1
|
Nishimura H, Layne J, Yamaura K, Marcucio R, Morioka K, Basbaum AI, Weinrich JAP, Bahney CS. A bad break: mechanisms and assessment of acute and chronic pain after bone fracture. Pain 2025:00006396-990000000-00920. [PMID: 40408239 DOI: 10.1097/j.pain.0000000000003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/25/2025] [Indexed: 05/25/2025]
Abstract
ABSTRACT Pain is one of the primary indicators of a bone fracture and serves both a functional and practical role in guiding recovery. However, fracture pain can persist long after the fracture itself has clinically healed. The neural and molecular mechanisms that drive acute pain postfracture, and how these mechanisms are pathologically usurped to trap patients into persistent, debilitating, and often difficult to treat, chronic pain, are not well understood. The aim of this review is to provide insight into the risk factors for pain persistence after fracture, review the physiological and pathophysiological mechanisms of fracture pain, and critically evaluate the literature around fracture pain assessment techniques/models. Taken together, the concepts covered herein will provide a strong foundation to support the development of more effective treatments to better alleviate postfracture pain.
Collapse
Affiliation(s)
- Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- Department of Orthopaedic Surgery, University Hospital of Occupational and Environmental Health, Fukuoka, Japan
| | - Jonathan Layne
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ralph Marcucio
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Kazuhito Morioka
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Allan I Basbaum
- Department of Anatomy, UCSF, San Francisco, CA, United States
| | - Jarret A P Weinrich
- Department of Anatomy, UCSF, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, United States
| | - Chelsea S Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
- The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
2
|
Mitrovic M, Selakovic D, Jovicic N, Ljujic B, Rosic G. BDNF/proBDNF Interplay in the Mediation of Neuronal Apoptotic Mechanisms in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:4926. [PMID: 40430064 PMCID: PMC12112594 DOI: 10.3390/ijms26104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
The neurotrophic system includes neurotrophins, such as brain-derived neurotrophic factor (BDNF) and its precursor proBDNF, which play conflicting roles in neuronal survival and apoptosis, with their balance having a significant impact on neurodegenerative outcomes. While BDNF is widely acknowledged as a potent neurotrophin that promotes neuronal survival and differentiation, its precursor, proBDNF, has the opposite effect, promoting apoptosis and neuronal death. This review highlights the new and unique aspects of BDNF/proBDNF interaction in the modulation of neuronal apoptotic pathways in neurodegenerative disorders. It systematically discusses the cross-talk in apoptotic signaling at the molecular level, whereby BDNF activates survival pathways such as PI3K/Akt and MAPK/ERK, whereas proBDNF activates p75NTR and sortilin to induce neuronal apoptosis via JNK, RhoA, NFkB, and Rac-GTPase pathways such as caspase activation and mitochondrial injury. Moreover, this review emphasizes the factors that affect the balance between proBDNF and BDNF levels within the context of neurodegeneration, including proteolytic processing, the expression of TrkB and p75NTR receptors, and extrinsic gene transcription regulators. Cellular injury, stress, or signaling pathway alterations can disrupt the balance of BDNF/proBDNF, which may be involved in apoptotic-related neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. This review provides a comprehensive framework for targeting neurotrophin signaling in the development of innovative therapies for neuronal survival and managing apoptotic-related neurodegenerative disorders, addressing the mechanistic complexity and clinical feasibility of BDNF/proBDNF interaction.
Collapse
Affiliation(s)
- Marina Mitrovic
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
3
|
Li X, Luo X, Zhang X, Guo Y, Cheng L, Cheng M, Tang S, Gong Y. COL1A1 promotes cell proliferation, cell cycle progression, and anoikis resistance in granulosa cells of chicken pre-ovulatory follicles. Int J Biol Macromol 2025; 306:141524. [PMID: 40020834 DOI: 10.1016/j.ijbiomac.2025.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Chicken follicular granulosa cells (GCs) are the earliest differentiated follicular somatic cells, which play a crucial role throughout follicular growth and development. The extracellular matrix (ECM) plays a key role in maintaining cell-cell interactions and communication during follicular development. This study investigated the effects of the COL1A1 gene, a major component of ECM, on chicken pre-ovulatory follicular granulosa cells (PO-GCs) and the related regulatory mechanism. Transcriptomic analysis results showed that silencing COL1A1 significantly inhibited GCs proliferation, cell cycle, and anoikis-related biological functions and pathways. The overexpression of endogenous COL1A1 promoted the GCs proliferation through the ERK1/2 signaling pathway, increased the number of GCs in the S/G2 phase of the cell cycle, and enhanced anoikis resistance of GCs. The exogenous addition of collagen Ι (Col Ι) promoted GCs proliferation but did not affect the cell cycle progression and anoikis resistance of GCs. In addition, we identified multiple genes involved in COL1A1 knockdown-induced anoikis in GCs, of which 7 genes including PIK3CA, DAPK2, TSC2, BMF, SRC, NTRK2, and NOTCH1 were identified as the core anoikis genes. Our findings provide new perspectives for exploring the role of ECM in chicken follicle development and lay the foundation for further revealing the regulatory network of follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xuliang Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaxia Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Lu Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Manman Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Madhubala D, Mahato R, Saikia K, Patra A, Fernandes PA, Kumar A, Khan MR, Mukherjee AK. Snake Venom-Inspired Novel Peptides Protect Caenorhabditis elegans against Paraquat-Induced Parkinson's Pathology. ACS Chem Neurosci 2025; 16:1275-1296. [PMID: 40096006 DOI: 10.1021/acschemneuro.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
The in vivo protective mechanisms of two low-molecular-mass (∼1.4 kDa) novel custom peptides (CPs) against paraquat-induced neurodegenerative dysfunction in the Caenorhabditis elegans model were deciphered. CPs prevented the paraquat from binding to the nerve ring adjacent to the pharynx in C. elegans (wild-type) by stable and high-affinity binding to the tyrosine-protein kinase receptor CAM-1, resulting in significant inhibition of paraquat-induced toxicity by reducing the production of reactive oxygen species, mitochondrial membrane depolarization, and chemosensory dysfunction. The CPs inhibited paraquat-induced dopaminergic neuron degeneration and alpha-synuclein protein expression, the hallmarks of Parkinson's disease, in transgenic BZ555 and NL5901 strains of C. elegans. Transcriptomic, functional proteomics, and quantitative reverse transcription-polymerase chain reaction analyses show that CPs prevented the increased expression of the genes involved in the skn-1 downstream pathway, thereby restoring paraquat-mediated oxidative stress, apoptosis, and neuronal damage in C. elegans. The ability of CPs to repair paraquat-induced damage was demonstrated by a network of gene expression profiles, illustrating the molecular relationships between the regulatory proteins.
