1
|
Khavandegar A, Ahmadi NS, Mousavi MA, Ramezani Z, Khodadoust E, Hasan Zadeh Tabatabaei MS, Hasanpour Segherlou Z, Zeinaddini-Meymand A, Nasehi F, Moafi M, RayatSanati K, Masoomi R, Hamidi S, Pourkhodadad S, Rahimi-Movaghar V. The potential role of RhoA/ROCK-inhibition on locomotor recovery after spinal cord injury: a systematic review of in-vivo studies. Spinal Cord 2025; 63:95-126. [PMID: 39956860 DOI: 10.1038/s41393-025-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
STUDY DESIGN Systematic Review. OBJECTIVES To thoroughly assess the existing literature regarding the impact of anti-RhoA/ROCK agents or procedures on functional recovery in animal models of SCI. SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences. METHODS A comprehensive search was conducted in Ovid MEDLINE, Embase, Scopus, and Web of Science Core Collection utilizing a combination of keywords. All in-vivo animal studies of acute or chronic SCI that evaluated the pharmacological effects of Rho/ROCK inhibitors in English literature were included in this study. RESULTS Totally, 2320 articles were identified, of which, 60 papers were included for further analysis. A total of 47 (78%) studies were conducted merely on rats, 9 (15%) on mice, 3 (5%) used both, and the remaining used other animals. Y-27632, Fasudil, C3 Transferase and its derivatives (C3-05/PEP-C3/CT04/C3bot154-182/C3bot26mer(156-181)), Ibuprofen, Electroacupuncture (EA), SiRhoA, miR-133b, miR-135-5p, miR-381, miR-30b, Statins, 17β-estradiol, β-elemene, Lentivirus-mediated PGC-1a, Repulsive guidance molecule (RGMa), Local profound hypothermia, Jisuikang (JSK), Hyperbaric oxygen (HBO), Lv-shRhoA (Notch-1 inhibitor), Anti-Ryk antibody, LINGO-antagonist, BA-210, p21Cip1/WAF1, ORL-1 antagonist, Epigallocatechin-3-gallate (EGCG), Tamsulosin, AAV.ULK1.DN, and Indomethacin were the 28 reported agents/procedures with anti-RhoA/ROCK effects. The pooled SMD for BBB scores was 0.41 (p = 0.048) in the first week, 0.85 (p < 0.001) in the second week, 1.22 (p = 0.010) in the third week, and 1.53 (p = 0.001) in the fourth week. CONCLUSION Of the 28 identified anti-RhoA/ROCK agents, all but two (C3bot and its derivatives and EGCG) demonstrated promising results. The results of the meta-analysis cautiously indicate a significant increase in BBB scores over time after SCI.
Collapse
Affiliation(s)
- Armin Khavandegar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sadat Ahmadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ramezani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Khodadoust
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Nasehi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia RayatSanati
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Hamidi
- Department of Neurosurgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Pourkhodadad
- Department of Pharmacy and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Roy A, Sen S, Das R, Shard A, Kumar H. Modulation of the LIMK Pathway by Myricetin: A Protective Strategy Against Neurological Impairments in Spinal Cord Injury. Neurospine 2024; 21:878-889. [PMID: 39363468 PMCID: PMC11456951 DOI: 10.14245/ns.2448546.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Spinal cord injury (SCI), one of the major disabilities concerning central nervous system injury, results in permanent tissue loss and neurological impairment. The existing therapeutic options for SCI are limited and predominantly consist of chemical compounds. In this study, we delved into the neuroprotective effects of myricetin, a natural flavonoid compound, and the underlying mechanisms, specifically in the context of SCI, utilizing an in vivo model. Previously, our investigations revealed an elevation in the phosphorylated form of Lin-11, Isl-1, and Mec-3 kinase1 (LIMK1) at chronic time points postinjury, coinciding with neuronal loss and scar formation. Our primary objective here was to assess the potential neuroprotective properties of myricetin in SCI and to ascertain if these effects were linked to LIMK inhibition, a hitherto unexamined pathway to date. METHODS Computational docking and molecular dynamics simulation studies were performed to assess myricetin's potential to bind with LIMK. Then, using a rat contusion model, SCI was induced and different molecular techniques (Western blot, Evans Blue assay, quantitative reverse transcription polymerase chain reaction and immunohistochemistry) were performed to determine the effects of myricetin. RESULTS Remarkably, computational docking models identified myricetin as having a better interaction profile with LIMK than standard. Subsequent to myricetin treatment, a significant downregulation in phosphorylated LIMK expression was observed at chronic time points. This reduction correlated with a notable decrease in glial and fibrotic scar formation, and enhanced neuroprotection indicating a positive outcome in vivo. CONCLUSION In summary, our findings underscore myricetin's potential as a bioactive compound capable of attenuating SCI-induced injury cascades by targeting the LIMK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
4
|
Banerjee S, Vernon S, Ruchti E, Limoni G, Jiao W, Asadzadeh J, Van Campenhoudt M, McCabe BD. Trio preserves motor synapses and prolongs motor ability during aging. Cell Rep 2024; 43:114256. [PMID: 38795343 DOI: 10.1016/j.celrep.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/24/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.
Collapse
Affiliation(s)
- Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Marine Van Campenhoudt
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Dominicci-Cotto C, Vazquez M, Marie B. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Front Synaptic Neurosci 2024; 16:1322771. [PMID: 38633293 PMCID: PMC11021733 DOI: 10.3389/fnsyn.2024.1322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both the stability and plasticity of the nervous system. The Drosophila neuromuscular junction (NMJ) has proven to be a useful system for deciphering the role of Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the motoneuron, has been shown to be dependent on both the canonical and the noncanonical calcium Wg pathways. Here we show that the noncanonical planar cell polarity (PCP) pathway is an essential component of the Wg signaling system controlling plasticity at the motoneuron synapse. We present evidence that disturbing the PCP pathway leads to a perturbation in ADSP. We first show that a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures produced during ADSP. We then show that the Rho GTPases downstream of Dsh in the PCP pathway are also involved in regulating the morphological changes that take place after repeated stimulation. Finally, we show that Jun kinase is essential for this phenomenon, whereas we found no indication of the involvement of the transcription factor complex AP1 (Jun/Fos). This work shows the involvement of the neuronal PCP signaling pathway in supporting ADSP. Because we find that AP1 mutants can perform ADSP adequately, we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are involved locally at the synapse, in instructing cytoskeletal dynamics responsible for the appearance of the morphological changes occurring during ADSP.
Collapse
Affiliation(s)
- Carihann Dominicci-Cotto
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Mariam Vazquez
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| | - Bruno Marie
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
6
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
7
|
Yoshida MW, Hakozaki M, Goshima G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. NATURE PLANTS 2023; 9:733-748. [PMID: 37142749 DOI: 10.1038/s41477-023-01397-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.
