1
|
Fatima NI, Fazili KM, Bhat NH. Proteolysis dependent cell cycle regulation in Caulobacter crescentus. Cell Div 2022; 17:3. [PMID: 35365160 PMCID: PMC8973945 DOI: 10.1186/s13008-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Caulobacter crescentus, a Gram-negative alpha-proteobacterium, has surfaced as a powerful model system for unraveling molecular networks that control the bacterial cell cycle. A straightforward synchronization protocol and existence of many well-defined developmental markers has allowed the identification of various molecular circuits that control the underlying differentiation processes executed at the level of transcription, translation, protein localization and dynamic proteolysis. The oligomeric AAA+ protease ClpXP is a well-characterized example of an enzyme that exerts post-translational control over a number of pathways. Also, the proteolytic pathways of its candidate proteins are reported to play significant roles in regulating cell cycle and protein quality control. A detailed evaluation of the impact of its proteolysis on various regulatory networks of the cell has uncovered various significant cellular roles of this protease in C. crescentus. A deeper insight into the effects of regulatory proteolysis with emphasis on cell cycle progression could shed light on how cells respond to environmental cues and implement developmental switches. Perturbation of this network of molecular machines is also associated with diseases such as bacterial infections. Thus, research holds immense implications in clinical translation and health, representing a promising area for clinical advances in the diagnosis, therapeutics and prognosis.
Collapse
Affiliation(s)
- Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Nowsheen Hamid Bhat
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India.
| |
Collapse
|
2
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
3
|
|
4
|
Williams B, Bhat N, Chien P, Shapiro L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol Microbiol 2014; 93:853-66. [PMID: 24989075 PMCID: PMC4285227 DOI: 10.1111/mmi.12698] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 12/01/2022]
Abstract
Proteolytic control of Caulobacter cell cycle proteins is primarily executed by ClpXP, a dynamically localized protease implicated in turnover of several factors critical for faithful cell cycle progression. Here, we show that the transient midcell localization of ClpXP that precedes cytokinesis requires the FtsZ component of the divisome. Although ClpAP does not exhibit subcellular localization, FtsZ is a substrate of both ClpXP and ClpAP in vivo and in vitro. A peptide containing the C-terminal portion of the FtsA divisome protein is a substrate of both ClpXP and ClpAP in vitro but is primarily degraded by ClpAP in vivo. Caulobacter carries out an asymmetric division in which FtsZ and FtsA are stable in stalked cells but degraded in the non-replicative swarmer cell where ClpAP alone degrades FtsA and both ClpAP and ClpXP degrade FtsZ. While asymmetric division in Caulobacter normally yields larger stalked and smaller swarmer daughters, we observe a loss of asymmetric size distribution among daughter cells when clpA is depleted from a strain in which FtsZ is constitutively produced. Taken together, these results suggest that the activity of both ClpXP and ClpAP on divisome substrates is differentially regulated in daughter cells.
Collapse
Affiliation(s)
- Brandon Williams
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | |
Collapse
|
5
|
Subramanian K, Paul MR, Tyson JJ. Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus. PLoS Comput Biol 2013; 9:e1003221. [PMID: 24068904 PMCID: PMC3772055 DOI: 10.1371/journal.pcbi.1003221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/28/2013] [Indexed: 12/22/2022] Open
Abstract
The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.
