1
|
Bloomston NA, Zaharas K, Lawley K, Fenn T, Person E, Huber H, Zhang Z, Prather JF. Exploring links from sensory perception to movement and behavioral motivation in the caudal nidopallium of female songbirds. J Comp Neurol 2022; 530:1622-1633. [PMID: 35073426 PMCID: PMC9119909 DOI: 10.1002/cne.25305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Decision making resides at the interface between sensory perception and movement production. Female songbirds in the context of mate choice are an excellent system to define neural circuits through which sensory perception influences production of courtship behaviors. Previous experiments by our group and others have implicated secondary auditory brain sites, including the caudal nidopallium (NC), in mediating behavioral indicators of mate choice. Here, we used anterograde tracer molecules to define projections that emerge from NC in female songbirds, identifying pathways through which NC influences downstream sites implicated in signal processing and decision making. Our results reveal that NC sends projections into the arcopallium, including the ventral intermediate arcopallium (AIV). Previous work revealed that AIV also receives input from another auditory area implicated in song preference and mate choice (caudal mesopallium, CM), suggesting that convergent input from multiple auditory areas may play important roles in initiating mate choice behaviors. In the present results, NC projects to an area implicated in postural and locomotory control (dorsal arcopallium, Ad), suggesting that NC may play a role in directing those forms of copulatory behavior. NC projections also systematically avoid a vocal motor region of the arcopallium that is innervated by CM (robust nucleus of the arcopallium). These results suggest a model in which both NC and CM project to arcopallial pathways implicated in behavioral motivation. These brain regions may exert different influences on pathways through which auditory information can direct different facets of behavioral responses to information detected in those auditory signals.
Collapse
Affiliation(s)
- Natalie A Bloomston
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Kristina Zaharas
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Koedi Lawley
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Thomas Fenn
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Emily Person
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Holly Huber
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Zhaojie Zhang
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Jonathan F Prather
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
2
|
|
3
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
4
|
Tang Y, Christensen-Dalsgaard J, Carr CE. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei. J Comp Neurol 2012; 520:1784-99. [PMID: 22120438 PMCID: PMC4300985 DOI: 10.1002/cne.23013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low to middle best-frequency fibers that bifurcate to project to both the NA and the nucleus magnocellularis (NM). The projection to NM formed large somatic terminals and bouton terminals. NM projected bilaterally to the second-order nucleus laminaris (NL), such that the ipsilateral projection innervated the dorsal NL neuropil, whereas the contralateral projection crossed the midline and innervated the ventral dendrites of NL neurons. Neurons in NL were generally bitufted, with dorsoventrally oriented dendrites. NL projected to the contralateral torus semicircularis and to the contralateral ventral superior olive (SOv). NA projected to ipsilateral dorsal superior olive (SOd), sent a major projection to the contralateral SOv, and projected to torus semicircularis. The SOd projected to the contralateral SOv, which projected back to the ipsilateral NM, NL, and NA. These results suggest homologous patterns of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem.
Collapse
Affiliation(s)
- Yezhong Tang
- Chengdu Institute of Biology, CAS, Chengdu, 610041 People's Republic of China.
| | | | | |
Collapse
|
5
|
Manley GA, Fuchs PA. Recent advances in comparative hearing. Hear Res 2011; 273:1-6. [PMID: 21236326 DOI: 10.1016/j.heares.2011.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
6
|
Manley GA. Article Commentary: Evolutionary Principles: How to Approach the Origin of Labyrinth Structures. Ann Otol Rhinol Laryngol 2010; 119:716-8; discussion 718. [DOI: 10.1177/000348941011901012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Geoffrey A. Manley
- Cochlear and Auditory Brain Stem Physiology Carl von Ossietzky University Oldenburg, Germany
| |
Collapse
|
7
|
Atkinson R, Rostas JA, Hunter M. Changes in mid-to-late latency auditory evoked reponses in the chicken during neural maturation. Dev Psychobiol 2009; 52:24-34. [DOI: 10.1002/dev.20408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Omland KE, Cook LG, Crisp MD. Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. Bioessays 2008; 30:854-67. [PMID: 18693264 DOI: 10.1002/bies.20794] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phylogenies are increasingly prominent across all of biology, especially as DNA sequencing makes more and more trees available. However, their utility is compromised by widespread misconceptions about what phylogenies can tell us, and improved "tree thinking" is crucial. The most-serious problem comes from reading trees as ladders from "left to right"--many biologists assume that species-poor lineages that appear "early branching" or "basal" are ancestral--we call this the "primitive lineage fallacy". This mistake causes misleading inferences about changes in individual characteristics and leads to misrepresentation of the evolutionary process. The problem can be rectified by considering that modern phylogenies of present-day species and genes show relationships among evolutionary cousins. Emphasizing that these are extant entities in the 21(st) century will help correct inferences about ancestral characteristics, and will enable us to leave behind 19(th) century notions about the ladder of progress driving evolution.