Collapse
Affiliation(s)
- Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Maya Hakozaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.
| |
Collapse
|
8
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
9
|
Walker SE, Senatore A, Carlone RL, Spencer GE. Context-Dependent Role of miR-124 in Retinoic Acid-Induced Growth Cone Attraction of Regenerating Motorneurons. Cell Mol Neurobiol 2022; 42:847-869. [PMID: 33094464 PMCID: PMC11441188 DOI: 10.1007/s10571-020-00982-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
During development and regeneration, growth cones at the tips of extending axons navigate through a complex environment to establish accurate connections with appropriate targets. Growth cones can respond rapidly to classical and non-classical guidance cues in their environment, often requiring local protein synthesis. In vertebrate growth cones, local protein synthesis in response to classical cues can require regulation by microRNAs (miRNAs), a class of small, conserved, non-coding RNAs that post-transcriptionally regulate gene expression. However, less is known of how miRNAs mediate growth cone responses to non-classical cues (such as retinoic acid (RA)), specifically in invertebrates. Here, we utilized adult regenerating invertebrate motorneurons to study miRNA regulation of growth cone attraction to RA, shown to require local protein synthesis. In situ hybridization revealed the presence of miR-124 in growth cones of regenerating ciliary motorneurons of the mollusc Lymnaea stagnalis. Changes in the spatiotemporal distribution of miR-124 occurred following application of RA, and dysregulation of miR-124 (with mimic injection), disrupted RA-induced growth cone turning in a time-dependent manner. This behavioural regulation by miR-124 was altered when the neurite was transected, and the growth cone completely separated from the soma. miR-124 did not, however, appear to be involved in growth cone attraction to serotonin, a response independent of local protein synthesis. Finally, we provide evidence that a downstream effector of RhoGTPases, ROCK, is a potential target of miR-124 during RA-induced growth cone responses. These data advance our current understanding of how microRNAs might mediate cue- and context-dependent behaviours during axon guidance.
Collapse
Affiliation(s)
- Sarah E Walker
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Adriano Senatore
- University of Toronto Mississauga, Mississauga, ON, L2L 1C6, Canada
| | - Robert L Carlone
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
10
|
Hiesinger PR. Brain wiring with composite instructions. Bioessays 2020; 43:e2000166. [PMID: 33145823 DOI: 10.1002/bies.202000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/12/2022]
Abstract
The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an "instruction." By contrast, "permissive" factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Liu X, Liu C, Ye J, Zhang S, Wang K, Su R. Distribution of Acid Sensing Ion Channels in Axonal Growth Cones and Presynaptic Membrane of Cultured Hippocampal Neurons. Front Cell Neurosci 2020; 14:205. [PMID: 32733209 PMCID: PMC7358772 DOI: 10.3389/fncel.2020.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Although acid-sensing ion channels (ASICs) are widely expressed in the central nervous system, their distribution and roles in axonal growth cones remain unclear. In this study, we examined ASIC localization and function in the axonal growth cones of cultured immature hippocampal neurons. Our immunocytochemical data showed that native and overexpressed ASIC1a and ASIC2a are both localized in growth cones of cultured young hippocampal neurons. Calcium imaging and electrophysiological assay results were utilized to validate their function. The calcium imaging test results indicated that the ASICs (primarily ASIC1a) present in growth cones mediate calcium influx despite the addition of voltage-gated Ca2+ channels antagonists and the depletion of intracellular calcium stores. The electrophysiological tests results suggested that a rapid decrease in extracellular pH at the growth cones of voltage-clamped neurons elicits inward currents that were blocked by bath application of the ASIC antagonist amiloride, showing that the ASICs expressed at growth cones are functional. The subsequent immuno-colocalization test results demonstrated that ASIC1a and ASIC2a are both colocalized with Neurofilament-H and Bassoon in mature hippocampal neurons. This finding demonstrated that after reaching maturity, ASIC1a and ASIC2a are both distributed in axons and the presynaptic membrane. Our data reveal the distribution of functional ASICs in growth cones of immature hippocampal neurons and the presence of ASICs in the axons and presynaptic membrane of mature hippocampal neurons, indicating a possible role for ASICs in axonal guidance, synapse formation and neurotransmitter release.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Can Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiamin Ye
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Kai Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Sharma P, Roberts C, Herpai D, Fokt ID, Priebe W, Debinski W. Drug Conjugates for Targeting Eph Receptors in Glioblastoma. Pharmaceuticals (Basel) 2020; 13:E77. [PMID: 32340173 PMCID: PMC7243104 DOI: 10.3390/ph13040077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a complex and heterogeneous tumor that warrants a comprehensive therapeutic approach for treatment. Tumor-associated antigens offer an opportunity to selectively target various components of the GBM microenvironment while sparing the normal cells within the central nervous system. In this study, we conjugated a multivalent vector protein, QUAD 3.0, that can target four receptors: EphA3, EphA2, EphB2, and also IL-13RA2, spanning virtually 100% of the GBM microenvironment, to doxorubicin derivatives. The conjugates effectively bound to all four receptors, although to varying degrees, and delivered cytotoxic loads to both established and patient-derived GBM cell lines, with IC50 values in the low nM range. The conjugates were also non-toxic to animals. We anticipate that the QUAD 3.0 Dox conjugates will be further used in preclinical models and possibly clinics in the foreseeable future.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| | - Callie Roberts
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| | - Denise Herpai
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| | - Izabela D. Fokt
- Department of Experimental Therapeutics, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA; (I.D.F.); (W.P.)
| | - Waldemar Priebe
- Department of Experimental Therapeutics, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA; (I.D.F.); (W.P.)
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; (P.S.); (C.R.); (D.H.)