Collapse
Affiliation(s)
- Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Rosy Mahato
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kangkon Saikia
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, Porto 4169-007, Portugal
| | - Arun Kumar
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Mojibur R Khan
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| |
Collapse
|
5
|
Baranowski BJ, Oliveira BF, Falkenhain K, Little JP, Mohammad A, Beaudette SM, Finch MS, Caldwell HG, Neudorf H, MacPherson REK, Walsh JJ. Effect of exogenous β-hydroxybutyrate on BDNF signaling, cognition, and amyloid precursor protein processing in humans with T2D and insulin-resistant rodents. Am J Physiol Cell Physiol 2025; 328:C541-C556. [PMID: 39804761 DOI: 10.1152/ajpcell.00867.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
People with type 2 diabetes (T2D) have a greater risk of developing neurodegenerative diseases, like Alzheimer's disease, in later life. Exogenous ketone supplements containing the ketone body β-hydroxybutyrate (β-OHB) may be a strategy to protect the brain as β-OHB can support cerebral metabolism and promote neuronal plasticity via expression of brain-derived neurotrophic factor (BDNF). Parallel human (ClinicalTrials.gov ID NCT04194450, ClinicalTrials.gov ID NCT05155410) and rodent trials were conducted to characterize the effect of acute and short-term exogenous ketone supplementation on indices of brain health. First, we aimed to investigate the effect of acute and short-term supplementation of exogenous ketone monoester on circulating BDNF and cognition in adults with T2D. There were no effects of ketone supplementation on plasma BDNF or cognition. Second, we aimed to investigate the mechanistic effects of acute and chronic β-OHB supplementation on cortical BDNF content and recognition memory in C57BL/6J mice with and without insulin resistance. Acutely, β-OHB did not alter recognition memory or BDNF content. Similarly, chronic β-OHB supplementation did not alter recognition memory or BDNF content. Collectively, our data demonstrates that ketone supplementation does not elevate BDNF content in humans or mice. Furthermore, our data does not support the involvement of BDNF in the potential cognitive benefits of β-OHB supplementation.NEW & NOTEWORTHY Ketone supplementation does not alter circulating BDNF levels or cognition in humans with T2D. Acute and chronic ketone supplementation in C57BL/6J mice did not change BDNF protein content or improve recognition memory. Ketone supplementation in C57BL/6J mice positively modulated β-site amyloid precursor protein cleaving enzyme 1 (BACE1) activity, providing a potential future therapeutic strategy.
Collapse
Affiliation(s)
- B J Baranowski
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - B F Oliveira
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan, British Columbia, Canada
| | - K Falkenhain
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan, British Columbia, Canada
| | - J P Little
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan, British Columbia, Canada
| | - A Mohammad
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - S M Beaudette
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - M S Finch
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - H G Caldwell
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan, British Columbia, Canada
| | - H Neudorf
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan, British Columbia, Canada
| | - R E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - J J Walsh
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan, British Columbia, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Samaddar S, Redhwan MAM, Eraiah MM, Koneri R. Neurotrophins in Peripheral Neuropathy: Exploring Pathophysiological Mechanisms and Emerging Therapeutic Opportunities. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:91-101. [PMID: 39238380 DOI: 10.2174/0118715273327121240820074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 09/07/2024]
Abstract
Neuropathies, which encompass a wide array of peripheral nervous system disorders, present significant challenges due to their varied causes, such as metabolic diseases, toxic exposures, and genetic mutations. This review article, focused on the critical role of neurotrophins in peripheral neuropathy, highlights the intricate balance of neurotrophins necessary for nerve health and the pathophysiological consequences when this balance is disturbed. Neurotrophins, including Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT- 3), and Neurotrophin-4 (NT-4), are essential for neuronal survival, axonal growth, and synaptic plasticity. Their signaling pathways are crucial for maintaining peripheral nervous system integrity, primarily via the Tropomyosin receptor kinase (Trk) receptors and the p75 neurotrophin receptor p75(NTR). Dysregulation of neurotrophins is implicated in various neuropathies, such as diabetic neuropathy and chemotherapy-induced peripheral neuropathy, leading to impaired nerve function and regeneration. Understanding neurotrophin signaling intricacies and their alterations in neuropathic conditions is crucial for identifying novel therapeutic targets. Recent advancements illuminate neurotrophins' potential as therapeutic agents, promising disease-modifying treatments by promoting neuronal survival, enhancing axonal regeneration, and improving functional recovery post-nerve injury. However, translating these molecular insights into effective clinical applications faces challenges, including delivery methods, target specificity, and the instability of protein- based therapies.
Collapse
Affiliation(s)
- Suman Samaddar
- Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India
| | - Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, KLE Academy of Higher Education and Research, Belgavi, Karnataka, India
| | | | - Raju Koneri
- Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Niu X, Zheng Y, Wang W, Zhang L, Wang S, Lu X, Wang J, Yang G, Zhao T, Li Q, Li N, Wang J, Wang J, Li C. Esketamine Provides Neuroprotection After Intracerebral Hemorrhage in Mice via the NTF3/PI3K/AKT Pathway. CNS Neurosci Ther 2024; 30:e70145. [PMID: 39690816 DOI: 10.1111/cns.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/23/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Esketamine (ESK), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, modulates neurotransmitter signaling in the central nervous system. However, the specific mechanisms and therapeutic potential of ESK for intracerebral hemorrhage (ICH) remain unclear. This study aimed to investigate whether ESK promotes nerve repair and improves neurological outcomes in an experimental model of ICH. METHODS ICH was induced in mice via collagenase injection into the striatum. Body weight, neurological impairment, and behavioral changes were assessed. ESK administration significantly improved several indicators of ICH. Comprehensive RNA transcriptome sequencing and network pharmacology analyses identified neurotrophin-3 (NTF3) and the PI3K/AKT signaling pathway as targets for ESK treatment. Western blotting and immunofluorescence detected the protein expression levels and cellular localization of NTF3. RESULTS After 28 days of adeno-associated virus infection in the mouse striatum, ESK treatment significantly enhanced neuroprotection, indicating the crucial role of NTF3 in ESK-mediated neuroprotection in ICH mice. Inhibition of the PI3K/AKT pathway using the PI3K-specific inhibitor LY294002 significantly attenuated the therapeutic effects of ESK, suggesting that this pathway is involved in ESK-mediated neurorepair in ICH mice. CONCLUSIONS ESK treatment significantly improved functional outcomes and demonstrated neuroprotective effects in animal models of ICH. NTF3/PI3K/AKT pathway activation by ESK indicates its therapeutic potential in the treatment of ICH.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zheng
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shaoshuai Wang
- Non-Commissioned Officer School of Army Medical University, Shijiazhuang, China
| | - Xihua Lu
- Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiqing Yang
- Department of Neurology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Li
- Department of Neurology, Shanghai Gongli Hospital of Pudong New Area, Shanghai, China
| | - Nan Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changsheng Li
- Department of Anesthesiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Wan C, Shi L, Lai Y, Wu Z, Zou M, Liu Z, Meng W, Wang S. Long-term voluntary running improves cognitive ability in developing mice by modulating the cholinergic system, antioxidant ability, and BDNF/PI3K/Akt/CREB pathway. Neurosci Lett 2024; 836:137872. [PMID: 38889879 DOI: 10.1016/j.neulet.2024.137872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Moderate physical exercise has positive effects on memory. The present study aimed to investigate the impact of long-term exercise on spatial memory in developing mice, as well as its association with the cholinergic system, antioxidant activities, apoptosis factor, and BDNF/PI3K/Akt/CREB pathway in the brain. In this study, Y maze and Novel object recognition (NOR) tests were employed to assess the impact of long-term voluntary exercise on memory. The cholinergic system, antioxidant activities, and apoptosis factors in the brain were quantified using Elisa. Additionally, western blot analysis was conducted to determine the expression of relevant proteins in the BDNF/PI3K/Akt/CREB pathway. The findings demonstrated that prolonged voluntary wheel running exercise enhanced memory in developing mice, concomitant with increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels in the brain. Moreover, it could also increase the hippocampal acetylcholine (ACh) content and suppress the expression of neuronal apoptosis protein. Additionally, exercise also upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphoinositide 3 kinases (PI3K), Akt, cAMP response element-binding protein (CREB), and phosphorylated cAMP response element-binding protein (p-CREB) in the hippocampus. These findings suggest that long-term voluntary wheel running exercise improves the spatial memory of developing mice by modulating the cholinergic system, antioxidant activities, apoptosis factors, and activating the BDNF/PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Changjian Wan
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China; Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lulu Shi
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yuying Lai
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhuhong Wu
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Mingzhe Zou
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhibin Liu
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China.
