1
|
Hoffman KS, Chung CZ, Mukai T, Krahn N, Jiang HK, Balasuriya N, O'Donoghue P, Söll D. Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1400-1410. [PMID: 37279998 PMCID: PMC10573291 DOI: 10.1261/rna.079658.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Han-Kai Jiang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
2
|
Zhu Y, Berg MD, Yang P, Loll-Krippleber R, Brown GW, Brandl CJ. Mistranslating tRNA identifies a deleterious S213P mutation in theSaccharomyces cerevisiaeeco1-1allele. Biochem Cell Biol 2020; 98:624-630. [DOI: 10.1139/bcb-2020-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNASerUGG, G26A, which mistranslates proline codons by inserting serine, and eco1-1, a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion. The suppression was partial, with a tRNA that inserts alanine at proline codons and not apparent for a tRNA that inserts serine at arginine codons. Sequencing of the eco1-1 allele revealed a mutation that would convert the highly conserved serine 213 within β7 of the GCN5-related N-acetyltransferase core to proline. Mutation of P213 in eco1-1 back to the wild-type serine restored the function of the enzyme at elevated temperatures. Our results indicate the utility of mistranslating tRNA variants to identify functionally relevant mutations and identify eco1 as a reporter for mistranslation. We propose that mistranslation could be used as a tool to treat genetic disease.
Collapse
Affiliation(s)
- Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Phoebe Yang
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Raphaël Loll-Krippleber
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Grant W. Brown
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Berg MD, Zhu Y, Genereaux J, Ruiz BY, Rodriguez-Mias RA, Allan T, Bahcheli A, Villén J, Brandl CJ. Modulating Mistranslation Potential of tRNA Ser in Saccharomyces cerevisiae. Genetics 2019; 213:849-863. [PMID: 31484688 PMCID: PMC6827378 DOI: 10.1534/genetics.119.302525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | | | - Tyler Allan
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander Bahcheli
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
Zhang P, Chen Q, Fu G, Xia L, Hu X. Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2019; 35:112. [PMID: 31286266 DOI: 10.1007/s11274-019-2684-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Microorganisms have evolved permeases to incorporate various essential nutrients and exclude harmful products, which assists in adaptation to different environmental conditions for survival. As permeases are directly involved in the utilization of and regulatory response to nutrient sources, metabolic engineering of microbial permeases can predictably influence nutrient metabolism and regulation. In this mini-review, we have summarized the mechanisms underlying the general regulation of permeases, and the current advancements and future prospects of metabolic engineering strategies targeting the permeases in Saccharomyces cerevisiae. The different types of permeases and their regulatory mechanisms have been discussed. Furthermore, methods for metabolic engineering of permeases have been highlighted. Understanding the mechanisms via which permeases are meticulously regulated and engineered will not only facilitate research on regulation of global nutrition and yeast metabolic engineering, but can also provide important insights for future studies on the synthesis of valuable products and elimination of harmful substances in S. cerevisiae.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Qian Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Linglin Xia
- Department of Software, Nanchang University, Nanchang, 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
5
|
Berg MD, Genereaux J, Zhu Y, Mian S, Gloor GB, Brandl CJ. Acceptor Stem Differences Contribute to Species-Specific Use of Yeast and Human tRNA Ser. Genes (Basel) 2018; 9:E612. [PMID: 30544642 PMCID: PMC6316282 DOI: 10.3390/genes9120612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of translation are highly conserved in all organisms indicative of a single evolutionary origin. This includes the molecular interactions of tRNAs with their cognate aminoacyl-tRNA synthetase, which must be precise to ensure the specificity of the process. For many tRNAs, the anticodon is a major component of the specificity. This is not the case for the aminoacylation of alanine and serine to their cognate tRNAs. Rather, aminoacylation relies on other features of the tRNA. For tRNASer, a key specificity feature is the variable arm, which is positioned between the anticodon arm and the T-arm. The variable arm is conserved from yeast to human. This work was initiated to determine if the structure/function of tRNASer has been conserved from Saccharomyces cerevisiae to human. We did this by detecting mistranslation in yeast cells with tRNASer derivatives having the UGA anticodon converted to UGG for proline. Despite being nearly identical in everything except the acceptor stem, human tRNASer is less active than yeast tRNASer. A chimeric tRNA with the human acceptor stem and other sequences from the yeast molecule acts similarly to the human tRNASer. The 3:70 base pair in the acceptor stem (C:G in yeast and A:U in humans) is a prime determinant of the specificity. Consistent with the functional difference of yeast and human tRNASer resulting from subtle changes in the specificity of their respective SerRS enzymes, the functionality of the human and chimeric tRNASerUGG molecules was enhanced when human SerRS was introduced into yeast. Residues in motif 2 of the aminoacylation domain of SerRS likely participated in the species-specific differences. Trp290 in yeast SerRS (Arg313 in humans) found in motif 2 is proximal to base 70 in models of the tRNA-synthetase interaction. Altering this motif 2 sequence of hSerRS to the yeast sequence decreases the activity of the human enzyme with human tRNASer, supporting the coadaptation of motif 2 loop⁻acceptor stem interactions.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Safee Mian
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
6
|
Berg MD, Genereaux J, Karagiannis J, Brandl CJ. The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (BETHESDA, MD.) 2018; 8:1943-1957. [PMID: 29626083 PMCID: PMC5982823 DOI: 10.1534/g3.118.200288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022]
Abstract
Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae, recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (e.g., Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1's PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1[Formula: see text] protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1[Formula: see text] allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1[Formula: see text] is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1[Formula: see text] associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7SLIK to Spt7SAGA increases in the tra1[Formula: see text] strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1[Formula: see text] map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Jim Karagiannis