| |
Collapse
|
13
|
Johnson A, Nasser TIN, Spencer GE. Inhibition of Rho GTPases in Invertebrate Growth Cones Induces a Switch in Responsiveness to Retinoic Acid. Biomolecules 2019; 9:biom9090460. [PMID: 31500289 PMCID: PMC6769630 DOI: 10.3390/biom9090460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
During development, growth cones are essential for axon pathfinding by sensing numerous guidance cues in their environment. Retinoic acid, the metabolite of vitamin A, is important for neurite outgrowth during vertebrate development, but may also play a role in axon guidance, though little is known of the cellular mechanisms involved. Our previous studies showed that retinoid-induced growth cone turning of invertebrate motorneurons requires local protein synthesis and calcium influx. However, the signalling pathways that link calcium influx to cytoskeletal dynamics involved in retinoid-mediated growth cone turning are not currently known. The Rho GTPases, Cdc42 and Rac, are known regulators of the growth cone cytoskeleton. Here, we demonstrated that inhibition of Cdc42 or Rac not only prevented growth cone turning toward retinoic acid but could also induce a switch in growth cone responsiveness to chemorepulsion or growth cone collapse. However, the effects of Cdc42 or Rac inhibition on growth cone responsiveness differed, depending on whether the turning was induced by the all-trans or 9-cis retinoid isomer. The effects also differed depending on whether the growth cones maintained communication with the cell body. These data strongly suggest that Cdc42 and Rac are downstream effectors of retinoic acid during growth cone guidance.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
| | - Tamara I N Nasser
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
14
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
15
|
Hu Y, Li X, Huang G, Wang J, Lu W. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron‑like cells via the Wnt/β‑catenin pathway. Mol Med Rep 2019; 19:3095-3104. [PMID: 30816472 PMCID: PMC6423592 DOI: 10.3892/mmr.2019.9978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/18/2019] [Indexed: 01/27/2023] Open
Abstract
Bone mesenchymal stem cells (MSCs) are an excellent donor graft source due to their potential for self-renewal and multidirectional differentiation. However, it is difficult to obtain high quality MSCs and to induce them to differentiate into neuron-like cells. Fasudil, a Rho kinase inhibitor, exhibits therapeutic potential in spinal cord injuries and stroke. The present study investigated the effect of fasudil on the differentiation of MSCs into neuron-like cells. MSCs were obtained from rat femur marrow, expanded in culture medium, and used at the third passage for subsequent experiments. MSCs were pre-induced with 10 ng/ml basic fibroblast growth factor (bFGF) for 24 h, which was followed by induction with fasudil. A control untreated group and a group treated with fasudil + XAV939, a Wnt/β-catenin pathway inhibitor, were also used in the present study. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence staining were performed in order to detect neuron-specific markers, including neuron-specific enolase (NSE), nestin and neurofilament-M (NF-M). Following induction with fasudil, neuron-like cell morphology was observed. In the fasudil + XAV939 and control groups, no obvious changes in cell shape were observed. The results of RT-qPCR, western blot analysis and immunofluorescence staining indicated that expression of the neuron-specific markers NSE, nestin and NF-M was detected in the fasudil group. The differentiation of MSCs into neuron-like cells induced by fasudil was eliminated when the Wnt/β-catenin pathway was inhibited. The present study demonstrated that fasudil may induce MSCs to differentiate into neuron-like cells, however further studies are required to determine the specific mechanisms involved in the effect of fasudil on the Wnt/β-catenin pathway. In addition, further research is required to examine the functional characteristics of the induced neuron-like cells, in order to establish their suitability for clinical treatments in the future.
Collapse
Affiliation(s)
- Yahui Hu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guowei Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jizuo Wang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wei Lu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
16
|
Tao T, Sun J, Peng Y, Wang P, Chen X, Zhao W, Li Y, Wei L, Wang W, Zheng Y, Wang Y, Zhang X, Zhu MS. Distinct functions of Trio GEF domains in axon outgrowth of cerebellar granule neurons. J Genet Genomics 2019; 46:87-96. [DOI: 10.1016/j.jgg.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
|
17
|
Xiao WP, Ding LLQ, Min YJ, Yang HY, Yao HH, Sun J, Zhou X, Zeng XB, Yu W. Electroacupuncture Promoting Axonal Regeneration in Spinal Cord Injury Rats via Suppression of Nogo/NgR and Rho/ROCK Signaling Pathway. Neuropsychiatr Dis Treat 2019; 15:3429-3442. [PMID: 31997879 PMCID: PMC6918258 DOI: 10.2147/ndt.s216874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To observe the changes of Nogo/NgR and Rho/ROCK signaling pathway-related gene and protein expression in rats with spinal cord injury (SCI) treated with electroacupuncture (EA) and to further investigate the possible mechanism of EA for treating SCI. METHODS Allen's method was used to create the SCI rat model. Sixty-four model rats were further subdivided into four subgroups, namely, the SCI model group (SCI), EA treatment group (EA), blocking agent Y27632 treatment group (Y27632) and EA+blocking agent Y27632 treatment group (EA+Y), according to the treatment received. The rats were subjected to EA and/or blocking agent Y27632 treatment. After 14 days, injured spinal cord tissue was extracted for analysis. The mRNA and protein expression levels were determined by real-time fluorescence quantitative PCR and Western blotting, respectively. Cell apoptosis changes in the spinal cord were evaluated by in situ hybridization. Hindlimb motor function in the rats was evaluated by Basso-Beattie-Bresnahan assessment methods. RESULTS Except for RhoA protein expression, compared with the SCI model group, EA, blocking agent Y27632 and EA+blocking agent Y27632 treatment groups had significantly reduced mRNA and protein expression of Nogo-A, NgR, LINGO-1, RhoA and ROCK II in spinal cord tissues, increased mRNA and protein expression of MLCP, decreased p-MYPT1 protein expression and p-MYPT1/MYPT1 ratio, and caspase3 expression, and improved lower limb movement function after treatment for 14 days (P<0.01 or <0.05). The combination of EA and the blocking agent Y27632 was superior to EA or blocking agent Y27632 treatment alone (P < 0.01 or <0.05). CONCLUSION EA may have an obvious inhibitory effect on the Nogo/NgR and Rho/ROCK signaling pathway after SCI, thereby reducing the inhibition of axonal growth, which may be a key mechanism of EA treatment for SCI.
Collapse
Affiliation(s)
- Wei-Ping Xiao
- Spinal Department of Orthopedics and Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Li-Li-Qiang Ding
- Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - You-Jiang Min
- Spinal Department of Orthopedics and Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China.,Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Hua-Yuan Yang
- Institute of Traditional Chinese Medicine Engineering, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hai-Hua Yao
- Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Jie Sun
- Spinal Department of Orthopedics and Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xuan Zhou
- Spinal Department of Orthopedics and Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xue-Bo Zeng
- Spinal Department of Orthopedics and Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Wan Yu
- Spinal Department of Orthopedics and Department of Acupuncture, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
18
|
Bisbal M, Remedi M, Quassollo G, Cáceres A, Sanchez M. Rotenone inhibits axonogenesis via an Lfc/RhoA/
ROCK
pathway in cultured hippocampal neurons. J Neurochem 2018; 146:570-584. [DOI: 10.1111/jnc.14547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Mariano Bisbal
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Mónica Remedi
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Alfredo Cáceres
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Mónica Sanchez
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| |
Collapse
|
19
|
Polarized Dock Activity Drives Shh-Mediated Axon Guidance. Dev Cell 2018; 46:410-425.e7. [PMID: 30078728 DOI: 10.1016/j.devcel.2018.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
In the developing spinal cord, Sonic hedgehog (Shh) attracts commissural axons toward the floorplate. How Shh regulates the cytoskeletal remodeling that underlies growth cone turning is unknown. We found that Shh-mediated growth cone turning requires the activity of Docks, which are unconventional GEFs. Knockdown of Dock3 and 4, or their binding partner ELMO1 and 2, abolished commissural axon attraction by Shh in vitro. Dock3/4 and ELMO1/2 were also required for correct commissural axon guidance in vivo. Polarized Dock activity was sufficient to induce axon turning, indicating that Docks are instructive for axon guidance. Mechanistically, we show that Dock and ELMO interact with Boc, the Shh receptor, and that this interaction is reduced upon Shh stimulation. Furthermore, Shh stimulation translocates ELMO to the growth cone periphery and activates Rac1. This identifies Dock/ELMO as an effector complex of non-canonical Shh signaling and demonstrates the instructive role of GEFs in axon guidance.
