in human cancers, including oral squamous cell carcinoma (OSCC). BUBR1 is a key component of the spindle checkpoint, whose role in oral carcinogenesis still needs to be clarified. METHODS We have analyzed the expression of BUBR1 in 49 cases of OSCC by immunohistochemistry and compared the findings with clinicopathologic parameters, proliferative activity, and DNA ploidy. RESULTS BUBR1 was overexpressed in 11 cases (22.4%). Tumors with overexpression of BUBR1 were associated with a less advanced pathologic stage (p = .05) and showed longer survival periods (p = .38) but shorter recurrence-free survival periods (p = .13) than those without it. CONCLUSIONS Our data imply the possibility that BUBR1 may be involved in the progression of OSCC, and suggest that BUBR1 may be a promising prognostic marker in patients with OSCC.
Collapse
Affiliation(s)
- Clara Rizzardi
- Department of Pathology and Forensic Medicine, University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Price M, Monteiro ANA. Fine tuning chemotherapy to match BRCA1 status. Biochem Pharmacol 2010; 80:647-53. [PMID: 20510205 PMCID: PMC2925507 DOI: 10.1016/j.bcp.2010.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 02/01/2023]
Abstract
Targeted cancer therapies have been primarily directed at inhibiting oncogenes that are overexpressed or constitutively active in tumors. It is thought that as the cell's circuitry gets re-wired by the constitutive activation of some pathways it becomes exquisitely dependent on this activity. Tumor cell death normally results from inhibiting constitutively active pathways. The dependence of tumor cells on the activity of these pathways has been called oncogene addiction. Approaches that aim to exploit loss of function, rather than gain of function changes have also become a powerful addition to our arsenal of cancer therapies. In particular, when tumors acquire mutations that disrupt pathways in the DNA damage response they rely on alternative pathways that can be targeted pharmacologically. Here we review the use of BRCA1 as a marker of response to therapy with a particular focus on the use of Cisplatin and PARP inhibitors. We also explore the use of BRCA1 as a marker of response to microtubule inhibitors and how all these approaches will bring us closer to the goal of personalized medicine in cancer treatment.
Collapse
Affiliation(s)
- Melissa Price
- Risk Assessment, Detection, and Intervention Program, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | |
Collapse
|
37
|
Gao J, Sai N, Wang C, Sheng X, Shao Q, Zhou C, Shi Y, Sun S, Qu X, Zhu C. Overexpression of chromokinesin KIF4 inhibits proliferation of human gastric carcinoma cells both in vitro and in vivo. Tumour Biol 2010; 32:53-61. [PMID: 20711700 DOI: 10.1007/s13277-010-0090-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/26/2010] [Indexed: 01/05/2023] Open
Abstract
Gastric carcinoma is a common type of malignant tumors and is associated with high death rates. The pathogenesis of gastric carcinoma is still unclear, and increasing evidence shows that many factors contribute to this process. Chromokinesin KIF4 is involved in multiple critical cellular processes. Recently, it has become apparent that KIF4 plays a crucial suppressive role in tumorigenesis. However, the role of KIF4 in human gastric cancer is still unclear. In this study, we examined expression profiles of KIF4 in gastric carcinoma specimens and generated gastric cancer cells that stably express GFP-KIF4 fusion protein (designated as BGC-GFP-KIF4 cells) followed by cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and soft agar colony-formation assays. Simultaneously, we further examined the capability of tumor formation of BGC-GFP-KIF4 cells in nude mice. The results showed that among 23 gastric carcinoma specimens, 13 cases (56.6%) had lower expression of KIF4 compared with corresponding adjacent tissues. In addition, there was a significant correlation between low expression of KIF4 and poor differentiation of tumor (P = 0.024). Overexpression of KIF4 in BGC cells inhibited cell proliferation in vitro, as well as their ability to form tumors in vivo. Our findings suggest that human chromokinesin KIF4 functions as an inhibitor of gastric cancer cell proliferation and might serve as a novel biological target to cure human gastric carcinoma.