- Department of Biology, Western University, London, Ontario, Canada N6A5B7
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| |
Collapse
|
7
|
Azadmanesh J, Gowen AM, Creger PE, Schafer ND, Blankenship JR. Filamentation Involves Two Overlapping, but Distinct, Programs of Filamentation in the Pathogenic Fungus Candida albicans. G3 (BETHESDA, MD.) 2017; 7:3797-3808. [PMID: 28951491 PMCID: PMC5677161 DOI: 10.1534/g3.117.300224] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023]
Abstract
The ability of the human pathogenic fungus Candida albicans to switch between yeast-like and filamentous forms of growth has long been linked to pathogenesis. Numerous environmental conditions, including growth at high temperatures, nutrient limitation, and exposure to serum, can trigger this morphological switch and are frequently used in in vitro models to identify genes with roles in filamentation. Previous work has suggested that differences exist between the various in vitro models both in the genetic requirements for filamentation and transcriptional responses to distinct filamentation-inducing media, but these differences had not been analyzed in detail. We compared 10 in vitro models for filamentation and found broad genetic and transcriptomic differences between model systems. The comparative analysis enabled the discovery of novel media-independent genetic requirements for filamentation as well as a core filamentation transcriptional profile. Our data also suggest that the physical environment drives distinct programs of filamentation in C. albicans, which has significant implications for filamentation in vivo.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Biology Department, University of Nebraska Omaha, Nebraska 68182
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Austin M Gowen
- Biology Department, University of Nebraska Omaha, Nebraska 68182
| | - Paul E Creger
- Biology Department, University of Nebraska Omaha, Nebraska 68182
| | | | | |
Collapse
|
8
|
Hoffman KS, Berg MD, Shilton BH, Brandl CJ, O'Donoghue P. Genetic selection for mistranslation rescues a defective co-chaperone in yeast. Nucleic Acids Res 2017; 45:3407-3421. [PMID: 27899648 PMCID: PMC5389508 DOI: 10.1093/nar/gkw1021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
Despite the general requirement for translation fidelity, mistranslation can be an adaptive response. We selected spontaneous second site mutations that suppress the stress sensitivity caused by a Saccharomyces cerevisiae tti2 allele with a Leu to Pro mutation at residue 187, identifying a single nucleotide mutation at the same position (C70U) in four tRNAProUGG genes. Linkage analysis and suppression by SUF9G3:U70 expressed from a centromeric plasmid confirmed the causative nature of the suppressor mutation. Since the mutation incorporates the G3:U70 identity element for alanyl-tRNA synthetase into tRNAPro, we hypothesized that suppression results from mistranslation of Pro187 in Tti2L187P as Ala. A strain expressing Tti2L187A was not stress sensitive. In vitro, tRNAProUGG (C70U) was mis-aminoacylated with alanine by alanyl–tRNA synthetase, but was not a substrate for prolyl–tRNA synthetase. Mass spectrometry from protein expressed in vivo and a novel GFP reporter for mistranslation confirmed substitution of alanine for proline at a rate of ∼6%. Mistranslating cells expressing SUF9G3:U70 induce a partial heat shock response but grow nearly identically to wild-type. Introducing the same G3:U70 mutation in SUF2 (tRNAProAGG) suppressed a second tti2 allele (tti2L50P). We have thus identified a strategy that allows mistranslation to suppress deleterious missense Pro mutations in Tti2.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Brian H Shilton
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Evolving Mistranslating tRNAs Through a Phenotypically Ambivalent Intermediate in Saccharomyces cerevisiae. Genetics 2017; 206:1865-1879. [PMID: 28576863 PMCID: PMC5560794 DOI: 10.1534/genetics.117.203232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.
Collapse
|
10
|
Identification and Characterisation of a pH-stable GFP. Sci Rep 2016; 6:28166. [PMID: 27324986 PMCID: PMC4914982 DOI: 10.1038/srep28166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 11/08/2022] Open
Abstract
Green fluorescent proteins (GFPs) are invaluable tools for modern cell biology. Even though many properties of GFP have been successfully engineered, a GFP retaining brightness at low pH has not emerged. This limits the use of GFP in quantitative studies performed in fluctuating or acidic conditions. We report the engineering and characterisation of tandem dimer GFP (pH-tdGFP), a bright and stable GFP that can be efficiently excited and maintains its fluorescence properties in acidic conditions. Therefore, pH-tdGFP could act as a quantitative marker for cellular processes that occur at low pH, such as endocytosis, autophagy or starvation.
Collapse
|
11
|
Abstract
The TTT complex is composed of the three essential proteins Tel2, Tti1, and Tti2 The complex is required to maintain steady state levels of phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, including mTOR, ATM/Tel1, ATR/Mec1, and TRRAP/Tra1, all of which serve as regulators of critical cell signaling pathways. Due to their association with heat shock proteins, and with newly synthesized PIKK peptides, components of the TTT complex may act as cochaperones. Here, we analyze the consequences of depleting the cellular level of Tti2 in Saccharomyces cerevisiae We show that yeast expressing low levels of Tti2 are viable under optimal growth conditions, but the cells are sensitive to a number of stress conditions that involve PIKK pathways. In agreement with this, depleting Tti2 levels decreased expression of Tra1, Mec1, and Tor1, affected their localization and inhibited the stress responses in which these molecules are involved. Tti2 expression was not increased during heat shock, implying that it does not play a general role in the heat shock response. However, steady state levels of Hsp42 increase when Tti2 is depleted, and tti2L187P has a synthetic interaction with exon 1 of the human Huntingtin gene containing a 103 residue polyQ sequence, suggesting a general role in protein quality control. We also find that overexpressing Hsp90 or its cochaperones is synthetic lethal when Tti2 is depleted, an effect possibly due to imbalanced stoichiometry of a complex required for PIKK assembly. These results indicate that Tti2 does not act as a general chaperone, but may have a specialized function in PIKK folding and/or complex assembly.