| | - Wei Meng
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China; Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China.
| | - Songhua Wang
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China; Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China.
| |
Collapse
|
10
|
Nawrocka WI, Cheng S, Hao B, Rosen MC, Cortés E, Baltrusaitis EE, Aziz Z, Kovács IA, Özkan E. Nematode Extracellular Protein Interactome Expands Connections between Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602367. [PMID: 39026773 PMCID: PMC11257444 DOI: 10.1101/2024.07.08.602367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.
Collapse
Affiliation(s)
- Wioletta I. Nawrocka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Bingjie Hao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Matthew C. Rosen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Cortés
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elana E. Baltrusaitis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Zainab Aziz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
13
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
14
|
Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F. ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584849. [PMID: 38558981 PMCID: PMC10979979 DOI: 10.1101/2024.03.13.584849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas. Both the TRK kinase domain and the N-terminal fusion partners influenced tumor histology and aggressiveness. Treatment with TRK kinase inhibitors significantly extended survival of NTRK fusion-driven glioma mice in a fusion- and inhibitor-dependent manner, but tumors ultimately recurred due to the presence of treatment-resistant persister cells. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools for preclinical testing of novel inhibitors and to study the cellular responses of NTRK fusion-driven gliomas to therapy.
Collapse
Affiliation(s)
- Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alex Shimura Yamashita
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Madeline E West
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julia Walker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James Z Yan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David C Quist
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Neriah Alvinez
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra K Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
15
|
Dell’Oste V, Palego L, Betti L, Fantasia S, Gravina D, Bordacchini A, Pedrinelli V, Giannaccini G, Carmassi C. Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls. Int J Mol Sci 2024; 25:3529. [PMID: 38542503 PMCID: PMC10970837 DOI: 10.3390/ijms25063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study aimed at preliminarily evaluating circulating brain-derived-neurotrophic factor (BDNF) levels in BD subjects with PTSD or experiencing a major depressive episode versus controls. Two bloodstream BDNF components were specifically investigated, the storage (intraplatelet) and the released (plasma) ones, both as adaptogenic/repair signals during neuroendocrine stress response dynamics. Bipolar patients with PTSD (n = 20) or in a major depressive episode (n = 20) were rigorously recruited together with unrelated healthy controls (n = 24) and subsequently examined by psychiatric questionnaires and blood samplings. Platelet-poor plasma (PPP) and intraplatelet (PLT) BDNF were measured by ELISA assays. The results showed markedly higher intraplatelet vs. plasma BDNF, confirming platelets' role in neurotrophin transport/storage. No between-group PPP-BDNF difference was reported, whereas PLT-BDNF was significantly reduced in depressed BD patients. PLT-BDNF negatively correlated with mood scores but not with PTSD items like PPP-BDNF, which instead displayed opposite correlation trends with depression and manic severity. Present findings highlight PLT-BDNF as more reliable at detecting depression than PTSD in BD, encouraging further study into BDNF variability contextually with immune-inflammatory parameters in wider cohorts of differentially symptomatic bipolar patients.
Collapse
Affiliation(s)
- Valerio Dell’Oste
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFCSMA Zona Valdinievole, Azienda USL Toscana Centro, 51016 Montecatini Terme, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Andrea Bordacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| | - Virginia Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UFSMA Zona Apuana, Azienda USL Toscana Nord Ovest, 54100 Massa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Section of Biochemistry, University of Pisa, 56126 Pisa, Italy; (L.B.); (G.G.)
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.P.); (S.F.); (D.G.); (A.B.); (V.P.); (C.C.)