Collapse
Affiliation(s)
- Jie Gao
- College of Life Science/Tianjin Key Laboratory of Cyto-Genetical and Molecular Regulation, Tianjin Normal University, Tianjin 300387, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Z, Ling K, Wu X, Cao J, Liu B, Li S, Si Q, Cai Y, Yan C, Zhang Y, Weng Y. Reduced expression of cenp-e in human hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:156. [PMID: 20021663 PMCID: PMC2804602 DOI: 10.1186/1756-9966-28-156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/18/2009] [Indexed: 02/06/2023]
Abstract
Background CENP-E, one of spindle checkpoint proteins, plays a crucial role in the function of spindle checkpoint. Once CENP-E expression was interrupted, the chromosomes can not separate procedurally, and may result in aneuploidy which is a hallmark of most solid cancers, such as hepatocellular carcinoma (HCC). We investigate the expression of CENP-E in human hepatocellular carcinoma,. and analyze the effect of low CENP-E expression on chromosome separation in normal liver cell line (LO2). Methods We determined its levels in HCC and para-cancerous tissues, human hepatocellular carcinoma-derived cell line (HepG2) and LO2 cell line using real time quantitative PCR (QPCR) and Western blot. Further to know whether reduction in CENP-E expression impairs chromosomes separation in LO2 cells. we knocked down CENP-E using shRNA expressing vector and then count the aneuploid in LO2 cells using chromosomal counts assay. Results We found that both CENP-E mRNA and protein levels were significantly reduced in HCC tissues and HepG2 cells compared with para-cancerous tissues and LO2 cells, respectively. A significantly-increased proportion of aneuploid in these down-knocked LO2 cells compared with those treated with control shRNA vector. Conclusions Together with other results, these results reveal that CENP-E expression was reduced in human HCC tissue, and low CENP-E expression result in aneuploidy in LO2 cells.
Collapse
Affiliation(s)
- Zijie Liu
- The key laboratory of laboratory medical diagnostics, ministry of education; the faculty of laboratory medicine, Chongqing Medical University, Chongqing PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Burns CJ, Fantino E, Phillips ID, Su S, Harte MF, Bukczynska PE, Frazzetto M, Joffe M, Kruszelnicki I, Wang B, Wang Y, Wilson N, Dilley RJ, Wan SS, Charman SA, Shackleford DM, Fida R, Malcontenti-Wilson C, Wilks AF. CYT997: a novel orally active tubulin polymerization inhibitor with potent cytotoxic and vascular disrupting activity in vitro and in vivo. Mol Cancer Ther 2009; 8:3036-45. [PMID: 19887548 DOI: 10.1158/1535-7163.mct-09-0076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CYT997 is a wholly synthetic compound that possesses highly potent cytotoxic activity in vitro through inhibition of microtubule polymerization. CYT997 blocks the cell cycle at the G(2)-M boundary, and Western blot analysis indicates an increase in phosphorylated Bcl-2, along with increased expression of cyclin B1. Caspase-3 activation is also observed in cells treated with CYT997 along with the generation of poly(ADP-ribose) polymerase. The compound possesses favorable pharmacokinetic properties, is orally bioavailable, and is efficacious per os in a range of in vivo cancer models, including some refractory to paclitaxel treatment. CYT997 exhibits vascular disrupting activity as measured in vitro by effects on the permeability of human umbilical vein endothelial cell monolayers, and in vivo by effects on tumor blood flow. CYT997 possesses a useful combination of pharmacologic and pharmacokinetic properties and has considerable potential as a novel anticancer agent.
Collapse
|
40
|
Maddodi N, Bhat KMR, Devi S, Zhang SC, Setaluri V. Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. J Biol Chem 2009; 285:242-54. [PMID: 19880519 DOI: 10.1074/jbc.m109.068668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MAP2 is a neuron-specific microtubule-associated protein that binds and stabilizes dendritic microtubules. Previously, we showed that MAP2 expression is (a) activated in cutaneous primary melanoma and (b) inversely associated with melanoma tumor progression. We also showed that ectopic expression of MAP2 in metastatic melanoma cells inhibits cell growth by inducing mitotic spindle defects and apoptosis. However, molecular mechanisms of regulation of MAP2 gene expression in melanoma are not understood. Here, we show that in melanoma cells MAP2 expression is induced by the demethylating agent 5-aza-2'-cytidine, and MAP2 promoter is progressively methylated during melanoma progression, indicating that epigenetic mechanisms are involved in silencing of MAP2 in melanoma. In support of this, methylation of MAP2 promoter DNA in vitro inhibits its activity. Because MAP2 promoter activity levels in melanoma cell lines also correlated with activating mutation in BRAF, a gene that is highly expressed in neurons, we hypothesized that BRAF signaling is involved in MAP2 expression. We show that hyperactivation of BRAF-MEK signaling activates MAP2 expression in melanoma cells by two independent mechanisms, promoter demethylation or down-regulation of neuronal transcription repressor HES1. Our data suggest that BRAF oncogene levels can regulate melanoma neuronal differentiation and tumor progression.