Collapse
Affiliation(s)
- Kartik Subramanian
- Graduate Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | | | | |
Collapse
|
6
|
Li S, Brazhnik P, Sobral B, Tyson JJ. A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 2007; 4:e9. [PMID: 18225942 PMCID: PMC2217572 DOI: 10.1371/journal.pcbi.0040009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 12/05/2007] [Indexed: 11/18/2022] Open
Abstract
Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three “master regulator” proteins (CtrA, GcrA, and DnaA), is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of α-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine. The cell cycle is the sequence of events by which a growing cell replicates all its components and divides them more or less evenly between two daughter cells. The timing and spatial organization of these events are controlled by gene–protein interaction networks of great complexity. A challenge for computational biology is to build realistic, accurate, predictive mathematical models of these control systems in a variety of organisms, both eukaryotes and prokaryotes. To this end, we present a model of a portion of the molecular network controlling DNA synthesis, cell cycle–related gene expression, DNA methylation, and cell division in stalked cells of the α-proteobacterium Caulobacter crescentus. The model is formulated in terms of nonlinear ordinary differential equations for the major cell cycle regulatory proteins in Caulobacter: CtrA, GcrA, DnaA, CcrM, and DivK. Kinetic rate constants are estimated, and the model is tested against available experimental observations on wild-type and mutant cells. The model is viewed as a starting point for more comprehensive models of the future that will account, in addition, for the spatial asymmetry of Caulobacter reproduction (swarmer cells as well as stalked cells), the correlation of cell growth and division, and cell cycle checkpoints.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Paul Brazhnik
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bruno Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Wang A, Lane S, Tian Z, Sharon A, Hazan I, Liu H. Temporal and spatial control of HGC1 expression results in Hgc1 localization to the apical cells of hyphae in Candida albicans. EUKARYOTIC CELL 2006; 6:253-61. [PMID: 17172437 PMCID: PMC1797949 DOI: 10.1128/ec.00380-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human fungal pathogen Candida albicans can undergo a morphological transition from a unicellular yeast growth form to a multicellular hyphal growth form. During hyphal growth, cell division is asymmetric. Only the apical cell divides, whereas subapical cells remain in G(1), and cell surface growth is highly restricted to the tip of the apical cell. Hgc1, a hypha-specific, G(1) cyclin-like protein, is essential for hyphal development. Here, we report, using indirect immunofluorescence, that Hgc1 is preferentially localized to the dividing apical cells of hyphae. Hgc1 protein is rapidly degraded in a cell cycle-independent manner, and the protein turnover likely occurs in both the apical and the subapical cells of hyphae. In addition to rapid protein turnover, the HGC1 transcript is also dynamically regulated during cell cycle progression in hyphal growth. It is induced upon germ tube formation in early G(1); the transcript level is reduced during the G(1)/S transition and peaks again around the G(2)/M phase in the subsequent cell cycles. Transcription from the HGC1 promoter is essential for its apical cell localization, as Hgc1 no longer exhibits preferential apical localization when expressed under the MAL2 promoter. Using fluorescence in situ hybridization, the HGC1 transcript is detected only in the apical cells of hyphae, suggesting that HGC1 is transcribed in the apical cell. Therefore, the preferential localization of Hgc1 to the apical cells of hyphae results from the dynamic temporal and spatial control of HGC1 expression.
Collapse
Affiliation(s)
- Allen Wang
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | |
Collapse
|
8
|
Potocka I, Thein M, ØSterås M, Jenal U, Alley MRK. Degradation of a Caulobacter soluble cytoplasmic chemoreceptor is ClpX dependent. J Bacteriol 2002; 184:6635-41. [PMID: 12426352 PMCID: PMC135435 DOI: 10.1128/jb.184.23.6635-6642.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to determine whether ClpXP-mediated proteolysis is a common mechanism used to regulate the chemotaxis machinery during the cell cycle of Caulobacter crescentus, we have characterized a soluble cytoplasmic chemoreceptor, McpB. The mcpB gene lies adjacent to the major chemotaxis operon, which encodes 12 chemotaxis proteins, including the membrane chemoreceptor McpA. Like McpA, McpB possesses a C-terminal CheBR docking motif and three potential methylation sites, which we suggest are methylated. The McpB protein is degraded via a ClpX-dependent pathway during the swarmer-to-stalked cell transition, and a motif, which is 3 amino acids N-terminal to the McpB CheBR docking site, is required for proteolysis. Analysis of the degradation signal in McpB and McpA reveals a common motif present in the other four chemoreceptors that possess CheBR docking sites. A green fluorescent protein (GFP) fusion bearing 58 amino acids from the C terminus of McpA, which contains this motif, is degraded, suggesting that the C-terminal sequence is sufficient to confer ClpXP protease susceptibility.
Collapse
Affiliation(s)
- Isabel Potocka
- Department of Biological Sciences, South Kensington Campus, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Abstract
The transcriptional profile of the entire Caulobacter crescentus genome over a synchronous cell cycle was recently described. The analysis reveals a stunning 553 cell-cycle-regulated genes or orfs, nearly 19% of the genome, including putative functions in virtually all biological activities. Over a quarter of these genes/orfs respond to the Caulobacter master regulator, CtrA, most of them apparently indirectly. The analysis confirms and extends earlier observations showing that many proteins involved in cell cycle functions are expressed at the cell age when they are needed. Conversely, the data suggest that proteins specifically expressed at a particular age may be involved in a process taking place then.