| |
Collapse
|
16
|
Wang S, Liu A, Xu C, Hou J, Hong J. GLP-1(7-36) protected against oxidative damage and neuronal apoptosis in the hippocampal CA region after traumatic brain injury by regulating ERK5/CREB. Mol Biol Rep 2024; 51:313. [PMID: 38374452 PMCID: PMC10876747 DOI: 10.1007/s11033-024-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Chaopeng Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jingxuan Hou
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
17
|
Socha J, Grochecki P, Smaga I, Jastrzębska J, Wronikowska-Denysiuk O, Marszalek-Grabska M, Slowik T, Kotlinski R, Filip M, Lubec G, Kotlinska JH. Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor. Int J Mol Sci 2024; 25:1041. [PMID: 38256113 PMCID: PMC10816180 DOI: 10.3390/ijms25021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| |
Collapse
|
18
|
Afsar T, Fu H, Khan H, Ali Z, Zehri Z, Zaman G, Abbas S, Mahmood A, Alam Q, Hu J, Razak S, Umair M. Loss-of-function variant in the LRR domain of SLITRK2 implicated in a neurodevelopmental disorder. Front Genet 2024; 14:1308116. [PMID: 38283150 PMCID: PMC10813200 DOI: 10.3389/fgene.2023.1308116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024] Open
Abstract
Background: Neurodevelopmental disorders are characterized by different combinations of intellectual disability (ID), communication and social skills deficits, and delays in achieving motor or language milestones. SLITRK2 is a postsynaptic cell-adhesion molecule that promotes neurite outgrowth and excitatory synapse development. Methods and Results: In the present study, we investigated a single patient segregating Neurodevelopmental disorder. SLITRK2 associated significant neuropsychological issues inherited in a rare X-linked fashion have recently been reported. Whole-exome sequencing and data analysis revealed a novel nonsense variant [c.789T>A; p.(Cys263*); NM_032539.5; NP_115928.1] in exon 5 of the SLITRK2 gene (MIM# 300561). Three-dimensional protein modeling revealed substantial changes in the mutated SLITRK2 protein, which might lead to nonsense-medicated decay. Conclusion: This study confirms the role of SLITRK2 in neuronal development and highlights the importance of including the SLITRK2 gene in the screening of individuals presenting neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Hongxia Fu
- Department of Neurology, Dongguan Songshan Lake Central Hospital, Dongguan, China
| | - Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zain Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zamrud Zehri
- Department of Gynecology, Civil Hospital, Quetta, Pakistan
| | - Gohar Zaman
- Department of Computer Science, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan
| | - Safdar Abbas
- Department of Biological Science, Dartmouth College, Hanover, NH, United States
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Qamre Alam
- Molecular Genomics and Precision Department, ExpressMed Diagnostics and Research, Zinj, Bahrain
| | - Junjian Hu
- Department of Central Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan, China
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Muhammad Umair
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Asadi MR, Gharesouran J, Sabaie H, Zaboli Mahdiabadi M, Mazhari SA, Sharifi-Bonab M, Shirvani-Farsani Z, Taheri M, Sayad A, Rezazadeh M. Neurotrophin growth factors and their receptors as promising blood biomarkers for Alzheimer's Disease: a gene expression analysis study. Mol Biol Rep 2024; 51:49. [PMID: 38165481 DOI: 10.1007/s11033-023-08959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifaceted neurological ailment affecting more than 50 million individuals globally, distinguished by a deterioration in memory and cognitive abilities. Investigating neurotrophin growth factors could offer significant contributions to understanding AD progression and prospective therapeutic interventions. METHODS AND RESULTS The present investigation collected blood samples from 50 patients diagnosed with AD and 50 healthy individuals serving as controls. The mRNA expression levels of neurotrophin growth factors and their receptors were measured using quantitative PCR. A Bayesian regression model was used in the research to assess the relationship between gene expression levels and demographic characteristics such as age and gender. The correlations between variables were analyzed using Spearman correlation coefficients, and the diagnostic potential was assessed using a Receiver Operating Characteristic curve. NTRK2, TrkA, TrkC, and BDNF expression levels were found to be considerably lower (p-value < 0.05) in the blood samples of AD patients compared to the control group. The expression of BDNF exhibited the most substantial decrease in comparison to other neurotrophin growth factors. Correlation analysis indicates a statistically significant positive association between the genes. The ROC analysis showed that BDNF exhibited the greatest Area Under the Curve (AUC) value of 0.76, accompanied by a sensitivity of 70% and specificity of 66%. TrkC, TrkA, and NTRK2 demonstrated considerable diagnostic potential in distinguishing between cases and controls. CONCLUSION The observed decrease in the expression levels of NTRK2, TrkA, TrkC, and BDNF in AD patients, along with the identified associations between specific genes and their diagnostic capacity, indicate that these expressions have the potential to function as biomarkers for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Saleh O, Albakri K, Altiti A, Abutair I, Shalan S, Mohd OB, Negida A, Mushtaq G, Kamal MA. The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:731-745. [PMID: 37211844 DOI: 10.2174/1871527322666230519113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.
Collapse
Affiliation(s)
- Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Medical Research Group of Egypt, Cairo, Egypt
| | | | - Iser Abutair
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Suhaib Shalan
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
21
|
H Z R, H J S, R C S B, Kr R, R RD, M E B. Physical Exercise Promotes Beneficial Changes on Neurotrophic Factors in Mesolimbic Brain Areas After AMPH Relapse: Involvement of the Endogenous Opioid System. Neurotox Res 2023; 41:741-751. [PMID: 37904065 DOI: 10.1007/s12640-023-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Addiction is a serious public health problem, and the current pharmacotherapy is unable to prevent drug use reinstatement. Studies have focused on physical exercise as a promising coadjuvant treatment. Our research group recently showed beneficial neuroadaptations in the dopaminergic system related to amphetamine-relapse prevention involving physical exercise-induced endogenous opioid system activation (EXE-OS activation). In this context, additional mechanisms were explored to understand the exercise benefits on drug addiction. Male rats previously exposed to amphetamine (AMPH, 4.0 mg/kg) for 8 days were submitted to physical exercise for 5 weeks. EXE-OS activation was blocked by naloxone administration (0.3 mg/kg) 5 min before each physical exercise session. After the exercise protocol, the rats were re-exposed to AMPH for 3 days, and in sequence, euthanasia was performed and the VTA and NAc were dissected. In the VTA, our findings showed increased immunocontent of proBDNF, BDNF, and GDNF and decreased levels of AMPH-induced TrkB; therefore, EXE-OS activation increased all these markers and naloxone administration prevented this exercise-induced effect. In the NAc, the same molecular markers were also increased by AMPH and decreased by EXE-OS activation. In this study, we propose a close relation between EXE-OS activation beneficial influence and a consequent neuroadaptation on neurotrophins and dopaminergic system levels in the mesolimbic brain area, preventing the observed AMPH-relapse behavior. Our outcomes bring additional knowledge concerning addiction neurobiology understanding and show that EXE-OS activation may be a potential adjuvant tool in drug addiction therapy.
Collapse
Affiliation(s)
- Rosa H Z
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Segat H J
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Barcelos R C S
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roversi Kr
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Rossato D R
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Burger M E
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
Dos Santos MG, Gomes JR, Costa MDM. Methods used to achieve different levels of the neuronal differentiation process in SH-SY5Y and Neuro2a cell lines: An integrative review. Cell Biol Int 2023; 47:1883-1894. [PMID: 37817323 DOI: 10.1002/cbin.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
To study the process of neuronal differentiation, the human neuroblastoma (SH-SY5Y) and the murine neuroblastoma (Neuro2a) cell lines have proven to be effective models. For this approach, different protocols involving known neurotrophic factors and other molecules, such as retinoic acid (RA), have been assessed to better understand the neuronal differentiation process. Thus, the goal of this manuscript was to provide a brief overview of recent studies that have used protocols to promote neurodifferentiation in SH-SY5Y and Neuro2a cell lines and used acquired morphology and neuronal markers to validate whether differentiation was effective. The published results supply some guidance regarding the relationship between RA and neurotrophins for SH-SY5Y, as well a serum concentrations for both cell lines. Furthermore, they demonstrate the potential application of Neuro2a, which is critical for future research on neuronal differentiation.