Collapse
|
12
|
Lam SKW, Ma X, Sing TL, Shilton BH, Brandl CJ, Davey MJ. The PS1 hairpin of Mcm3 is essential for viability and for DNA unwinding in vitro. PLoS One 2013; 8:e82177. [PMID: 24349215 PMCID: PMC3859580 DOI: 10.1371/journal.pone.0082177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The pre-sensor 1 (PS1) hairpin is found in ring-shaped helicases of the AAA+ family (ATPases associated with a variety of cellular activities) of proteins and is implicated in DNA translocation during DNA unwinding of archaeal mini-chromosome maintenance (MCM) and superfamily 3 viral replicative helicases. To determine whether the PS1 hairpin is required for the function of the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins), we mutated the conserved lysine residue in the putative PS1 hairpin motif in each of the Saccharomyces cerevisiae Mcm2-7 subunits to alanine. Interestingly, only the PS1 hairpin of Mcm3 was essential for viability. While mutation of the PS1 hairpin in the remaining MCM subunits resulted in minimal phenotypes, with the exception of Mcm7 which showed slow growth under all conditions examined, the viable alleles were synthetic lethal with each other. Reconstituted Mcm2-7 containing Mcm3 with the PS1 mutation (Mcm3(K499A)) had severely decreased helicase activity. The lack of helicase activity provides a probable explanation for the inviability of the mcm3(K499A) strain. The ATPase activity of Mcm2-7(3K499A) was similar to the wild type complex, but its interaction with single-stranded DNA in an electrophoretic mobility shift assay and its associations in cells were subtly altered. Together, these findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions, most evident by the essential nature of the Mcm3 PS1 hairpin in DNA unwinding.
Collapse
Affiliation(s)
- Simon K. W. Lam
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiaoli Ma
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tina L. Sing
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Megan J. Davey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
The C-terminal residues of Saccharomyces cerevisiae Mec1 are required for its localization, stability, and function. G3-GENES GENOMES GENETICS 2013; 3:1661-74. [PMID: 23934994 PMCID: PMC3789791 DOI: 10.1534/g3.113.006841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mec1, a member of the phosphoinositide three-kinase-related kinase (PIKK) family of proteins, is involved in the response to replicative stress and DNA damage and in telomere maintenance. An essential 30 to 35 residue, the FATC domain is found at the C-terminus of all PIKK family members. To investigate the roles of the C-terminal residues of Mec1, we characterized alleles of Saccharomyces cerevisiae mec1 that alter the FATC domain. A change of the terminal tryptophan to alanine resulted in temperature-sensitive growth, sensitivity to hydroxyurea, and diminished kinase activity in vitro. Addition of a terminal glycine or deletion of one, two, or three residues resulted in loss of cell viability and kinase function. Each of these Mec1 derivatives was less stable than wild-type Mec1, eluted abnormally from a size exclusion column, and showed reduced nuclear localization. We identified rpn3-L140P, which encodes a component of the 19S proteasomal regulatory particle of the 26S proteasome, as a suppressor of the temperature-sensitive growth caused by mec1-W2368A. The rpn3-L140P allele acted in a partially dominant fashion. It was not able to suppress the inviability of the C-terminal truncations or additions or the hydroxyurea sensitivity of mec1-W2368A. The rpn3-L140P allele restored Mec1-W2368A to nearly wild-type protein levels at 37°, an effect partially mimicked by the proteasome inhibitor MG-132. Our study supports a role for the C-terminus in Mec1 folding and stability, and suggests a role for the proteasome in regulating Mec1 levels.
Collapse
|
14
|
Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1. Genetics 2012; 191:765-80. [PMID: 22505622 PMCID: PMC3389973 DOI: 10.1534/genetics.112.140459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tra1 is a 3744-residue component of the Saccharomyces cerevisiae SAGA, NuA4, and ASTRA complexes. Tra1 contains essential C-terminal PI3K and FATC domains, but unlike other PIKK (phosphoinositide three-kinase–related kinase) family members, lacks kinase activity. To analyze functions of the FATC domain, we selected for suppressors of tra1-F3744A, an allele that results in slow growth under numerous conditions of stress. Two alleles of TTI2, tti2-F328S and tti2-I336F, acted in a partially dominant fashion to suppress the growth-related phenotypes associated with tra1-F3744A as well as its resulting defects in transcription. tti2-F328S suppressed an additional FATC domain mutation (tra1-L3733A), but not a mutation in the PI3K domain or deletions of SAGA or NuA4 components. We find eGFP-tagged Tti2 distributed throughout the cell. Tti2 is a component of the ASTRA complex, and in mammalian cells associates with molecular chaperones in complex with Tti1 and Tel2. Consistent with this finding, Tra1 levels are reduced in a strain with a temperature-sensitive allele of tel2. Further agreeing with a possible role for Tti2 in the folding or stabilization of Tra1, tra1-F3744A was mislocalized to the cytoplasm, particularly under conditions of stress. Since an intragenic mutation of tra1-R3590I also suppressed F3744A, we propose that Tti2 is required for the folding/stability of the C-terminal FATC and PI3K domains of Tra1 into their functionally active form.