Collapse
Affiliation(s)
- Kevin E Omland
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore MD 21250, USA.
| | | | | |
Collapse
|
9
|
Pinaud R, Terleph TA, Tremere LA, Phan ML, Dagostin AA, Leão RM, Mello CV, Vicario DS. Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. J Neurophysiol 2008; 100:441-55. [PMID: 18480371 PMCID: PMC2493480 DOI: 10.1152/jn.01239.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 05/13/2008] [Indexed: 11/22/2022] Open
Abstract
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA A-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA A-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA A receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA A-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Collapse
Affiliation(s)
- Raphael Pinaud
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Caputi AA. Contributions of electric fish to the understanding of sensory processing by reafferent systems. ACTA ACUST UNITED AC 2005; 98:81-97. [PMID: 15477024 DOI: 10.1016/j.jphysparis.2004.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensory systems must solve the inverse problem of determining environmental events based on patterns of neural activity in the central nervous system that are affected by those environmental events. Different environmental events can give rise to indistinguishable patterns of neural activity, so that there will often, perhaps even always, be multiple solutions to a sensory inverse problem. Imaging strategies and brain organization confine these multiple solutions within a bounded set. Three different active strategies may be employed by animals to constrain the number of solutions to the sensory inverse problem: active generation of the energy (carrier) that stimulates receptors; reorientation of the point of view; and control of signal conditioning before transduction (pre-receptor mechanisms). This paper describes how these strategies are used in sensory-motor systems, using electric fish as a paradigmatic example. Carrier generation and receptor tuning to the carrier improve signal to noise ratio. Receptor tuning to different frequency bands of the carrier spectrum allows a sensory system to evaluate different kinds of carrier modulations and to extract the different features of objects in the environment. Pre-receptor mechanisms condition the signals, optimizing their detection at a foveal region where the sensory resolution is maximum. Active orientation of the sensory surface redirects the fovea to explore in detail the source of interesting signals. Sensory input generated by these active exploration mechanisms ('reafference') has two components: one, necessary, derived from the self-generated actions and another, contingent, consisting of the information obtained from the external world. Extracting environmental information ('exafference') requires that the self generated afference be subtracted from the sensory inflow. Such subtraction is often associated with the generation and storage of expectations about sensory inputs. It can be concluded that an animal's perceptual world and its ability to transform the world are inextricably linked. Understanding sensory systems must, therefore, always require understanding the organization of motor behavior.
Collapse
Affiliation(s)
- Angel A Caputi
- Depart. Neurofisiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 1160, Uruguay.
| |
Collapse
|
11
|
Mello CV, Velho TAF, Pinaud R. Song-induced gene expression: a window on song auditory processing and perception. Ann N Y Acad Sci 2004; 1016:263-81. [PMID: 15313780 DOI: 10.1196/annals.1298.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We review here evidence that a large portion of the caudomedial telencephalon of songbirds, distinct from the song control circuit, is involved in the perceptual processing of birdsong. When songbirds hear song, a number of caudomedial pallial areas are activated, as revealed by expression of the activity-dependent gene zenk. These areas, which include field L subfields L1 and L3, as well as the adjacent caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM), are part of the central auditory pathway and constitute a lobule in the caudomedial aspect of the telencephalon. Several lines of evidence indicate that the neural circuits integrating this lobule are capable of performing the auditory processing of song based on fine acoustic features. Thus, this lobule is well positioned to mediate song perceptual processing and discrimination, which are required for vocal communication and vocal learning. Importantly, the zenk gene encodes a transcription factor linked to synaptic plasticity, and it regulates the expression of target genes associated with specific neuronal cell functions. The induction of zenk likely represents a key regulatory event in a gene cascade triggered by song and leading to neuronal plasticity. Thus, zenk may be linked to molecular and cellular mechanisms underlying experience-dependent modification of song-responsive circuits. In summary, songbirds possess an elaborate system for song perceptual processing and discrimination that potentially also subserves song-induced neuronal plasticity and song memory formation. The continued use of a multidisciplinary approach that integrates molecular, anatomical, physiological and behavioral methodologies has the potential to provide further significant insights into the underlying neurobiology of the perceptual aspects of vocal communication and learning.