Collapse
Affiliation(s)
- R D'Ari
- Institut Jacques Monod (C.N.R.S., Universités Paris 6, Paris 7), 2 place Jussieu, F-75251 Paris Cedex 05, France.
| |
Collapse
|
10
|
Abstract
Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
Collapse
Affiliation(s)
- A M Stock
- Center for Advanced Biotechnology and Medicine and Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
11
|
Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 2000; 64:694-708. [PMID: 11104815 PMCID: PMC99010 DOI: 10.1128/mmbr.64.4.694-708.2000] [Citation(s) in RCA: 502] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
How do organisms assess the degree of completion of a large structure, especially an extracellular structure such as a flagellum? Bacteria can do this. Mutants that lack key components needed early in assembly fail to express proteins that would normally be added at later assembly stages. In some cases, the regulatory circuitry is able to sense completion of structures beyond the cell surface, such as completion of the external hook structure. In Salmonella and Escherichia coli, regulation occurs at both transcriptional and posttranscriptional levels. One transcriptional regulatory mechanism involves a regulatory protein, FlgM, that escapes from the cell (and thus can no longer act) through a complete flagellum and is held inside when the structure has not reached a later stage of completion. FlgM prevents late flagellar gene transcription by binding the flagellum-specific transcription factor sigma(28). FlgM is itself regulated in response to the assembly of an incomplete flagellum known as the hook-basal body intermediate structure. Upon completion of the hook-basal body structure, FlgM is exported through this structure out of the cell. Inhibition of sigma(28)-dependent transcription is relieved, and genes required for the later assembly stages are expressed, allowing completion of the flagellar organelle. Distinct posttranscriptional regulatory mechanisms occur in response to assembly of the flagellar type III secretion apparatus and of ring structures in the peptidoglycan and lipopolysaccharide layers. The entire flagellar regulatory pathway is regulated in response to environmental cues. Cell cycle control and flagellar development are codependent. We discuss how all these levels of regulation ensure efficient assembly of the flagellum in response to environmental stimuli.
Collapse
Affiliation(s)
- G S Chilcott
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
12
|
Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa SI, Hughes KT. Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 2000; 37:1220-31. [PMID: 10972838 DOI: 10.1046/j.1365-2958.2000.02081.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flhDC operon of Salmonella typhimurium is the master control operon required for the expression of the entire flagellar regulon. The flagellar master operon was placed under the tetracycline-inducible promoter PtetA using the T-POP transposon. Cells containing this construct are motile in the presence of tetracycline and non-motile without inducer present. No flagella were visible under the electron microscope when cells were grown without inducer. The class 1, class 2 and class 3 promoters of the flagellar regulon are temporally regulated. After addition of tetracycline, the class 1 flhDC operon was transcribed immediately. Transcription of flgM (which is transcribed from both class 2 and class 3 promoters) began 15 min after induction. At 20 min after induction, the class 2 fliA promoter became active and intracellular FliA protein levels increased; at 30 min after induction, the class 3 fliC promoter was activated. Induction of fliC gene expression coincides with the appearance of FlgM anti-sigma factor in the growth medium. This also coincides with the completion of hook-basal body structures. Rolling cells first appeared 35 min after induction, and excess hook protein (FlgE) was also found in the growth medium at this time. At 45 min after induction, nascent flagellar filaments became visible in electron micrographs and over 40% of the cells exhibited some swimming behaviour. Multiple flagella assemble and grow on individual cells after induction of the master operon. These results confirm that the flagellar regulatory hierarchy of S. typhimurium is temporally regulated after induction. Both FlgM secretion and class 3 gene expression occur upon completion of the hook-basal body structure.