Collapse
|
15
|
Kvas S, Gloor GB, Brandl CJ. Loss of nonsense mediated decay suppresses mutations in Saccharomyces cerevisiae TRA1. BMC Genet 2012; 13:19. [PMID: 22439631 PMCID: PMC3364908 DOI: 10.1186/1471-2156-13-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tra1 is an essential protein in Saccharomyces cerevisiae. It was first identified in the SAGA and NuA4 complexes, both with functions in multiple aspects of gene regulation and DNA repair, and recently found in the ASTRA complex. Tra1 belongs to the PIKK family of proteins with a C-terminal PI3K domain followed by a FATC domain. Previously we found that mutation of leucine to alanine at position 3733 in the FATC domain of Tra1 (tra1-L3733A) results in transcriptional changes and slow growth under conditions of stress. To further define the regulatory interactions of Tra1 we isolated extragenic suppressors of the tra1-L3733A allele. RESULTS We screened for suppressors of the ethanol sensitivity caused by tra1-L3733A. Eleven extragenic recessive mutations, belonging to three complementation groups, were identified that partially suppressed a subset of the phenotypes caused by tra1-L3733A. Using whole genome sequencing we identified one of the mutations as an opal mutation at tryptophan 165 of UPF1/NAM7. Partial suppression of the transcriptional defect resulting from tra1-L3733A was observed at GAL10, but not at PHO5. Suppression was due to loss of nonsense mediated decay (NMD) since deletion of any one of the three NMD surveillance components (upf1/nam7, upf2/nmd2, or upf3) mediated the effect. Deletion of upf1 suppressed a second FATC domain mutation, tra1-F3744A, as well as a mutation to the PIK3 domain. In contrast, deletions of SAGA or NuA4 components were not suppressed. CONCLUSIONS We have demonstrated a genetic interaction between TRA1 and genes of the NMD pathway. The suppression is specific for mutations in TRA1. Since NMD and Tra1 generally act reciprocally to control gene expression, and the FATC domain mutations do not directly affect NMD, we suggest that suppression occurs as the result of overlap and/or crosstalk in these two broad regulatory networks.
Collapse
Affiliation(s)
- Stephanie Kvas
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London N6A5C1, Canada
| | | | | |
Collapse
|
16
|
Stuckey S, Mukherjee K, Storici F. In vivo site-specific mutagenesis and gene collage using the delitto perfetto system in yeast Saccharomyces cerevisiae. Methods Mol Biol 2011; 745:173-91. [PMID: 21660695 PMCID: PMC4890625 DOI: 10.1007/978-1-61779-129-1_11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delitto perfetto is a site-specific in vivo mutagenesis system that has been developed to generate changes at will in the genome of the yeast Saccharomyces cerevisiae. Using this technique, it is possible to rapidly and efficiently engineer yeast strains without requiring several intermediate steps as it functions in only two steps, both of which rely on homologous recombination to drive the changes to the target DNA region. The first step involves the insertion of a cassette containing two markers at or near the locus to be altered. The second step involves complete removal of this cassette with oligonucleotides and/or other genetic material and transfer of the expected genetic modification(s) to the chosen DNA locus. Here we provide a detailed protocol of the delitto perfetto approach and present examples of the most common and useful applications for in vivo mutagenesis to generate base substitutions, deletions, insertions, as well as for precise in vivo assembly and integration of multiple genetic elements, or gene collage.
Collapse
Affiliation(s)
- Samantha Stuckey
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | |
Collapse
|
17
|
Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1. Curr Genet 2010; 56:447-65. [PMID: 20635087 PMCID: PMC2943577 DOI: 10.1007/s00294-010-0313-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 01/22/2023]
Abstract
Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the PIKK family, which contain a C-terminal phosphatidylinositol 3-kinase-like (PI3K) domain followed by a 35-residue FATC domain. Single residue changes of L3733A and F3744A, within the FATC domain, resulted in transcriptional changes and phenotypes that were similar but not identical to those caused by mutations in the PI3K domain or deletions of other SAGA or NuA4 components. The distinct nature of the FATC mutations was also apparent from the additive effect of tra1-L3733A with SAGA, NuA4, and tra1 PI3K domain mutations. Tra1-L3733A associates with SAGA and NuA4 components and with the Gal4 activation domain, to the same extent as wild-type Tra1; however, steady-state levels of Tra1-L3733A were reduced. We suggest that decreased stability of Tra1-L3733A accounts for the phenotypes since intragenic suppressors of tra1-L3733A restored Tra1 levels, and reducing wild-type Tra1 led to comparable growth defects. Also supporting a key role for the FATC domain in the structure/function of Tra1, addition of a C-terminal glycine residue resulted in decreased association with Spt7 and Esa1, and loss of cellular viability. These findings demonstrate the regulatory potential of mechanisms targeting the FATC domains of PIKK proteins.