Collapse
Affiliation(s)
- Claudio V Mello
- Laboratory of Vocal and Auditory Learning, Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, West Campus, Bldg. 1, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Woolley SMN, Casseday JH. Response properties of single neurons in the zebra finch auditory midbrain: response patterns, frequency coding, intensity coding, and spike latencies. J Neurophysiol 2003; 91:136-51. [PMID: 14523072 DOI: 10.1152/jn.00633.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The avian mesencephalicus lateralis, dorsalis (MLd) is the auditory midbrain nucleus in which multiple parallel inputs from lower brain stem converge and through which most auditory information passes to reach the forebrain. Auditory processing in the MLd has not been investigated in songbirds. We studied the tuning properties of single MLd neurons in adult male zebra finches. Pure tones were used to examine tonotopy, temporal response patterns, frequency coding, intensity coding, spike latencies, and duration tuning. Most neurons had no spontaneous activity. The tonotopy of MLd is like that of other birds and mammals; characteristic frequencies (CFs) increase in a dorsal to ventral direction. Four major response patterns were found: 1) onset (49% of cells); 2) primary-like (20%); 3) sustained (19%); and 4) primary-like with notch (12%). CFs ranged between 0.9 and 6.1 kHz, matching the zebra finch hearing range and the power spectrum of song. Tuning curves were generally V-shaped, but complex curves, with multiple peaks or noncontiguous excitatory regions, were observed in 22% of cells. Rate-level functions indicated that 51% of nononset cells showed monotonic relationships between spike rate and sound level. Other cells showed low saturation or nonmonotonic responses. Spike latencies ranged from 4 to 40 ms, measured at CF. Spike latencies generally decreased with increasing sound pressure level (SPL), although paradoxical latency shifts were observed in 16% of units. For onset cells, changes in SPL produced smaller latency changes than for cells showing other response types. Results suggest that auditory midbrain neurons may be particularly suited for processing temporally complex signals with a high degree of precision.
Collapse
Affiliation(s)
- Sarah M N Woolley
- Department of Psychology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
14
|
Dazert S, Aletsee C, Brors D, Sudhoff H, Ryan AF, Müller AM. Regeneration of Inner Ear Cells from Stem Cell Precursors—A Future Concept of Hearing Rehabilitation? DNA Cell Biol 2003; 22:565-70. [PMID: 14577909 DOI: 10.1089/104454903322405455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The use of stem cells offers new and powerful strategies for future tissue development and engineering. Common features of stem cells are both their capacity for self-renewal and the ability to differentiate into mature effector cells. Since the establishment of embryonic stem cells from early human embryos, research on and clinical application of human ES cells belong to the most controversial topics in our society. Great hopes are based upon the remarkable observation that human ES cells can be greatly expanded in vitro, and that they can differentiate into various clinically important cell types. Recent advances in the cloning of mammals by nuclear transplantation provide new concepts for autologous replacement of damaged and degenerated tissues. In contrast, somatic stem cells of the adult organism were considered to be more restricted in their developmental potential. However, recent investigations suggest that somatic stem cells may have a wider differentiation potential than previously thought. In otology, initial experiments have revealed neural stem cell survival in cochlear cell cultures and under neurotrophin influence, neural stem cells seemed to develop into a neuronal phenotype. Further studies have to be carried out to investigate the full potential of stem cells as well as the molecular mechanisms that are involved in regulating cellular identity and plasticity. Clinically, advances in stem cell biology may provide a permanent source of replacement cells for treating human diseases and could open the development of new concepts for cell and tissue regeneration for a causal treatment of chronic degenerative diseases.