Collapse
Affiliation(s)
- Mônica G Dos Santos
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - José R Gomes
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Michele D M Costa
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
23
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
24
|
Gao X, Murphy MM, Peyer JG, Ni Y, Yang M, Zhang Y, Guo J, Kara N, Embree C, Tasdogan A, Ubellacker JM, Crane GM, Fang S, Zhao Z, Shen B, Morrison SJ. Leptin receptor + cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat Cell Biol 2023; 25:1746-1757. [PMID: 38012403 PMCID: PMC10709146 DOI: 10.1038/s41556-023-01284-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR+) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation. LepR+ cells, and the adipocytes they gave rise to, increased NGF production after myeloablation, promoting nerve sprouting in the bone marrow and haematopoietic and vascular regeneration. Nerves promoted regeneration by activating β2 and β3 adrenergic receptor signalling in LepR+ cells, and potentially in adipocytes, increasing their production of multiple haematopoietic and vascular regeneration growth factors. Peripheral nerves and LepR+ cells thus promote bone marrow regeneration through a reciprocal relationship in which LepR+ cells sustain nerves by synthesizing NGF and nerves increase regeneration by promoting the production of growth factors by LepR+ cells.
Collapse
Affiliation(s)
- Xiang Gao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Integrated Microscopy and Imaging Laboratory, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - James G Peyer
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cambrian Bio, Inc., New York, NY, USA
| | - Yuehan Ni
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Min Yang
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yixuan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jiaming Guo
- National Institute of Biological Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Ensoma, Inc., Boston, MA, USA
| | - Claire Embree
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alpaslan Tasdogan
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
26
|
Tonev D, Momchilova A. Therapeutic Plasma Exchange and Multiple Sclerosis Dysregulations: Focus on the Removal of Pathogenic Circulatory Factors and Altering Nerve Growth Factor and Sphingosine-1-Phosphate Plasma Levels. Curr Issues Mol Biol 2023; 45:7749-7774. [PMID: 37886933 PMCID: PMC10605592 DOI: 10.3390/cimb45100489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Multiple sclerosis (MS) is predominantly an immune-mediated disease of the central nervous system (CNS) of unknown etiology with a possible genetic predisposition and effect of certain environmental factors. It is generally accepted that the disease begins with an autoimmune inflammatory reaction targeting oligodendrocytes followed by a rapid depletion of their regenerative capacity with subsequent permanent neurodegenerative changes and disability. Recent research highlights the central role of B lymphocytes and the corresponding IgG and IgM autoantibodies in newly forming MS lesions. Thus, their removal along with the modulation of certain bioactive molecules to improve neuroprotection using therapeutic plasma exchange (TPE) becomes of utmost importance. Recently, it has been proposed to determine the levels and precise effects of both beneficial and harmful components in the serum of MS patients undergoing TPE to serve as markers for appropriate TPE protocols. In this review we discuss some relevant examples, focusing on the removal of pathogenic circulating factors and altering the plasma levels of nerve growth factor and sphingosine-1-phosphate by TPE. Altered plasma levels of the reviewed molecular compounds in response to TPE reflect a successful reduction of the pro-inflammatory burden at the expense of an increase in anti-inflammatory potential in the circulatory and CNS compartments.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
27
|
Bonomini F, Favero G, Castrezzati S, Borsani E. Role of Neurotrophins in Orofacial Pain Modulation: A Review of the Latest Discoveries. Int J Mol Sci 2023; 24:12438. [PMID: 37569811 PMCID: PMC10419393 DOI: 10.3390/ijms241512438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Orofacial pain represents a multidisciplinary biomedical challenge involving basic and clinical research for which no satisfactory solution has been found. In this regard, trigeminal pain is described as one of the worst pains perceived, leaving the patient with no hope for the future. The aim of this review is to evaluate the latest discoveries on the involvement of neurotrophins in orofacial nociception, describing their role and expression in peripheral tissues, trigeminal ganglion, and trigeminal nucleus considering their double nature as "supporters" of the nervous system and as "promoters" of nociceptive transmission. In order to scan recent literature (last ten years), three independent researchers referred to databases PubMed, Embase, Google Scholar, Scopus, and Web of Science to find original research articles and clinical trials. The researchers selected 33 papers: 29 original research articles and 4 clinical trials. The results obtained by the screening of the selected articles show an interesting trend, in which the precise modulation of neurotrophin signaling could switch neurotrophins from being a "promoter" of pain to their beneficial neurotrophic role of supporting the nerves in their recovery, especially when a structural alteration is present, as in neuropathic pain. In conclusion, neurotrophins could be interesting targets for orofacial pain modulation but more studies are necessary to clarify their role for future application in clinical practice.
Collapse
Affiliation(s)
- Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
28
|
Kim M, Lee J, Cai L, Choi H, Oh D, Jawad A, Hyun SH. Neurotrophin-4 promotes the specification of trophectoderm lineage after parthenogenetic activation and enhances porcine early embryonic development. Front Cell Dev Biol 2023; 11:1194596. [PMID: 37519302 PMCID: PMC10373506 DOI: 10.3389/fcell.2023.1194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Neurotrophin-4 (NT-4), a neurotrophic factor, appears to affect early embryonic development because it is secreted not only by neurons but also by oviductal and uterine epithelial cells. However, no studies have characterized the effects of NT-4 on early embryonic development in pigs. In this study, we applied the experimental model of parthenogenetic-activation (PA)-derived embryos. Herein, we investigated the effect of NT-4 supplementation during the in vitro culture (IVC) of embryos, analyzed the transcription levels of specific genes, and outlined the first cell lineage specification for porcine PA-derived blastocysts. We confirmed that NT-4 and its receptor proteins were localized in both the inner cell mass (ICM) and trophectoderm (TE) in porcine blastocysts. Across different concentrations (0, 1, 10, and 100 ng/mL) of NT-4 supplementation, the optimal concentration of NT-4 to improve the developmental competence of porcine parthenotes was 10 ng/mL. NT-4 supplementation during porcine IVC significantly (p < 0.05) increased the proportion of TE cells by inducing the transcription of TE lineage markers (CDX2, PPAG3, and GATA3 transcripts). NT-4 also reduced blastocyst apoptosis by regulating the transcription of apoptosis-related genes (BAX and BCL2L1 transcripts) and improved blastocyst quality via the interaction of neurotrophin-, Hippo-yes-associated protein (Hippo-YAP) and mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway. Additionally, NT-4 supplementation during IVC significantly (p < 0.05) increased YAP1 transcript levels and significantly (p < 0.01) decreased LATS2 transcript levels, respectively, in the porcine PA-derived blastocysts. We also confirmed through fluorescence intensity that the YAP1 protein was significantly (p < 0.001) increased in the NT-4-treated blastocysts compared with that in the control. NT-4 also promoted differentiation into the TE lineage rather than into the ICM lineage during porcine early embryonic development. In conclusion, 10 ng/mL NT-4 supplementation enhanced blastocyst quality by regulating the apoptosis- and TE lineage specification-related genes and interacting with neurotrophin-, Hippo-YAP-, and MAPK/ERK signaling pathway during porcine in vitro embryo development.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