Collapse
Affiliation(s)
- Nityanand Maddodi
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
41
|
Fu Z, Regan K, Zhang L, Muders MH, Thibodeau SN, French A, Wu Y, Kaufmann SH, Lingle WL, Chen J, Tindall DJ. Deficiencies in Chfr and Mlh1 synergistically enhance tumor susceptibility in mice. J Clin Invest 2009; 119:2714-24. [PMID: 19690386 DOI: 10.1172/jci37405] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 06/24/2009] [Indexed: 01/17/2023] Open
Abstract
Genetic instability, which leads to an accumulation of various genetic abnormalities, has been considered an essential component of the human neoplasic transformation process. However, the molecular basis of genomic instability during tumorigenesis remains incompletely understood. Growing evidence indicates that checkpoint with forkhead and ring finger domains (CHFR), a recently identified mitotic checkpoint protein, plays an important role in maintaining chromosome integrity and functions as a tumor suppressor. In this study, we used high-throughput technology to conduct gene expression profiling of human colon cancers and found that loss of CHFR expression frequently occurred in colon cancers with high microsatellite instability (MSI-H). Downregulation of CHFR expression was closely associated with overexpression of Aurora A, an important mitotic kinase. Mice with deficiencies in both Chfr and Mlh1 (the gene that encodes the DNA mismatch-repair protein Mlh1) displayed dramatically higher incidence of spontaneous tumors relative to mice deficient for only one of these genes. These results suggest that defects in both Chfr and Mlh1 synergistically increase predisposition to tumorigenesis.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang W, Yang Y, Gao Y, Xu Q, Wang F, Zhu S, Old W, Resing K, Ahn N, Lei M, Liu X. Structural and mechanistic insights into Mps1 kinase activation. J Cell Mol Med 2009; 13:1679-1694. [PMID: 19120698 PMCID: PMC2829362 DOI: 10.1111/j.1582-4934.2008.00605.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/29/2008] [Indexed: 01/26/2023] Open
Abstract
Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Yuting Yang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuefeng Gao
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Quanbin Xu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Feng Wang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Songcheng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - William Old
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Katheryn Resing
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Natalie Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Ming Lei
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| |
Collapse
|
43
|
DeLigio JT, Velkova A, Zorio DA, Monteiro AN. Can the status of the breast and ovarian cancer susceptibility gene 1 product (BRCA1) predict response to taxane-based cancer therapy? Anticancer Agents Med Chem 2009; 9:543-9. [PMID: 19519295 PMCID: PMC2745270 DOI: 10.2174/187152009788451798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Taxanes (paclitaxel and docetaxel) are currently used to treat ovarian, breast, lung, and head and neck cancers. Despite its clinical success taxane-based treatment could be significantly improved by identifying those patients whose tumors are more likely to present a clinical response. In this mini-review we discuss the accumulating evidence indicating that the breast and ovarian cancer susceptibility gene product BRCA1 mediates cellular response to taxanes. We review data from in vitro, animal, and clinical studies, and discuss them in context of response to therapy. We argue that levels of BRCA1 in tumors may provide a predictive marker for the response to treatment with taxanes. In addition, the study of the role of BRCA1 in the mechanism of action of taxanes might reveal alternative approaches to avoid resistance.
Collapse
Affiliation(s)
| | - Aneliya Velkova
- Risk Assessment, Detection, and Intervention Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612, USA
| | | | - Alvaro N.A. Monteiro
- Risk Assessment, Detection, and Intervention Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
44
|
Abstract
OBJECTIVES To understand if there exists a functional interaction between arsenic trioxide and paclitaxel in vitro. MATERIALS AND METHODS HeLa and HCT116 (rho53(+/+) and rho53(-/-)) cells were treated with As2O3 and/or paclitaxel for various times. Treated cells were collected for analyses using a combination of flow cytometry, fluorescence microscopy and Western blotting. RESULTS Because As(2)O(3) is capable of inhibiting tubulin polymerization and inducing mitotic arrest, we examined whether there existed any functional interaction between As(2)O(3) and paclitaxel, a well-known microtubule poison. Flow cytometry and fluorescence microscopy revealed that although As(2)O(3) alone caused a moderate level of mitotic arrest, it greatly attenuated paclitaxel-induced mitotic arrest in cells with p53 deficiency. Western blot analysis showed that As(2)O(3) significantly blocked phosphorylation of BubR1, Cdc20, and Cdc27 in cells treated with paclitaxel, suggesting that arsenic compromised the activation of the spindle checkpoint. Our further studies revealed that the attenuation of paclitaxel-induced mitotic arrest by As(2)O(3) resulted primarily from sluggish cell cycle progression at S phase but not enhanced mitotic exit. CONCLUSION The observations that As(2)O(3) has a negative impact on the cell cycle checkpoint activation by taxol should have significant clinical implications because the efficacy of taxol in the clinics is associated with its ability to induce mitotic arrest and subsequent mitotic catastrophe.