Collapse
|
18
|
Geda P, Patury S, Ma J, Bharucha N, Dobry CJ, Lawson SK, Gestwicki JE, Kumar A. A small molecule-directed approach to control protein localization and function. Yeast 2008; 25:577-94. [DOI: 10.1002/yea.1610] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
19
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Mutiu AI, Hoke SMT, Genereaux J, Hannam C, MacKenzie K, Jobin-Robitaille O, Guzzo J, Côté J, Andrews B, Haniford DB, Brandl CJ. Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1. Genetics 2007; 177:151-66. [PMID: 17660562 PMCID: PMC2013730 DOI: 10.1534/genetics.107.074476] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tra1 is an essential component of the Saccharomyces cerevisiae SAGA and NuA4 complexes. Using targeted mutagenesis, we identified residues within its C-terminal phosphatidylinositol-3-kinase (PI3K) domain that are required for function. The phenotypes of tra1-P3408A, S3463A, and SRR3413-3415AAA included temperature sensitivity and reduced growth in media containing 6% ethanol or calcofluor white or depleted of phosphate. These alleles resulted in a twofold or greater change in expression of approximately 7% of yeast genes in rich media and reduced activation of PHO5 and ADH2 promoters. Tra1-SRR3413 associated with components of both the NuA4 and SAGA complexes and with the Gal4 transcriptional activation domain similar to wild-type protein. Tra1-SRR3413 was recruited to the PHO5 promoter in vivo but gave rise to decreased relative amounts of acetylated histone H3 and histone H4 at SAGA and NuA4 regulated promoters. Distinct from other components of these complexes, tra1-SRR3413 resulted in generation-dependent telomere shortening and synthetic slow growth in combination with deletions of a number of genes with roles in membrane-related processes. While the tra1 alleles have some phenotypic similarities with deletions of SAGA and NuA4 components, their distinct nature may arise from the simultaneous alteration of SAGA and NuA4 functions.
Collapse
Affiliation(s)
- A Irina Mutiu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ernst W, Trummer E, Mead J, Bessant C, Strelec H, Katinger H, Hesse F. Evaluation of a genomics platform for cross-species transcriptome analysis of recombinant CHO cells. Biotechnol J 2006; 1:639-50. [PMID: 16892312 DOI: 10.1002/biot.200600010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microarray technology for mammalian cells has been utilized mainly for humans, mouse, and rat gene expression analysis. In this approach the feasibility of cross-species hybridization experiments using Chinese hamster ovary (CHO) cells was evaluated. Sequence alignments of available data for CHO were performed against mouse and rat transcripts to determine the homology between the investigated species. We implemented a probability model based on this homology in order to estimate the chance for successful hybridization using Agilent's 60-mer oligonucleotide platform. Heat-shock expression data from CHO, mouse 3T3, and rat A10 cells were generated to determine intraspecies variability, reproducibility, and specificity in order to assess the accuracy of this method. Detected signature genes, in particular from studies with the mouse arrays, showed a reliable similarity between these two rodents and were confirmed by quantitative RT-PCR. Our findings provide evidence that cross-species analysis can be a useful tool to study gene expression profiles of related organisms for which species-specific microarrays are not available.
Collapse
Affiliation(s)
- Wolfgang Ernst
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The availability of entire genome sequences is expected to revolutionize the way in which biology and medicine are conducted for years to come. However, achieving this promise still requires significant effort in the areas of gene annotation, cloning and expression of thousands of known and heretofore unknown protein-encoding genes. Traditional technologies of manipulating genes are too cumbersome and inefficient when one is dealing with more than a few genes at a time. Entire libraries composed of all protein-encoding open reading frames (ORFs) cloned in highly flexible vectors will be needed to take full advantage of the information found in any genome sequence. The creation of such ORFeome resources using novel technologies for cloning and expressing entire proteomes constitutes an effective gateway from whole genome sequencing efforts to downstream 'omics' applications.
Collapse
Affiliation(s)
- Jean-François Rual
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Wright R, Parrish ML, Cadera E, Larson L, Matson CK, Garrett-Engele P, Armour C, Lum PY, Shoemaker DD. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis. Yeast 2003; 20:881-92. [PMID: 12868057 DOI: 10.1002/yea.994] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation.
Collapse
Affiliation(s)
- Robin Wright
- University of Minnesota, Department of Genetics, Cell Biology and Development, 321 Church Street, 6-160 Jackson Hall, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kessler MM, Zeng Q, Hogan S, Cook R, Morales AJ, Cottarel G. Systematic discovery of new genes in the Saccharomyces cerevisiae genome. Genome Res 2003; 13:264-71. [PMID: 12566404 PMCID: PMC420365 DOI: 10.1101/gr.232903] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Accepted: 11/07/2002] [Indexed: 11/24/2022]
Abstract
We used genome-wide comparative analysis of predicted protein sequences to identify many novel small genes, named smORFs for small open reading frames, within the budding yeast genome. Further analysis of 117 of these new genes showed that 84 are transcribed. We extended our analysis of one smORF conserved from yeast to human. This investigation provides an updated and comprehensive annotation of the yeast genome, validates additional concepts in the study of genomes in silico, and increases the expected numbers of coding sequences in a genome with the corresponding impact on future functional genomics and proteomics studies.