Collapse
|
20
|
Alan JK, Robinson SK, Magsig KL, Demarco RS, Lundquist EA. The Atypical Rho GTPase CHW-1 Works with SAX-3/Robo To Mediate Axon Guidance in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:1885-1895. [PMID: 29653940 PMCID: PMC5982818 DOI: 10.1534/g3.118.200148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/26/2018] [Indexed: 01/12/2023]
Abstract
During development, neuronal cells extend an axon toward their target destination in response to a cue to form a properly functioning nervous system. Rho proteins, Ras-related small GTPases that regulate cytoskeletal organization and dynamics, cell adhesion, and motility, are known to regulate axon guidance. Despite extensive knowledge about canonical Rho proteins (RhoA/Rac1/Cdc42), little is known about the Caenorhabditis elegans (C. elegans) atypical Cdc42-like family members CHW-1 and CRP-1 in regards to axon pathfinding and neuronal migration. chw-1(Chp/Wrch) encodes a protein that resembles human Chp (Wrch-2/RhoV) and Wrch-1 (RhoU), and crp-1 encodes for a protein that resembles TC10 and TCL. Here, we show that chw-1 works redundantly with crp-1 and cdc-42 in axon guidance. Furthermore, proper levels of chw-1 expression and activity are required for proper axon guidance. When examining CHW-1 GTPase mutants, we found that the native CHW-1 protein is likely partially activated, and mutations at a conserved residue (position 12 using Ras numbering, position 18 in CHW-1) alter axon guidance and neural migration. Additionally, we showed that chw-1 genetically interacts with the guidance receptor sax-3 in PDE neurons. Finally, in VD/DD motor neurons, chw-1 works downstream of sax-3 to control axon guidance. In summary, this is the first study implicating the atypical Rho GTPases chw-1 and crp-1 in axon guidance. Furthermore, this is the first evidence of genetic interaction between chw-1 and the guidance receptor sax-3 These data suggest that chw-1 is likely acting downstream and/or in parallel to sax-3 in axon guidance.
Collapse
Affiliation(s)
- Jamie K Alan
- Department of Pharmacology and Toxicology; Michigan State University; East Lansing, MI 48824
| | - Sara K Robinson
- College of Medicine; Central Michigan University; Mount Pleasant, MI 48859
| | - Katie L Magsig
- College of Medicine; Central Michigan University; Mount Pleasant, MI 48859
| | - Rafael S Demarco
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS 60045
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS 60045
| |
Collapse
|
21
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018. [PMID: 29456630 DOI: 10.3892/etm.2018.5702.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
22
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018; 15:2219-2227. [PMID: 29456630 PMCID: PMC5795627 DOI: 10.3892/etm.2018.5702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
23
|
Wan Y, Yang JS, Xu LC, Huang XJ, Wang W, Xie MJ. Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system. Neural Regen Res 2018; 13:1313-1321. [PMID: 30106032 PMCID: PMC6108204 DOI: 10.4103/1673-5374.235217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple cellular components, including neuronal, glial and endothelial cells, are involved in the sophisticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been reported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. The interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focuses on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jin-Shan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province; Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Cai Xu
- Department of Neurological Rehabilitation Center, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Xiao-Jiang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
24
|
Mortal S, Iseppon F, Perissinotto A, D'Este E, Cojoc D, Napolitano LMR, Torre V. Actin Waves Do Not Boost Neurite Outgrowth in the Early Stages of Neuron Maturation. Front Cell Neurosci 2017; 11:402. [PMID: 29326552 PMCID: PMC5741660 DOI: 10.3389/fncel.2017.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/01/2017] [Indexed: 11/27/2022] Open
Abstract
During neurite development, Actin Waves (AWs) emerge at the neurite base and move up to its tip, causing a transient retraction of the Growth Cone (GC). Many studies have shown that AWs are linked to outbursts of neurite growth and, therefore, contribute to the fast elongation of the nascent axon. Using long term live cell-imaging, we show that AWs do not boost neurite outgrowth and that neurites without AWs can elongate for several hundred microns. Inhibition of Myosin II abolishes the transient GC retraction and strongly modifies the AWs morphology. Super-resolution nanoscopy shows that Myosin IIB shapes the growth cone-like AWs structure and is differently distributed in AWs and GCs. Interestingly, depletion of membrane cholesterol and inhibition of Rho GTPases decrease AWs frequency and velocity. Our results indicate that Myosin IIB, membrane tension, and small Rho GTPases are important players in the regulation of the AW dynamics. Finally, we suggest a role for AWs in maintaining the GCs active during environmental exploration.
Collapse
Affiliation(s)
- Simone Mortal
- Neurobiology Department, International School for Advanced Studies, Trieste, Italy
| | - Federico Iseppon
- Neurobiology Department, International School for Advanced Studies, Trieste, Italy
| | - Andrea Perissinotto
- Neurobiology Department, International School for Advanced Studies, Trieste, Italy
| | - Elisa D'Este
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dan Cojoc
- Optical Manipulation Lab, Istituto Officina dei Materiali (CNR), Trieste, Italy
| | - Luisa M R Napolitano
- Neurobiology Department, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Neurobiology Department, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
25
|
Pandey A, Yadav V, Sharma A, Khurana JP, Pandey GK. The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans. Cell Adh Migr 2017; 12:195-203. [PMID: 28678595 DOI: 10.1080/19336918.2017.1345413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The unc-53/NAV2 gene encodes for an adaptor protein required for cell migrations along the anteroposterior (AP) axes of C. elegans. This study identifies unc-53 as a novel component of signaling pathways regulating Distal tip cell (DTC) migrations along the AP and dorsoventral (DV) axes. unc-53 negatively regulates and functions downstream of ced-10/Rac pathway genes; ced-10/Rac and mig-2/RhoG, which are required for proper DTC migration. Moreover, unc-53 exhibits genetic interaction with abl-1 and unc-5, the 2 known negative regulators of ced-10/Rac signaling. Our genetic analysis supports the model, where abl-1 negatively regulates unc-53 during DTC migrations and requirement of unc-53 function during both AP and DV DTC migrations could be due to unc-53 mediated regulation of unc-5 activity.