Collapse
Affiliation(s)
- J E Karlinsey
- Department of Microbiology, Box 357242, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bechtloff D, Grünenfelder B, Akerlund T, Nordström K. Analysis of protein synthesis rates after initiation of chromosome replication in Escherichia coli. J Bacteriol 1999; 181:6292-9. [PMID: 10515917 PMCID: PMC103762 DOI: 10.1128/jb.181.20.6292-6299.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate whether the synthesis rates of some proteins change after the initiation of replication in Escherichia coli. An intR1 strain, in which chromosome replication is under the control of an R1 replicon integrated into an inactivated oriC, was used to synchronize chromosome replication, and the rates of protein synthesis were analyzed by two-dimensional polyacrylamide gel electrophoresis of pulse-labeled proteins. Computerized image analysis was used to search for proteins whose expression levels changed at least threefold after initiation of a single round of chromosome replication, which revealed 7 out of about 1,000 detected proteins. The various synthesis rates of three of these proteins turned out to be caused by unbalanced growth and the synthesis of one protein was suppressed in the intR1 strain. The rates of synthesis of the remaining three could be correlated only to the synchronous initiation of replication. These three proteins were analyzed by peptide mass mapping and appeared to be the products of the dps, gapA, and pyrI genes. Thus, the expression of the vast majority of proteins is not influenced by the state of chromosome replication, and a possible role of the replication-associated expression changes of the three identified proteins in the cell cycle is not clear.
Collapse
Affiliation(s)
- D Bechtloff
- Department of Cell Biology, Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
14
|
Abstract
In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field.
Collapse
Affiliation(s)
- A Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153,
| |
Collapse
|
15
|
Spatial and Temporal Control of Gene Expression in Prokaryotes. Development 1999. [DOI: 10.1007/978-3-642-59828-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
McAdams HH, Arkin A. Simulation of prokaryotic genetic circuits. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:199-224. [PMID: 9646867 DOI: 10.1146/annurev.biophys.27.1.199] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biochemical and genetic approaches have identified the molecular mechanisms of many genetic reactions, particularly in bacteria. Now a comparably detailed understanding is needed of how groupings of genes and related protein reactions interact to orchestrate cellular functions over the cell cycle, to implement preprogrammed cellular development, or to dynamically change a cell's processes and structures in response to environmental signals. Simulations using realistic, molecular-level models of genetic mechanisms and of signal transduction networks are needed to analyze dynamic behavior of multigene systems, to predict behavior of mutant circuits, and to identify the design principles applicable to design of genetic regulatory circuits. When the underlying design rules for regulatory circuits are understood, it will be far easier to recognize common circuit motifs, to identify functions of individual proteins in regulation, and to redesign circuits for altered functions.
Collapse
Affiliation(s)
- H H McAdams
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
17
|
Fowler JE, Quatrano RS. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 1998; 13:697-743. [PMID: 9442885 DOI: 10.1146/annurev.cellbio.13.1.697] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because plants are composed of immobile cells, plant morphogenesis requires mechanisms allowing precise control of cell expansion and cell division patterns. Cortical domains, localized in response to directional cues, are of central importance in establishing cell polarity, orienting cell division, and determining daughter cell fates in a wide variety of prokaryotic and eukaryotic organisms. Such domains consist of localized macromolecular complexes that, in plant cells, provide spatial control of cell expansion and cell division functions. The role of the cytoskeleton, plasma membrane, and targeted secretion to the cell wall in the spatial regulation of cell morphogenesis in plants is discussed in light of recent results from model organisms, including brown algal zygotes (e.g. Fucus). A general model, emphasizing the importance of cortical sites and targeted secretion, is proposed for morphogenesis in higher plant cells based on current knowledge and principles derived from analysis of the establishment of a stable cortical asymmetry in Fucus. The model illustrates mechanisms to direct the orientation of an asymmetric division resulting in daughter cells with different fates.
Collapse
Affiliation(s)
- J E Fowler
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
18
|
Abstract
Bacteria usually divide by building a central septum across the middle of the cell. This review focuses on recent results indicating that the tubulin-like FtsZ protein plays a central role in cytokinesis as a major component of a contractile cytoskeleton. Assembly of this cytoskeletal element abutting the membrane is a key point for regulation. The characterization of FtsZ homologues in Mycoplasmas, Archaea, and chloroplasts implies that the constriction mechanism is conserved and that FtsZ can constrict in the absence of peptidoglycan synthesis. In most Eubacteria, the internal cytoskeleton must also regulate synthesis of septal peptidoglycan. The Escherichia coli septum-specific penicillin-binding protein 3 (PBP3) forms a complex with other enzymes involved in murein metabolism, suggesting a centrally located transmembrane complex capable of splicing multiple new strands of peptidoglycan into the cell wall. Important questions remain about the spatial and temporal control of bacterial division.
Collapse
Affiliation(s)
- D Bramhill
- Department of Enzymology, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA.
| |
Collapse
|