Collapse
Affiliation(s)
- Q Duan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
45
|
Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 2009; 236:231-8. [PMID: 19371599 DOI: 10.1016/j.taap.2009.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/23/2009] [Accepted: 02/04/2009] [Indexed: 11/21/2022]
Abstract
Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90alpha/beta also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.
Collapse
|
46
|
Caldwell CM, Kaplan KB. The role of APC in mitosis and in chromosome instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 656:51-64. [PMID: 19928352 DOI: 10.1007/978-1-4419-1145-2_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The established role of APC in regulating microtubules and actin in polarized epithelia naturally raises the possibility that APC similarly influences the mitotic cytoskeleton. The recent accumulation of experimental evidence in mitotic cells supports this supposition. APC associates with mitotic spindle microtubules, most notably at the plus-ends of microtubules that interact with kinetochores. Genetic experiments implicate APC in the regulation of spindle microtubule dynamics, probably through its interaction with the microtubule plus-end binding protein, EB1. Moreover, functional data show that APC modulates kinetochore-microtubule attachments and is required for the spindle checkpoint to detect transiently misaligned chromosomes. Together this evidence points to a role for APC in maintaining mitotic fidelity. Such a role is particularly significant when considered in the context of the chromosome instability observed in colorectal tumors bearing mutations in APC. The prevalence of APC truncation mutants in colorectal tumors and the ability of these alleles to act dominantly to inhibit the mitotic spindle place chromosome instability at the earliest stage of colorectal cancer progression (i.e., prior to deregulation of beta-catenin). This may contribute to the autosomal dominant predisposition of patients with familial adenomatous polyposis to develop colon cancer. In this chapter, we will review the literature linking APC to regulation of mitotic fidelity and discuss the implications for dividing epithelial cells in the intestine.
Collapse
|
47
|
Xu Q, Zhu S, Wang W, Zhang X, Old W, Ahn N, Liu X. Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation. Mol Biol Cell 2009; 20:10-20. [PMID: 18923149 PMCID: PMC2613107 DOI: 10.1091/mbc.e08-03-0324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/26/2008] [Accepted: 10/03/2008] [Indexed: 02/06/2023] Open
Abstract
Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.
Collapse
Affiliation(s)
- Quanbin Xu
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Songcheng Zhu
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Wang
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Xiaojuan Zhang
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - William Old
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Natalie Ahn
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309; and
| | - Xuedong Liu
- *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| |
Collapse
|
48
|
Chabalier-Taste C, Racca C, Dozier C, Larminat F. BRCA1 is regulated by Chk2 in response to spindle damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2223-33. [DOI: 10.1016/j.bbamcr.2008.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 07/10/2008] [Accepted: 08/10/2008] [Indexed: 01/14/2023]
|
49
|
Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci U S A 2008; 105:16719-24. [PMID: 18940925 DOI: 10.1073/pnas.0803504105] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hec1 (Highly Expressed in Cancer 1) is one of four proteins of the outer kinetochore Ndc80 complex involved in the dynamic interface between centromeres and spindle microtubules. Its overexpression is seen in a variety of human tumors and correlates with tumor grade and prognosis. We show here that the overexpression of Hec1 in an inducible mouse model results in mitotic checkpoint hyperactivation. As previously observed with overexpression of the Mad2 gene, hyperactivation of the mitotic checkpoint leads to aneuploidy in vitro and is sufficient to generate tumors in vivo that harbor significant levels of aneuploidy. These results underscore the role of chromosomal instability as a result of mitotic checkpoint hyperactivation in the initiation of tumorigenesis.
Collapse
|
50
|
Gradual reduction of BUBR1 protein levels results in premature sister-chromatid separation then in aneuploidy. Hum Genet 2008; 124:473-8. [DOI: 10.1007/s00439-008-0572-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/07/2008] [Indexed: 01/22/2023]
|