29
|
Liu Y, Zhang L, Ai M, Xia D, Chen H, Pang R, Mei R, Zhong L, Chen L. Upregulation of SLITRK5 in patients with epilepsy and in a rat model. Synapse 2023; 77:e22266. [PMID: 36811190 DOI: 10.1002/syn.22266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
SLIT and NTRK-like protein-5 (SLITRK5) is one of the six members of SLITRK protein family, which is widely expressed in central nervous system (CNS). In brain, SLITRK5 plays important roles in neurite outgrowth, dendritic branching, neuron differentiation, synaptogenesis, and signal transmission of neurons. Epilepsy is a common, chronic neurological disorder characterized by recurrent spontaneous seizures. The pathophysiological mechanism of epilepsy remains unclear. Neuronal apoptosis, abnormal nerve excitatory transmission, and synaptic remodeling are thought to be involved in the development of epilepsy. To explore whether there is a potential relationship between SLITRK5 and epilepsy, we investigated the expression and distribution of SLITRK5 in patients with temporal lobe epilepsy (TLE) and a rat model of epilepsy. We collected cerebral cortex samples from patients with drug-refractory temporal lobe epilepsy, and a rat model of epilepsy induced by lithium chloride/pilocarpine was established. The ways of immunohistochemistry, double-immunofluorescence labeling and western blot have been used in our study to research the expression and distribution of SLITRK5 in the temporal lobe epilepsy patients and epilepsy animal model. All of the results have shown that SLITRK5 is mainly localized in the cell cytoplasm of neurons both in patients with TLE and in epilepsy model. In addition, compared with nonepileptic controls, the expression of SLITRK5 was upregulated in the temporal neocortex of TLE patients. And both in the temporal neocortex and hippocampus of pilocarpine-induced epilepsy rats, the expression of SLITRK5 was increased at 24 h after status epilepticus (SE), with a relatively high level within 30 days, and reached the peak on the 7th day after SE. Our preliminary results revealed that SLITRK5 may have a potential relationship with epilepsy, which may be a foundation for the further study of the underlying mechanism between SLITRK5 and epilepsy and the therapeutic targets of antiepileptic drugs.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
30
|
Ahmed A, Zeng G, Azhar M, Wang F, Wang J, Fan B, Liu X, Jiang D, Wang Q. Combination of Shengmai San and Radix puerariae ameliorates depression-like symptoms in diabetic rats at the nexus of PI3K/BDNF/SYN protein expression. Animal Model Exp Med 2023; 6:211-220. [PMID: 37317044 PMCID: PMC10272924 DOI: 10.1002/ame2.12333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Hyperglycemia is a characteristic feature of diabetes that often results in neuropsychological complications such as depression. Diabetic individuals are more vulnerable to experience depression compared to the normal population. Thus, novel treatment approaches are required to reduce depressive symptoms among diabetic individuals. Traditional Chinese medicines (TCMs) such as Shengmai San (SMS) and Radix puerariae (R) are usually widely used to treat ailments such as neurological complications since ancient time. METHODS In this study, SMS was combined with R to prepare an R-SMS formulation and screened for their antidepressant activity in diabetic rats. The antidepressant potential of the prepared combination was evaluated behaviorally using open field test, novelty-induced hypophagia, and forced swim test in diabetic rats with biochemical and protein expression (PI3K, BDNF [brain-derived neurotrophic factor], and SYN [presynaptic vesicle protein]) analysis. RESULTS Diabetic rats (streptozotocin, 45 mg/kg) showed elevated fasting blood glucose (FBG) >12 mM with depressive symptoms throughout the study. Treatment with R-SMS (0.5, 1.5, and 4.5 g/kg) significantly reverted depressive symptoms in diabetic rats as evinced by significantly (p < 0.05) reduced immobility time with an increased tendency to eat food in a novel environment. Treatment with R-SMS also significantly increased the protein expression of PI3K, BDNF, and SYN protein, which play a crucial role in depression. CONCLUSION This study showed that R-SMS formulation antagonized depressive symptoms in diabetic rats; thus, this formulation might be studied further to develop as an antidepressant.
Collapse
Affiliation(s)
- Ayaz Ahmed
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Institute of Drug Discovery TechnologyNingbo UniversityNingboChina
- Research Center for Pharmacodynamic, Material Basis and Mechanism of ActionCollege of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Mudassar Azhar
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Fengzhong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Jingru Wang
- Research Center for Pharmacodynamic, Material Basis and Mechanism of ActionCollege of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Bei Fan
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Xinmin Liu
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
- Institute of Drug Discovery TechnologyNingbo UniversityNingboChina
| | - Dejiang Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
| | - Qiong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation CenterThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
31
|
Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA. Ketamine and the Disinhibition Hypothesis: Neurotrophic Factor-Mediated Treatment of Depression. Pharmaceuticals (Basel) 2023; 16:ph16050742. [PMID: 37242525 DOI: 10.3390/ph16050742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ketamine is a promising alternative to traditional pharmacotherapies for major depressive disorder, treatment-resistant depression, and other psychiatric conditions that heavily contribute to the global disease burden. In contrast to the current standard of care medications for these disorders, ketamine offers rapid onset, enduring clinical efficacy, and unique therapeutic potential for use in acute, psychiatric emergencies. This narrative presents an alternative framework for understanding depression, as mounting evidence supports a neuronal atrophy and synaptic disconnection theory, rather than the prevailing monoamine depletion hypothesis. In this context, we describe ketamine, its enantiomers, and various metabolites in a range of mechanistic actions through multiple converging pathways, including N-methyl-D-aspartate receptor (NMDAR) inhibition and the enhancement of glutamatergic signaling. We describe the disinhibition hypothesis, which posits that ketamine's pharmacological action ultimately results in excitatory cortical disinhibition, causing the release of neurotrophic factors, the most important of which is brain-derived neurotrophic factor (BDNF). BDNF-mediated signaling along with vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) subsequently give rise to the repair of neuro-structural abnormalities in patients with depressive disorders. Ketamine's efficacious amelioration of treatment-resistant depression is revolutionizing psychiatric treatment and opening up fresh vistas for understanding the underlying causes of mental illness.