Collapse
Affiliation(s)
- Amita Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Vipul Yadav
- b Department of Genetics , University of Delhi South Campus , New Delhi , India
| | - Aditi Sharma
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Jitendra P Khurana
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Girdhar K Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| |
Collapse
|
26
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
27
|
Kwon D, Liew H. miRNA profile of neuroprotection mechanism of echinomycin in Parkinson’s disease. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Iseppon F, Napolitano LM, Torre V, Cojoc D. Combining FRET and optical tweezers to study RhoGTPases spatio-temporal dynamics upon local stimulation. J Biol Methods 2017; 4:e65. [PMID: 31453225 PMCID: PMC6708921 DOI: 10.14440/jbm.2017.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/02/2017] [Accepted: 01/25/2017] [Indexed: 01/26/2023] Open
Abstract
Local stimulation with optical tweezers has been used to mimic natural stimuli that occur in biological processes such as cell migration or differentiation. Carriers (beads and lipid vesicles) with sizes down to 30 nm can be manipulated with a high spatial and temporal resolution: they are positioned with a sub-micrometric precision on a specific cell compartment and the beginning of the stimulation can be triggered with millisecond precision. RhoGTPases are a Ras-related family of proteins that regulate many different functions including cell polarity, microtubule dynamics and membrane transport pathways. Here we combine local stimulation with FRET microscopy to study RhoGTPases spatial and temporal activation following guidance cue local stimulation. We used two different vectors for local delivery: silica micro-beads and micro-sized lipid vesicles. The experimental methods associated with neuronal growth cone local stimulation are discussed in detail, as well as the analysis methods. Here we present a protocol that enables to study neuronal growth cone cytoskeleton rearrangements in response to a gradient of molecules in a way that better mimics physiological conditions, and it can be similarly applied to each secreted molecule involved in cell signaling.
Collapse
Affiliation(s)
- Federico Iseppon
- Neuroscience Area, International School for Advanced Studies, Trieste, Italy
| | - Luisa Mr Napolitano
- Neuroscience Area, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Neuroscience Area, International School for Advanced Studies, Trieste, Italy
| | - Dan Cojoc
- Optical Manipulation Lab, CNR-IOM, the National Research Council of Italy - Institute of Materials, Trieste, Italy
| |
Collapse
|
29
|
Min YJ, Ding LLQ, Cheng LH, Xiao WP, He XW, Zhang H, Min ZY, Pei J. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats. Neural Regen Res 2017; 12:276-282. [PMID: 28400811 PMCID: PMC5361513 DOI: 10.4103/1673-5374.200811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36) and Ciliao (BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.
Collapse
Affiliation(s)
- You-Jiang Min
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Li-Li-Qiang Ding
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Hong Cheng
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Wei-Ping Xiao
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Xing-Wei He
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Hui Zhang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhi-Yun Min
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Jia Pei
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
30
|
Naoki H, Nishiyama M, Togashi K, Igarashi Y, Hong K, Ishii S. Multi-phasic bi-directional chemotactic responses of the growth cone. Sci Rep 2016; 6:36256. [PMID: 27808115 PMCID: PMC5093620 DOI: 10.1038/srep36256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 10/12/2016] [Indexed: 11/23/2022] Open
Abstract
The nerve growth cone is bi-directionally attracted and repelled by the same cue molecules depending on the situations, while other non-neural chemotactic cells usually show uni-directional attraction or repulsion toward their specific cue molecules. However, how the growth cone differs from other non-neural cells remains unclear. Toward this question, we developed a theory for describing chemotactic response based on a mathematical model of intracellular signaling of activator and inhibitor. Our theory was first able to clarify the conditions of attraction and repulsion, which are determined by balance between activator and inhibitor, and the conditions of uni- and bi-directional responses, which are determined by dose-response profiles of activator and inhibitor to the guidance cue. With biologically realistic sigmoidal dose-responses, our model predicted tri-phasic turning response depending on intracellular Ca2+ level, which was then experimentally confirmed by growth cone turning assays and Ca2+ imaging. Furthermore, we took a reverse-engineering analysis to identify balanced regulation between CaMKII (activator) and PP1 (inhibitor) and then the model performance was validated by reproducing turning assays with inhibitions of CaMKII and PP1. Thus, our study implies that the balance between activator and inhibitor underlies the multi-phasic bi-directional turning response of the growth cone.
Collapse
Affiliation(s)
- Honda Naoki
- Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.,Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan
| | - Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, USA.,Kasah Technology Inc. New York, New York, USA
| | - Kazunobu Togashi
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | | | - Kyonsoo Hong
- Department of Biochemistry, New York University School of Medicine, New York, USA.,Kasah Technology Inc. New York, New York, USA
| | - Shin Ishii
- Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan.,Graduate School of Informatics, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
31
|
Pérez C, Sawmiller D, Tan J. The role of heparan sulfate deficiency in autistic phenotype: potential involvement of Slit/Robo/srGAPs-mediated dendritic spine formation. Neural Dev 2016; 11:11. [PMID: 27089953 PMCID: PMC4836088 DOI: 10.1186/s13064-016-0066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/12/2016] [Indexed: 01/24/2023] Open
Abstract
Autism Spectrum Disorders (ASD) are the second most common developmental cause of disability in the United States. ASDs are accompanied with substantial economic and emotional cost. The brains of ASD patients have marked structural abnormalities, in the form of increased dendritic spines and decreased long distance connections. These structural differences may be due to deficiencies in Heparin Sulfate (HS), a proteoglycan involved in a variety of neurodevelopmental processes. Of particular interest is its role in the Slit/Robo pathway. The Slit/Robo pathway is known to be involved in the regulation of axonal guidance and dendritic spine formation. HS mediates the Slit/Robo interaction; without its presence Slit's repulsive activity is abrogated. Slit/Robo regulates dendritic spine formation through its interaction with srGAPs (slit-robo GTPase Activating Proteins), which leads to downstream signaling, actin cytoskeleton depolymerization and dendritic spine collapse. Through interference with this pathway, HS deficiency can lead to excess spine formation.