Collapse
Affiliation(s)
- S Dazert
- Hals-Nasen-Ohrenklinik der Ruhr-Universität Bochum, St. Elisabeth Hospital, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Olivius P, Alexandrov L, Miller J, Ulfendahl M, Bagger-Sjöbäck D, Kozlova EN. Allografted fetal dorsal root ganglion neuronal survival in the guinea pig cochlea. Brain Res 2003; 979:1-6. [PMID: 12850564 DOI: 10.1016/s0006-8993(03)02802-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neural grafting is a potential strategy to help restore auditory function following loss of spiral ganglion cells. As a first step towards the reconstruction of a neural pathway from the cochlea to the brainstem, we have examined the survival of fetal dorsal root ganglion (DRG) neurons allografted into the cochlea of adult guinea pigs. In some animals implantation of DRGs was combined with a local infusion of neurotrophic substances whereas in others auditory sensory receptors were chemically destroyed prior to DRG implantation by injection of the ototoxin neomycin into the middle ear. The results show that many transplanted DRG neurons attached close to the cochlear spiral ganglion neurons. The survival of the implant was significantly increased by treatment with neurotrophic factors, but not reduced by the absence of auditory sensory structures. This study shows that implanted sensory neurons can survive heterotopic grafting immediately adjacent to the eighth cranial nerve, thereby providing a basis for further studies of the anatomical and functional influence of neural grafts in the inner ear.
Collapse
Affiliation(s)
- Petri Olivius
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Klug A, Bauer EE, Hanson JT, Hurley L, Meitzen J, Pollak GD. Response selectivity for species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by inhibition. J Neurophysiol 2002; 88:1941-54. [PMID: 12364520 DOI: 10.1152/jn.2002.88.4.1941] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we show that inhibition shapes diverse responses to species-specific calls in the inferior colliculus (IC) of Mexican free-tailed bats. We presented 10 calls to each neuron of which 8 were social communication and 2 were echolocation calls. We also measured excitatory response regions: the range of tone burst frequencies that evoked discharges at a fixed intensity. The calls evoked highly selective responses in that IC neurons responded to some calls but not others even though those calls swept through their excitatory response regions. By convolving activity in the response regions with the spectrogram of each call, we evaluated whether responses to tone bursts could predict discharge patterns evoked by species-specific calls. The convolutions often predicted responses to calls that evoked no responses and thus were inaccurate. Blocking inhibition at the IC reduced or eliminated selectivity and greatly improved the predictive accuracy of the convolutions. By comparing the responses evoked by two calls with similar spectra, we show that each call evoked a unique spatiotemporal pattern of activity distributed across and within isofrequency contours and that the disparity in the population response was greatly reduced by blocking inhibition. Thus the inhibition evoked by each call can shape a unique pattern of activity in the IC population and that pattern may be important for both the identification of a particular call and for discriminating it from other calls and other signals.
Collapse
Affiliation(s)
- Achim Klug
- Section of Neurobiology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
17
|
Temporal encoding for auditory computation: physiology of primary afferent neurons in sound-producing fish. J Neurosci 2002. [PMID: 12122088 DOI: 10.1523/jneurosci.22-14-06290.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many fish rely on sounds for communication, yet the peripheral structures containing the hair cells are simple, without the morphological specializations that facilitate frequency analysis in the mammalian cochlea. Despite this, neurons in the midbrain of sound-producing fish (Pollimyrus) have complex receptive fields, extracting features from courtship sounds. Here we present an analysis of the initial encoding of sounds by the primary afferents and demonstrate that the representation of sound undergoes a substantial transformation as it ascends to the midbrain. Afferents were isolated as they coursed from the sacculus through the medulla. Tones (100 Hz-1.2 kHz) elicited synchronized spikes [vector strength (VS) >0.9] on each stimulus cycle [coefficient of variation (CV) <1.1], with little spike rate adaptation. Most afferents (67%) were spontaneously active and began synchronizing 10 dB below rate threshold. Rate thresholds for the most sensitive afferents (65 dB) were close to behavioral thresholds. The distribution of characteristic frequencies and best sensitivities was matched to the spectrum of sounds of this species and to its audiogram. Three clusters of afferents were identified, one including afferents that generated spike bursts and had v-shaped response areas (bursters), and two others that included entrained afferents with broad response areas (entrained types I and II). All afferents encoded the timing of clicks within click trains with time-locked spikes, and none showed selectivity for interclick intervals. Understanding the computations that yield complex receptive fields is an essential goal for auditory neuroscience, and these data on primary encoding advance this goal, allowing a comparison of inputs with feature-extracting midbrain neurons.
Collapse
|