Collapse
Affiliation(s)
- Philip Borsellino
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Reese I Krider
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Deanna Chea
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Ryan Grinnell
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Thomas A Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| |
Collapse
|
32
|
Qin Q, Fu Q, Wang X, Lv R, Lu S, Guo Z, Wu T, Sun Y, Sun Y, Liu N, Zhao D, Cheng M. Design, synthesis and biological evaluation of novel indolin-2-one derivatives as potent second-generation TRKs inhibitors. Eur J Med Chem 2023; 253:115291. [PMID: 37030091 DOI: 10.1016/j.ejmech.2023.115291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Tropomyosin receptor kinases (TRKs) are effective targets for anti-cancer drug discovery. The first-generation type I TRKs inhibitors, larotrectinib and entrectinib, exhibit durable disease control in the clinic. The emergence of acquired resistance mediated by secondary mutations in the TRKs domain significantly reduces the therapeutic efficacy of these two drugs, indicating an unmet clinical need. In this study, we designed a potent and orally bioavailable TRK inhibitor, compound 24b, using a molecular hybridization strategy. Compound 24b exhibited significant inhibitory potency against multiple TRK mutants in both biochemical and cellular assays. Furthermore, compound 24b induced apoptosis of Ba/F3-TRKAG595R and Ba/F3-TRKAG667C cells in a dose-dependent manner. Additionally, compound 24b exhibited moderate kinase selectivity. In vitro stability revealed that compound 24b showed excellent plasma stability (t1/2 > 289.1 min) and moderate liver microsomal stability (t1/2 = 44.3 min). Pharmacokinetic studies have revealed that compound 24b is an orally bioavailable TRK inhibitor with a good oral bioavailability of 116.07%. These results indicate that compound 24b be used as a lead molecule for further modifications to overcome drug-resistant mutants of TRK.
Collapse
|
33
|
Ramsey A, Huang EJ. Plastin 3 rescues BDNF-TrkB signaling in spinal muscular atrophy. J Cell Biol 2023; 222:e202301036. [PMID: 36786833 PMCID: PMC9960025 DOI: 10.1083/jcb.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In this issue, Hennlein and colleagues (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202204113) show that F-actin-bundling protein Plastin 3 is drastically reduced in motor neurons with spinal muscular atrophy, whereas virus-mediated overexpression of Plastin 3 restores actin cytoskeleton and promotes BDNF-TrkB signaling in the growth cones of spinal motor neurons.
Collapse
Affiliation(s)
- Arren Ramsey
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Eric J. Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service 113B, San Francisco Veterans Administrations Health Care System, San Francisco, CA, USA
| |
Collapse
|
34
|
Neurotrophin mimetics and tropomyosin kinase receptors: a futuristic pharmacological tool for Parkinson's. Neurol Sci 2023:10.1007/s10072-023-06684-1. [PMID: 36870001 DOI: 10.1007/s10072-023-06684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
Parkinson's disease is a complex age-related progressive dopaminergic neurodegenerative disease consistently viewed as a disorder of movement and is characterized by its cardinal motor symptoms. While the motor symptoms and its clinical manifestations are attributed to the nigral dopaminergic neuronal death and basal ganglia dysfunction, studies have subsequently proven that the non-dopaminergic neurons in various brain regions are also additionally involved with the disease progression. Thus, it is now well accepted that the involvement of various neurotransmitters and other ligands accounts for the non-motor symptoms (NMS) associated with the Parkinson's disease. Consequently, this has demonstrated to possess remarkable clinical concerns to the patients in terms of various disability, such impaired to compromised quality of life and increased risk of morbidity and mortality. Currently, available pharmacological, non-pharmacological, and surgical therapeutic strategies neither prevent, arrest, nor reverse the nigral dopaminergic neurodegeneration. Thus, there is an imminent medical necessity to increase patient's quality of life and survival, which in turn decreases the incidence and prevalence of the NMS. The current research article reviews the potential direct involvement of neurotrophin and its mimetics to target and modulate neurotrophin-mediated signal transduction pathways to enlighten a new and novel therapeutic strategy along with the pre-existing treatments for Parkinson's disease and other neurological/neurodegenerative disorders which are associated with the downregulation of neurotrophins.
Collapse
|
35
|
Crombie KM, Adams TG, Dunsmoor JE, Greenwood BN, Smits JA, Nemeroff CB, Cisler JM. Aerobic exercise in the treatment of PTSD: An examination of preclinical and clinical laboratory findings, potential mechanisms, clinical implications, and future directions. J Anxiety Disord 2023; 94:102680. [PMID: 36773486 PMCID: PMC10084922 DOI: 10.1016/j.janxdis.2023.102680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with heightened emotional responding, avoidance of trauma related stimuli, and physical health concerns (e.g., metabolic syndrome, type 2 diabetes, cardiovascular disease). Existing treatments such as exposure-based therapies (e.g., prolonged exposure) aim to reduce anxiety symptoms triggered by trauma reminders, and are hypothesized to work via mechanisms of extinction learning. However, these conventional gold standard psychotherapies do not address physical health concerns frequently presented in PTSD. In addition to widely documented physical and mental health benefits of exercise, emerging preclinical and clinical evidence supports the hypothesis that precisely timed administration of aerobic exercise can enhance the consolidation and subsequent recall of fear extinction learning. These findings suggest that aerobic exercise may be a promising adjunctive strategy for simultaneously improving physical health while enhancing the effects of exposure therapies, which is desirable given the suboptimal efficacy and remission rates. Accordingly, this review 1) encompasses an overview of preclinical and clinical exercise and fear conditioning studies which form the basis for this claim; 2) discusses several plausible mechanisms for enhanced consolidation of fear extinction memories following exercise, and 3) provides suggestions for future research that could advance the understanding of the potential importance of incorporating exercise into the treatment of PTSD.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America.
| | - Tom G Adams
- University of Kentucky, Department of Psychology, 105 Kastle Hill, Lexington, KY 40506-0044, United States of America; Yale School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, United States of America
| | - Joseph E Dunsmoor
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Benjamin N Greenwood
- University of Colorado Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, United States of America
| | - Jasper A Smits
- The University of Texas at Austin, Department of Psychology, 108 E Dean Keeton St., Austin, TX 78712, United States of America
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| |
Collapse
|
36
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
37
|
Zulkifli NA, Hassan Z, Mustafa MZ, Azman WNW, Hadie SNH, Ghani N, Mat Zin AA. The potential neuroprotective effects of stingless bee honey. Front Aging Neurosci 2023; 14:1048028. [PMID: 36846103 PMCID: PMC9945235 DOI: 10.3389/fnagi.2022.1048028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023] Open
Abstract
Tropical Meliponini bees produce stingless bee honey (SBH). Studies have shown beneficial properties, including antibacterial, bacteriostatic, anti-inflammatory, neurotherapeutic, neuroprotective, wound, and sunburn healing capabilities. High phenolic acid and flavonoid concentrations offer SBH its benefits. SBH can include flavonoids, phenolic acids, ascorbic acid, tocopherol, organic acids, amino acids, and protein, depending on its botanical and geographic origins. Ursolic acid, p-coumaric acid, and gallic acid may diminish apoptotic signals in neuronal cells, such as nuclear morphological alterations and DNA fragmentation. Antioxidant activity minimizes reactive oxygen species (ROS) formation and lowers oxidative stress, inhibiting inflammation by decreasing enzymes generated during inflammation. Flavonoids in honey reduce neuroinflammation by decreasing proinflammatory cytokine and free radical production. Phytochemical components in honey, such as luteolin and phenylalanine, may aid neurological problems. A dietary amino acid, phenylalanine, may improve memory by functioning on brain-derived neurotrophic factor (BDNF) pathways. Neurotrophin BDNF binds to its major receptor, TrkB, and stimulates downstream signaling cascades, which are crucial for neurogenesis and synaptic plasticity. Through BDNF, SBH can stimulate synaptic plasticity and synaptogenesis, promoting learning and memory. Moreover, BDNF contributes to the adult brain's lasting structural and functional changes during limbic epileptogenesis by acting through the cognate receptor tyrosine receptor kinase B (TrkB). Given the higher antioxidants activity of SBH than the Apis sp. honey, it may be more therapeutically helpful. There is minimal research on SBH's neuroprotective effects, and the related pathways contribute to it is unclear. More research is needed to elucidate the underlying molecular process of SBH on BDNF/TrkB pathways in producing neuroprotective effects.