Collapse
Affiliation(s)
- Christine Pérez
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E Fletcher Ave., Tampa, FL 33613 USA
| |
Collapse
|
32
|
Chen X, Yang H, Zhou X, Zhang L, Lu X. MiR-93 Targeting EphA4 Promotes Neurite Outgrowth from Spinal Cord Neurons. J Mol Neurosci 2016; 58:517-24. [PMID: 26798048 DOI: 10.1007/s12031-015-0709-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/28/2015] [Indexed: 11/26/2022]
Abstract
The failure of neurite outgrowth in the adult mammalian spinal cord injury is thought to be attributed to the intrinsic growth ability of mature neurons. Ephrin/Eph system is a major growth regulator of many axonal guidance processes. EphA4 is expressed specifically in traumatic central nervous system (CNS) and dynamically regulate target gene expression, suggesting that it may be associated with neural regeneration. Here, we found an alteration in temporal expression of miR-93 following a contusive spinal cord injury (SCI) in adult rats. The messenger RNA (mRNA) expression level of miR-93 was upregulated and the protein expression levels of EphA4, p-Ephexin, and active RhoA were all decreased in traumatic spinal cord relative to those with an intact spinal cord. Infection of cultured spinal cord neurons (SCNs) with miR-93 mimic led to neuronal growth promotion and decreased levels of EphA4, p-Ephexin, and active RhoA protein expression. Dual-luciferase reporter assay confirmed that miR-93 bound to the three prime untranslated region (3' UTR) of EphA4 and inhibited the expression of EphA4 mRNA. These findings provide evidence that miR-93 inhibits EphA4 expression, decreased EphA4 expression could promote neurite outgrowth in SCNs due to reduced levels of p-Ephexin and active RhoA.
Collapse
Affiliation(s)
- Xiaogang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Xiaoqing Zhou
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| | - Lin Zhang
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| | - Xiaoqing Lu
- Department of Orthopedic Surgery, Huai'an NO.2 People's Hospital, Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, Jiangsu Province, China
| |
Collapse
|
33
|
Yasunaga KI, Tezuka A, Ishikawa N, Dairyo Y, Togashi K, Koizumi H, Emoto K. Adult Drosophila sensory neurons specify dendritic territories independently of dendritic contacts through the Wnt5-Drl signaling pathway. Genes Dev 2015; 29:1763-75. [PMID: 26302791 PMCID: PMC4561484 DOI: 10.1101/gad.262592.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, Yasunaga et al. use Drosophila class IV dendrite arborization (C4da) sensory neurons as a system to investigate how neurons specify dendritic territories during neuronal development. They show that, unlike the larval dendrites, adult C4da dendrites define the dendritic boundary independently of dendritic contacts and that Wnt5 derived from sternites is required for specification of the ventral boundaries of C4da dendrites. These findings provide novel insights into how dendritic territories of neurons develop and the role of the Wnt5–Drl signaling pathway in the contact-independent dendritic boundary specification. Sensory neurons with common functions are often nonrandomly arranged and form dendritic territories in stereotypic spatial patterns throughout the nervous system, yet molecular mechanisms of how neurons specify dendritic territories remain largely unknown. In Drosophila larvae, dendrites of class IV sensory (C4da) neurons completely but nonredundantly cover the whole epidermis, and the boundaries of these tiled dendritic fields are specified through repulsive interactions between homotypic dendrites. Here we report that, unlike the larval C4da neurons, adult C4da neurons rely on both dendritic repulsive interactions and external positional cues to delimit the boundaries of their dendritic fields. We identify Wnt5 derived from sternites, the ventral-most part of the adult abdominal epidermis, as the critical determinant for the ventral boundaries. Further genetic data indicate that Wnt5 promotes dendrite termination on the periphery of sternites through the Ryk receptor family kinase Derailed (Drl) and the Rho GTPase guanine nucleotide exchange factor Trio in C4da neurons. Our findings thus uncover the dendritic contact-independent mechanism that is required for dendritic boundary specification and suggest that combinatory actions of the dendritic contact-dependent and -independent mechanisms may ensure appropriate dendritic territories of a given neuron.
Collapse
Affiliation(s)
- Kei-ichiro Yasunaga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Akane Tezuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Natsuko Ishikawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Dairyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Kazuya Togashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroyuki Koizumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|
34
|
Cuberos H, Vallée B, Vourc'h P, Tastet J, Andres CR, Bénédetti H. Roles of LIM kinases in central nervous system function and dysfunction. FEBS Lett 2015; 589:3795-806. [PMID: 26545494 DOI: 10.1016/j.febslet.2015.10.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) regulate actin dynamics by phosphorylating cofilin. In this review, we outline studies that have shown an involvement of LIMKs in neuronal function and we detail some of the pathways and molecular mechanisms involving LIMKs in neurodevelopment and synaptic plasticity. We also review the involvement of LIMKs in neuronal diseases and emphasize the differences in the regulation of LIMKs expression and mode of action. We finally present the existence of a cofilin-independent pathway also involved in neuronal function. A better understanding of the differences between both LIMKs and of the precise molecular mechanisms involved in their mode of action and regulation is now required to improve our understanding of the physiopathology of the neuronal diseases associated with LIMKs.
Collapse
Affiliation(s)
- H Cuberos
- CNRS UPR 4301, CBM, Orléans, France; UMR INSERM U930, Université François-Rabelais, Tours, France
| | - B Vallée
- CNRS UPR 4301, CBM, Orléans, France
| | - P Vourc'h
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | - J Tastet
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - C R Andres
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | | |
Collapse
|
35
|
Iseppon F, Napolitano LMR, Torre V, Cojoc D. Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A. Front Cell Neurosci 2015; 9:333. [PMID: 26379503 PMCID: PMC4549648 DOI: 10.3389/fncel.2015.00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022] Open
Abstract
Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC) motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET) microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A (Sema3A) stimulation obtained with lipid vesicles filled with Sema3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Sema3A brought to a progressive activation of RhoA within 30 s from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 s, and followed by GC retraction. Therefore, Sema3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.
Collapse
Affiliation(s)
- Federico Iseppon
- Neurobiology Sector, International School for Advanced Studies Trieste, Italy
| | - Luisa M R Napolitano
- Neurobiology Sector, International School for Advanced Studies Trieste, Italy ; Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A. Trieste, Italy
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies Trieste, Italy
| | - Dan Cojoc
- Institute of Materials - National Research Council Trieste, Italy
| |
Collapse
|
36
|
Role of RhoA/Rho kinase signaling pathway in microgroove induced stem cell myogenic differentiation. Biointerphases 2015; 10:021003. [DOI: 10.1116/1.4916624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Calcium signaling in axon guidance. Trends Neurosci 2014; 37:424-32. [DOI: 10.1016/j.tins.2014.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023]
|
38
|
Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. J Neurosci 2014; 34:4371-81. [PMID: 24647957 DOI: 10.1523/jneurosci.4943-13.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Drosophila neuromuscular junction (NMJ) is capable of rapidly budding new presynaptic varicosities over the course of minutes in response to elevated neuronal activity. Using live imaging of synaptic growth, we characterized this dynamic process and demonstrated that rapid bouton budding requires retrograde bone morphogenic protein (BMP) signaling and local alteration in the presynaptic actin cytoskeleton. BMP acts during development to provide competence for rapid synaptic growth by regulating the levels of the Rho-type guanine nucleotide exchange factor Trio, a transcriptional output of BMP-Smad signaling. In a parallel pathway, we find that the BMP type II receptor Wit signals through the effector protein LIM domain kinase 1 (Limk) to regulate bouton budding. Limk interfaces with structural plasticity by controlling the activity of the actin depolymerizing protein Cofilin. Expression of constitutively active or inactive Cofilin in motor neurons demonstrates that increased Cofilin activity promotes rapid bouton formation in response to elevated synaptic activity. Correspondingly, the overexpression of Limk, which inhibits Cofilin, inhibits bouton budding. Live imaging of the presynaptic F-actin cytoskeleton reveals that activity-dependent bouton addition is accompanied by the formation of new F-actin puncta at sites of synaptic growth. Pharmacological disruption of actin turnover inhibits bouton budding, indicating that local changes in the actin cytoskeleton at pre-existing boutons precede new budding events. We propose that developmental BMP signaling potentiates NMJs for rapid activity-dependent structural plasticity that is achieved by muscle release of retrograde signals that regulate local presynaptic actin cytoskeletal dynamics.