Collapse
Affiliation(s)
- Marco M Kessler
- Genome Therapeutics Corporation, Waltham, Massachusetts 02453, USA
| | | | | | | | | | | |
Collapse
|
25
|
Grosu P, Townsend JP, Hartl DL, Cavalieri D. Pathway Processor: a tool for integrating whole-genome expression results into metabolic networks. Genome Res 2002; 12:1121-6. [PMID: 12097350 PMCID: PMC186628 DOI: 10.1101/gr.226602] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a new tool to visualize expression data on metabolic pathways and to evaluate which metabolic pathways are most affected by transcriptional changes in whole-genome expression experiments. Using the Fisher Exact Test, the method scores biochemical pathways according to the probability that as many or more genes in a pathway would be significantly altered in a given experiment by chance alone. This method has been validated on diauxic shift experiments and reproduces well known effects of carbon source on yeast metabolism. The analysis is implemented with Pathway Analyzer, one of the tools of Pathway Processor, a new statistical package for the analysis of whole-genome expression data. Results from multiple experiments can be compared, reducing the analysis from the full set of individual genes to a limited number of pathways of interest. The pathways are visualized with OpenDX, an open-source visualization software package, and the relationship between genes in the pathways can be examined in detail using Expression Mapper, the second program of the package. This program features a graphical output displaying differences in expression on metabolic charts of the biochemical pathways to which the open reading frames are assigned.
Collapse
Affiliation(s)
- Paul Grosu
- Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
26
|
Banerjee N, Zhang MQ. Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol 2002; 5:313-7. [PMID: 12057687 DOI: 10.1016/s1369-5274(02)00322-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sequencing of the human genome and the entire genomes of many model organisms has resulted in the identification of many genes. Many large-scale experiments for generating gene disruptions and analyzing the phenotypes are underway to ascertain gene function. A future challenge will be to determine interaction and regulation of all the genes of an organism. Recent advances in functional genomic technology have begun to shine light on such gene network problems at both transcriptomic and proteomic levels. Functional genomics will not only elucidate what the genes do, but will also help determine when, where and how they are expressed as an orchestrated system. In this review, we discuss the functional genomics approaches to extract knowledge about transcription regulatory mechanisms from combinations of sequence data, microarray data and ChIP data. We focus in particular on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Nila Banerjee
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
27
|
Zhang CT, Wang J, Zhang R. Using a Euclid distance discriminant method to find protein coding genes in the yeast genome. COMPUTERS & CHEMISTRY 2002; 26:195-206. [PMID: 11868909 DOI: 10.1016/s0097-8485(01)00107-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Euclid distance discriminant method is used to find protein coding genes in the yeast genome, based on the single nucleotide frequencies at three codon positions in the ORFs. The method is extremely simple and may be extended to find genes in prokaryotic genomes or eukaryotic genomes with less introns. Six-fold cross-validation tests have demonstrated that the accuracy of the algorithm is better than 93%. Based on this, it is found that the total number of protein coding genes in the yeast genome is less than or equal to 5579 only, about 3.8-7.0% less than 5800-6000, which is currently widely accepted. The base compositions at three codon positions are analyzed in details using a graphic method. The result shows that the preference codons adopted by yeast genes are of the RGW type, where R, G and W indicate the bases of purine, non-G and A/T, whereas the 'codons' in the intergenic sequences are of the form NNN, where N denotes any base. This fact constitutes the basis of the algorithm to distinguish between coding and non-coding ORFs in the yeast genome. The names of putative non-coding ORFs are listed here in detail.
Collapse
|
28
|
Dolan PL, Wu Y, Ista LK, Metzenberg RL, Nelson MA, Lopez GP. Robust and efficient synthetic method for forming DNA microarrays. Nucleic Acids Res 2001; 29:E107-7. [PMID: 11691944 PMCID: PMC60206 DOI: 10.1093/nar/29.21.e107] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The field of DNA microarray technology has necessitated the cooperative efforts of interdisciplinary scientific teams to achieve its primary goal of rapidly measuring global gene expression patterns. A collaborative effort was established to produce a chemically reactive surface on glass slide substrates to which unmodified DNA will covalently bind for improvement of cDNA microarray technology. Using the p-aminophenyl trimethoxysilane (ATMS)/diazotization chemistry that was developed, microarrays were fabricated and analyzed. This immobilization method produced uniform spots containing equivalent or greater amounts of DNA than commercially available immobilization techniques. In addition, hybridization analyses of microarrays made with ATMS/diazotization chemistry showed very sensitive detection of the target sequence, two to three orders of magnitude more sensitive than the commercial chemistries. Repeated stripping and re-hybridization of these slides showed that DNA loss was minimal, allowing multiple rounds of hybridization. Thus, the ATMS/diazotization chemistry facilitated covalent binding of unmodified DNA, and the reusable microarrays that were produced showed enhanced levels of hybridization and very low background fluorescence.
Collapse
Affiliation(s)
- P L Dolan
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The completion of the DNA sequence of the budding yeast Saccharomyces cerevisiae resulted in the identification of a large number of genes. However, the function of most of these genes is not known. One of the best ways to determine gene function is to carry out mutational and phenotypic analysis. In recent years, several approaches have been developed for the mutational analysis of yeast genes on a large scale. These include transposon-based insertional mutagenesis, and systematic deletions using PCR-based approaches. These projects have produced collections of yeast strains and plasmid alleles that can be screened using novel approaches. Analysis of these collections by the scientific community promises to reveal a great deal of biological information about this organism.