Collapse
|
39
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
40
|
Alder J, Kallman S, Palmieri A, Khadim F, Ayer JJ, Kumar S, Tsung K, Grinberg I, Thakker-Varia S. Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA. Dev Neurobiol 2013; 73:769-84. [PMID: 23821558 DOI: 10.1002/dneu.22101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a facilitatory role in neuronal development and promotion of differentiation. Mechanisms that oppose BDNF's stimulatory effects create balance and regulate dendritic growth. However, these mechanisms have not been studied. We have focused our studies on the BDNF-induced neuropeptide OrphaninFQ/ Nociceptin (OFQ); while BDNF is known to enhance synaptic activity, OFQ has opposite effects on activity, learning, and memory. We have now examined whether OFQ provides a balance to the stimulatory effects of BDNF on neuronal differentiation in the hippocampus. Golgi staining in OFQ knockout (KO) mice revealed an increase in primary dendrite length as well as spine density, suggesting that endogenous OFQ inhibits dendritic morphology. We have also used cultured hippocampal neurons to demonstrate that exogenous OFQ has an inhibitory effect on dendritic growth and that the neuropeptide alters the response to BDNF when pre-administered. To determine if BDNF and OFQ act in a feedback loop, we inhibited the actions of the BDNF and OFQ receptors, TrkB and NOP using ANA-12 and NOP KO mice respectively but our data suggest that the two factors do not act in a negative feedback loop. We found that the inhibition of dendritic morphology induced by OFQ is via enhanced RhoA activity. Finally, we have evidence that RhoA activation is required for the inhibitory effects of OFQ on dendritic morphology. Our results reveal basic mechanisms by which neurons not only regulate the formation of proper dendritic growth during development but also control plasticity in the mature nervous system.
Collapse
Affiliation(s)
- Janet Alder
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alan JK, Struckhoff EC, Lundquist EA. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans. Small GTPases 2013; 4:208-20. [PMID: 24149939 PMCID: PMC4011816 DOI: 10.4161/sgtp.26602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.
Collapse
Affiliation(s)
| | - Eric C Struckhoff
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
42
|
Baudry M, Bi X. Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 2013; 104:64-72. [PMID: 23707799 DOI: 10.1016/j.nlm.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
43
|
Jeong S, Juhaszova K, Kolodkin AL. The Control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in drosophila. Neuron 2013. [PMID: 23177958 DOI: 10.1016/j.neuron.2012.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transmembrane semaphorins (Semas) serve evolutionarily conserved guidance roles, and some function as both ligands and receptors. However, the molecular mechanisms underlying the transduction of these signals to the cytoskeleton remain largely unknown. We have identified two direct regulators of Rho family small GTPases, pebble (a Rho guanine nucleotide exchange factor [GEF]) and RhoGAPp190 (a GTPase activating protein [GAP]), that show robust interactions with the cytoplasmic domain of the Drosophila Sema-1a protein. Neuronal pebble and RhoGAPp190 are required to control motor axon defasciculation at specific pathway choice points and also for target recognition during Drosophila neuromuscular development. Sema-1a-mediated motor axon defasciculation is promoted by pebble and inhibited by RhoGAPp190. Genetic analyses show that opposing pebble and RhoGAPp190 functions mediate Sema-1a reverse signaling through the regulation of Rho1 activity. Therefore, pebble and RhoGAPp190 transduce transmembrane semaphorin-mediated guidance cue information that regulates the establishment of neuronal connectivity during Drosophila development.
Collapse
Affiliation(s)
- Sangyun Jeong
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
44
|
Zimering MB, Moritz TE, Donnelly RJ. Anti-neurotrophic effects from autoantibodies in adult diabetes having primary open angle glaucoma or dementia. Front Endocrinol (Lausanne) 2013; 4:58. [PMID: 23720653 PMCID: PMC3654220 DOI: 10.3389/fendo.2013.00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/01/2013] [Indexed: 12/27/2022] Open
Abstract
AIM To test for anti-endothelial and anti-neurotrophic effects from autoantibodies in subsets of diabetes having open-angle glaucoma, dementia, or control subjects. METHODS Protein-A eluates from plasma of 20 diabetic subjects having glaucoma or suspects and 34 age-matched controls were tested for effects on neurite outgrowth in rat pheochromocytoma PC12 cells or endothelial cell survival. The mechanism of the diabetic glaucoma autoantibodies' neurite-inhibitory effect was investigated in co-incubations with the selective Rho kinase inhibitor Y27632 or the sulfated proteoglycan synthesis inhibitor sodium chlorate. Stored protein-A eluates from certain diabetic glaucoma or dementia subjects which contained long-lasting, highly stable cell inhibitory substances were characterized using mass spectrometry and amino acid sequencing. RESULTS Diabetic primary open angle glaucoma (POAG) or suspects (n = 20) or diabetic dementia (n = 3) autoantibodies caused significantly greater mean inhibition of neurite outgrowth in PC12 cells (p < 0.0001) compared to autoantibodies in control diabetic (n = 24) or non-diabetic (n = 10) subjects without glaucoma (p < 0.01). Neurite inhibition by the diabetic glaucoma autoantibodies was completely abolished by 10 μM concentrations of Y27632 (n = 4). It was substantially reduced by 30 mM concentrations of sodium chlorate (n = 4). Peak, long-lasting activity survived storage ×5 years at 0-4°C and was associated with a restricted subtype of Ig kappa light chain. Diabetic glaucoma or dementia autoantibodies (n = 5) caused contraction and process retraction in quiescent cerebral cortical astrocytes effects which were blocked by 5 μM concentrations of Y27632. CONCLUSION These data suggest that autoantibodies in subsets of adult diabetes having POAG (glaucoma suspects) and/or dementia inhibit neurite outgrowth and promote a reactive astrocyte morphology by a mechanism which may involve activation of the RhoA/p160 ROCK signaling pathway.
Collapse
Affiliation(s)
- Mark B. Zimering
- Medical Service, New Jersey Health Care System, Department of Veterans AffairsLyons, NJ, USA
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New JerseyNew Brunswick, NJ, USA
- *Correspondence: Mark B. Zimering, Medical Service 111, Veterans Affairs New Jersey Healthcare System, Lyons, NJ 07939, USA. e-mail:
| | - Thomas E. Moritz
- Cooperative Study Coordinating Center, Hines Veterans HospitalHines, IL, USA
| | - Robert J. Donnelly
- Molecular Resource Facility, University of Medicine and Dentistry of New Jersey, New Jersey Medical SchoolNewark, NJ, USA
| |
Collapse
|
45
|
The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
Collapse
|
46
|
Kannan M, Lee SJ, Schwedhelm-Domeyer N, Nakazawa T, Stegmüller J. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation. PLoS One 2012; 7:e50735. [PMID: 23226367 PMCID: PMC3511349 DOI: 10.1371/journal.pone.0050735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/24/2012] [Indexed: 12/23/2022] Open
Abstract
Axon growth is an essential process during brain development. The E3 ubiquitin ligase Cdh1-APC has emerged as a critical regulator of intrinsic axon growth control. Here, we identified the RhoGAP p250GAP as a novel interactor of the E3 ubiquitin ligase Cdh1-APC and found that p250GAP promotes axon growth downstream of Cdh1-APC. We also report that p250GAP undergoes non-proteolytic ubiquitination and associates with the Cdh1 substrate Smurf1 to synergistically regulate axon growth. Finally, we found that in vivo knockdown of p250GAP in the developing cerebellar cortex results in impaired migration and axonal growth. Taken together, our data indicate that Cdh1-APC together with the RhoA regulators p250GAP and Smurf1 controls axon growth in the mammalian brain.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Shih-Ju Lee
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Nicola Schwedhelm-Domeyer
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Takanobu Nakazawa
- Department of Neurophysiology, School of Medicine, University of Tokyo, Tokyo, Japan
| | - Judith Stegmüller
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- * E-mail:
| |
Collapse
|
47
|
Kannan M, Lee SJ, Schwedhelm-Domeyer N, Stegmüller J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development 2012; 139:3600-12. [PMID: 22949615 DOI: 10.1242/dev.081786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- MPI of Experimental Medicine, Hermann Rein Strasse 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
48
|
Srivastava N, Robichaux MA, Chenaux G, Henkemeyer M, Cowan CW. EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak. Mol Cell Neurosci 2012; 52:106-16. [PMID: 23147113 DOI: 10.1016/j.mcn.2012.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/03/2012] [Accepted: 11/02/2012] [Indexed: 02/08/2023] Open
Abstract
EphB receptors and their ephrinB ligands transduce bidirectional signals that mediate contact-dependent axon guidance primarily by promoting growth cone repulsion. However, how EphB receptor-mediated forward signaling induces axonal repulsion remains poorly understood. Here, we identify Nck and Pak proteins as essential forward signaling components of EphB2-dependent growth cone collapse in cortical neurons. We show that kinase-active EphB2 binds to Pak and promotes growth cone repulsion via Pak kinase activity, Pak-Nck binding, RhoA signaling and endocytosis. However, Pak's function in this context appears to be independent of Rac/Cdc42-GTP, consistent with the absence of Rac-GTP production after ephrinB treatment of cortical neurons. Taken together, our findings suggest that ephrinB-activated EphB2 receptors recruit a novel Nck/Pak signaling complex to mediate repulsive cortical growth cone guidance, which may be relevant for EphB forward signaling-dependent axon guidance in vivo.
Collapse
Affiliation(s)
- Nishi Srivastava
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | | | | | | | | |
Collapse
|
49
|
Olbrich L, Foehring D, Happel P, Brand-Saberi B, Theiss C. Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation. Histochem Cell Biol 2012; 139:431-45. [PMID: 23052841 DOI: 10.1007/s00418-012-1036-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
The neuronal growth cone plays a crucial role in the development of the nervous system. This highly motile structure leads the axon to its final destination by translating guidance cues into cytoskeletal rearrangements. Recently, vascular endothelial growth factor (VEGF), which is essential for angiogenesis and vascular sprouting, has been found to exert a trophic activity also on neurons, leading to an increased axonal outgrowth, similar to the well-known nerve growth factor (NGF). The neurotrophic properties of VEGF are likely to be promoted via the VEGF receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1). In the long term, VEGF attracts and influences the growth cone velocity and leads to growth cone enlargement. The present study focuses on immediate VEGF effects using RFP-actin and GFP-NF-M microinjected chicken dorsal root ganglia for live cell imaging of the neuronal growth cone. We analyzed actin and neurofilament dynamics following VEGF and NGF treatment and compared the effects. Furthermore, key signaling pathways of VEGF were investigated by specific blocking of VEGFR-2 or NRP-1. With the aid of confocal laser scanning microscopy and stimulated emission depletion microscopy, we show for the first time that VEGF has a quick effect on the actin-cytoskeleton, since actin rearrangements were identifiable within a few minutes, leading to a dramatically increased motion. Moreover, these effects were strongly enhanced by adding both VEGF and NGF. Most notably, the effects were inhibited by blocking VEGFR-2, therefore we propose that the immediate effects of VEGF on the actin-cytoskeleton are mediated through VEGFR-2.
Collapse
Affiliation(s)
- Laura Olbrich
- Institute of Anatomy and Molecular Embryology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
50
|
Asensio-Juan E, Gallego C, Martínez-Balbás MA. The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res 2012; 40:9429-40. [PMID: 22850744 PMCID: PMC3479184 DOI: 10.1093/nar/gks716] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PHF8 is a histone demethylase associated with X-linked mental retardation. It has been described as a transcriptional co-activator involved in cell cycle progression, but its physiological role is still poorly understood. Here we show that PHF8 controls the expression of genes involved in cell adhesion and cytoskeleton organization such as RhoA, Rac1 and GSK3β. A lack of PHF8 not only results in a cell cycle delay but also in a disorganized actin cytoskeleton and impaired cell adhesion. Our data demonstrate that PHF8 directly regulates the expression of these genes by demethylating H4K20me1 at promoters. Moreover, c-Myc transcription factor cooperates with PHF8 to regulate the analysed promoters. Further analysis in neurons shows that depletion of PHF8 results in down-regulation of cytoskeleton genes and leads to a deficient neurite outgrowth. Overall, our results suggest that the mental retardation phenotype associated with loss of function of PHF8 could be due to abnormal neuronal connections as a result of alterations in cytoskeleton function.
Collapse
Affiliation(s)
- Elena Asensio-Juan
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Spanish Research Council (CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | | | | |
Collapse
|