Collapse
Affiliation(s)
- S Vidan
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
30
|
Zhang QH, Ye M, Wu XY, Ren SX, Zhao M, Zhao CJ, Fu G, Shen Y, Fan HY, Lu G, Zhong M, Xu XR, Han ZG, Zhang JW, Tao J, Huang QH, Zhou J, Hu GX, Gu J, Chen SJ, Chen Z. Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. Genome Res 2000; 10:1546-60. [PMID: 11042152 PMCID: PMC310934 DOI: 10.1101/gr.140200] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Accepted: 07/19/2000] [Indexed: 11/24/2022]
Abstract
Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58-752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon-intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3' UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Q H Zhang
- Shanghai Institute of Hematology (SIH), Rui Jin Hospital affiliated with Shanghai Second Medical University, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang CT, Wang J. Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve. Nucleic Acids Res 2000; 28:2804-14. [PMID: 10908339 PMCID: PMC102655 DOI: 10.1093/nar/28.14.2804] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Z curve is a three-dimensional space curve constituting the unique representation of a given DNA sequence in the sense that each can be uniquely reconstructed from the other. Based on the Z curve, a new protein coding gene-finding algorithm specific for the yeast genome at better than 95% accuracy has been proposed. Six cross-validation tests were performed to confirm the above accuracy. Using the new algorithm, the number of protein coding genes in the yeast genome is re-estimated. The estimate is based on the assumption that the unknown genes have similar statistical properties to the known genes. It is found that the number of protein coding genes in the 16 yeast chromosomes is </=5645, significantly smaller than the 5800-6000 which is widely accepted, and much larger than the 4800 estimated by another group recently. The mitochondrial genes were not included into the above estimate. A codingness index called the YZ score (YZ OE [0,1]) is proposed to recognize protein coding genes in the yeast genome. Among the ORFs annotated in the MIPS (Munich Information Centre for Protein Sequences) database, those recognized as non-coding by the present algorithm are listed in this paper in detail. The criterion for a coding or non-coding ORF is simply decided by YZ > 0.5 or YZ < 0.5, respectively. The YZ scores for all the ORFs annotated in the MIPS database have been calculated and are available on request by sending e-mail to the corresponding author.
Collapse
Affiliation(s)
- C T Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China.
| | | |
Collapse
|
32
|
Zhouravleva GA, Mironova LN, Inge-Vechtomov SG. The yeast genome and the first steps toward the postgenomic era. Mol Biol 2000. [DOI: 10.1007/bf02759557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Abstract
The sequencing of entire genomes has led to the identification of many genes. A future challenge will be to determine the function of all of the genes of an organism. One of the best ways to ascertain function is to disrupt genes and determine the phenotype of the resulting organism. Novel large-scale approaches for generating gene disruptions and analyzing the resulting phenotype are underway in the budding yeast Saccharomyces cerevisiae and other organisms including flies, Mycoplasma, worms, plants and mice. These approaches and mutant collections will be extremely valuable to the scientific community and will dramatically alter the manner in which science is performed in the future.
Collapse
Affiliation(s)
- P S Coelho
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
34
|
Abstract
Over the past 40 years, the search for new antibiotics has been largely restricted to well-known compound classes active against a standard set of drug targets. Although many effective compounds have been discovered, insufficient chemical variability has been generated to prevent a serious escalation in clinical resistance. Recent advances in genomics have provided an opportunity to expand the range of potential drug targets and have facilitated a fundamental shift from direct antimicrobial screening programs toward rational target-based strategies. The application of genome-based technologies such as expression profiling and proteomics will lead to further changes in the drug discovery paradigm by combining the strengths and advantages of both screening strategies in a single program.
Collapse
Affiliation(s)
- J Rosamond
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | | |
Collapse
|
35
|
Hailes HC. Royal Society of Chemistry and The Biochemical Society's international symposium on functional genomics: from gene to commercial reality? September 19-22, 1999, Ambleside, UK. Expert Opin Investig Drugs 2000; 9:173-9. [PMID: 11185013 DOI: 10.1517/13543784.9.1.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All aspects of genomics were covered during the meeting from gene identification and characterization to exploitation of genomic targets. Speakers highlighted the strategies used together with recent examples, indicating the advantages together with the disadvantages of the methodologies used.
Collapse
Affiliation(s)
- H C Hailes
- Department of Chemistry, University College London, UK
| |
Collapse
|
36
|
|
37
|
Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 1999; 23:203-7. [PMID: 10508518 DOI: 10.1038/13833] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-nucleotide polymorphisms, as well as small insertions and deletions (here referred to collectively as simple nucleotide polymorphisms, or SNPs), comprise the largest set of sequence variants in most organisms. Positional cloning based on SNPs may accelerate the identification of human disease traits and a range of biologically informative mutations. The recent application of high-density oligonucleotide arrays to allele identification has made it feasible to genotype thousands of biallelic SNPs in a single experiment. It has yet to be established, however, whether SNP detection using oligonucleotide arrays can be used to accelerate the mapping of traits in diploid genomes. The cruciferous weed Arabidopsis thaliana is an attractive model system for the construction and use of biallelic SNP maps. Although important biological processes ranging from fertilization and cell fate determination to disease resistance have been modelled in A. thaliana, identifying mutations in this organism has been impeded by the lack of a high-density genetic map consisting of easily genotyped DNA markers. We report here the construction of a biallelic genetic map in A. thaliana with a resolution of 3.5 cM and its use in mapping Eds16, a gene involved in the defence response to the fungal pathogen Erysiphe orontii. Mapping of this trait involved the high-throughput generation of meiotic maps of F2 individuals using high-density oligonucleotide probe array-based genotyping. We developed a software package called InterMap and used it to automatically delimit Eds16 to a 7-cM interval on chromosome 1. These results are the first demonstration of biallelic mapping in diploid genomes and establish means for generalizing SNP-based maps to virtually any genetic organism.
Collapse
Affiliation(s)
- R J Cho
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mackiewicz P, Kowalczuk M, Gierlik A, Dudek MR, Cebrat S. Origin and properties of non-coding ORFs in the yeast genome. Nucleic Acids Res 1999; 27:3503-9. [PMID: 10446240 PMCID: PMC148594 DOI: 10.1093/nar/27.17.3503] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a recent paper we have estimated the total number of protein coding open reading frames (ORFs) in the Saccharomyces cerevisiae genome, based on their properties, at about 4800. This number is much smaller than the 5800-6000 which is widely accepted. In this paper we analyse differences between the set of ORFs with known phenotypes annotated in the Munich Information Centre for Protein Sequences (MIPS) database and ORFs for which the probability of coding, counted by us, is very low. We have found that many of the latter ORFs have properties of antisense sequences of coding ORFs, which suggests that they could have been generated by duplication of coding sequences. Since coding sequences generate ORFs inside themselves, with especially high frequency in the antisense sequences, we have looked for homology between known proteins and hypothetical polypeptides generated by ORFs under consideration in all the six phases. For many ORFs we have found paralogues and orthologues in phases different than the phase which had been assumed in the MIPS database as coding.
Collapse
Affiliation(s)
- P Mackiewicz
- Institute of Microbiology, Wroclaw University, ul. Przybyszewskiego 63/77, 54-148 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
39
|
Abstract
At the end of 1996 we approximated the total number of protein coding ORFs in the Saccharomyces cerevisiae genome, based on their properties, as 4700-4800. The number is much smaller than the 5800 which is widely accepted. According to our calculations, there remain about 200-300 orphans-ORFs without known function or homology to already discovered genes, which is only about 5% of the total number of genes. Our results would be questionable if the analysed set of known genes was not a statistically representative sample of the whole set of protein coding genes in the S. cerevisiae genome. Therefore, we repeated our estimation using recently updated databases. In the course of the last 18 months, previously unknown functions of about 500 genes have been found. We have used these to check our method, former results and conclusions. Our previous estimation of the total number of coding ORFs was confirmed.
Collapse
Affiliation(s)
- M Kowalczuk
- Institute of Microbiology, Wroclaw University, ul. Przybyszewskiego 63/77, 54-148 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
40
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
41
|
Abstract
The availability of bacterial genome sequence information has opened up many new strategies for antibacterial drug hunting. There are obvious benefits for the identification and evaluation of new drug targets, but genomic-based technology is also beginning to provide new tools for the downstream, preclinical, optimisation of compounds. The greatest benefit from these new approaches lies in the ability to examine the entire genome (or several genomes) simultaneously and in total. In this way, one potential target can be evaluated against another, and either the total effects of functional impairment can be established or the effects of a compound can be compared across species.
Collapse
Affiliation(s)
- A E Allsop
- ZENECA Pharmaceuticals Cancer and Infection Research Department Mereside, Alderley Park Macclesfield Cheshire SK10 4TG UK. Aileen.
| |
Collapse
|
42
|
Allsop AE. New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr Opin Microbiol 1998; 1:530-4. [PMID: 10066524 DOI: 10.1016/s1369-5274(98)80085-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The clinical need for new classes of antibiotic continues to grow, as drug resistance erodes the efficacy of current therapies. Historically, most antibiotics were discovered by random screening campaigns, but over the past 20 years, this strategy has largely failed to deliver a sufficient range of chemical diversity to keep pace with changing clinical profiles. A more rational approach to drug hunting has been greatly potentiated by the availability of bacterial genomic information. The rapid progress in sequencing and analysis of these small, prokaryotic genomes has enabled the concomitant development of powerful new technologies that are already enhancing the potential utility of genomic information. The future promises versatile and precise tools to understand what makes a successful antibiotic and moreover the means to identify and evaluate novel classes of drug.
Collapse
Affiliation(s)
- A E Allsop
- ZENECA Pharmaceuticals Cancer and Infection Research Department Mereside Alderley Park Macclesfield Cheshire SK10 4TG UK. Aileen.
| |
Collapse
|
43
|
Abstract
The worldwide effort to completely sequence the human and mouse genome will be accomplished within the next years. The focus of current activities within the framework of human genome research is mainly on the assembly of high resolution genetic and physical maps and genomic sequencing. Cloning of new genes is getting more easy using those maps. Nevertheless, it is necessary to work on a systematic analysis of gene function. Results obtained from these efforts will be of enormous value for future biological and biomedical research. However, even the complete sequence will not in all cases reveal the molecular and cellular role of the different genes. Therefore, the next phase of the Human Genome Project will have at its core the functional analysis of genes. Those genes relevant for the diagnosis, prevention and therapy of human diseases are of particular interest. Looking at the history of life sciences, mutants have been the most important tool to obtain insight into the biological function of genes. The mouse is the model of choice for the study of inherited diseases in man. In order to meet the requirements for functional human genome analysis, we need a large number of mouse mutants similar to the collection of mutants available for other model organisms such as flys and worms. To fully apply the power of genetics, multiple alleles of the same gene such as hypomorphs or hypermorphs are required. Efficient production of mouse mutants showing specific phenotypes can be achieved by the use of ethylnitrosourea (ENU). ENU is the most powerful mutagen known and we currently see a renaissance of ENU mutagenesis. The application of ENU mutagenesis is reviewed and discussed in the context of a new era of functional genomics.
Collapse
Affiliation(s)
- M Hrabé de Angelis
- Institute of Mammalian Genetics, GSF Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | |
Collapse
|