Collapse
Affiliation(s)
- Nurdarina Ausi Zulkifli
- Department of Pathology, School of Medical Sciences Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Norlina Wan Azman
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurhafizah Ghani
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
38
|
Erythropoietin in Glaucoma: From Mechanism to Therapy. Int J Mol Sci 2023; 24:ijms24032985. [PMID: 36769310 PMCID: PMC9917746 DOI: 10.3390/ijms24032985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma can cause irreversible vision loss and is the second leading cause of blindness worldwide. The disease mechanism is complex and various factors have been implicated in its pathogenesis, including ischemia, excessive oxidative stress, neurotropic factor deprivation, and neuron excitotoxicity. Erythropoietin (EPO) is a hormone that induces erythropoiesis in response to hypoxia. However, studies have shown that EPO also has neuroprotective effects and may be useful for rescuing apoptotic retinal ganglion cells in glaucoma. This article explores the relationship between EPO and glaucoma and summarizes preclinical experiments that have used EPO to treat glaucoma, with an aim to provide a different perspective from the current view that glaucoma is incurable.
Collapse
|
39
|
Jin M, Zhou Z, Zhang L, Chen Y, Liu L, Shen H. Effects of Excessive Iodine on the BDNF-TrkB Signaling Pathway and Related Genes in Offspring of EAT Rats. Biol Trace Elem Res 2023; 201:776-785. [PMID: 35322353 DOI: 10.1007/s12011-022-03187-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Excess iodine can cause autoimmune thyroiditis (AIT) in women, but it is unclear whether this has any implications for neurodevelopmental mechanisms in offspring. We studied the effects of experimental autoimmune thyroiditis (EAT) rats with different amounts of iodine intake on offspring brain development via the brain-derived neurotrophic factor (BDNF)-tropomycin receptor kinase B (TrkB) signaling pathway, because BDNF plays an important role in neurodevelopment. Rats in three thyroglobulin (Tg) immunized groups with varying iodine intakes (Tg (100 µg/L iodine), Tg + High-iodine I group (Tg + HI, 20 mg/L iodine), and Tg + High-iodine II group (Tg + HII, 200 mg/L iodine)) were injected with 800 µg Tg once every 2 weeks for 3 times. Rats in the control group (NI, 100 µg/L iodine) were immunized with saline. Arsenic-cerium catalytic spectrophotometry was used to measure urine iodine levels. The lymphocytic infiltration in the thyroids was observed by histopathological studies. Thyroid autoantibodies levels were measured using radioimmunoassay. The norepinephrine (NE) contents were measured by an enzyme-linked immunosorbent assay. The levels of the BDNF-TrkB signaling pathway and related genes were measured by quantitative real-time PCR and Western blot. Urinary iodine levels increased as iodine intake increased. Lymphocytes were significantly aggravated in Tg-immunized rats. Serum thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) levels were clearly elevated in Tg-immunized rats. Tg-immune groups had significantly lower NE levels. The BDNF-TrkB signaling pathway and related gene mRNA and protein levels were found to be significantly lower in Tg-immune groups with higher iodine levels. Maternal AIT may reduce the levels of certain neurodevelopmental mechanisms in the offspring, such as the BDNF-TrkB signaling pathway and related factors, while excessive iodine consumption by the mother may exacerbate this effect.
Collapse
Affiliation(s)
- Meihui Jin
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Li Zhang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yao Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
40
|
Nayak M, Das D, Pradhan J, Ahmed R, Laureano-Melo R, Dandapat J. Epigenetic signature in neural plasticity: the journey so far and journey ahead. Heliyon 2022; 8:e12292. [PMID: 36590572 PMCID: PMC9798197 DOI: 10.1016/j.heliyon.2022.e12292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Neural plasticity is a remarkable characteristic of the brain which allows neurons to rewire their structure in response to internal and external stimuli. Many external stimuli collectively referred to as 'epigenetic factors' strongly influence structural and functional reorganization of the brain, thereby acting as a potential driver of neural plasticity. DNA methylation and demethylation, histone acetylation, and deacetylation are some of the frontline epigenetic mechanisms behind neural plasticity. Epigenetic signature molecules (mostly proteins) play a pivotal role in epigenetic reprogramming. Though neuro-epigenetics is an incredibly important field of emerging research, the critical role of signature proteins associated with epigenetic alteration and their involvement in neural plasticity needs further attention. This study gives an integrated and systematic overview of the current state of knowledge with a clear idea of types of neural plasticity and the context-dependent role of epigenetic signature molecules and their modulation by some natural bioactive compounds.
Collapse
Affiliation(s)
- Madhusmita Nayak
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Diptimayee Das
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Faculty of Allied Health Science, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai India
| | - Jyotsnarani Pradhan
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| | - R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Roberto Laureano-Melo
- Barra Mansa University Center, R. Ver. Pinho de Carvalho, 267, 27330-550, Barra Mansa, Rio de Janeiro, Brazil
| | - Jagneshwar Dandapat
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| |
Collapse
|
41
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
42
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
43
|
Guo Y, Dai W, Zheng Y, Qiao W, Chen W, Peng L, Zhou H, Zhao T, Liu H, Zheng F, Sun P. Mechanism and Regulation of Microglia Polarization in Intracerebral Hemorrhage. Molecules 2022; 27:molecules27207080. [PMID: 36296682 PMCID: PMC9611828 DOI: 10.3390/molecules27207080] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke, but effective treatments are lacking, and neuroinflammation plays a key role in the pathogenesis. In the innate immune response to cerebral hemorrhage, microglia first appear around the injured tissue and are involved in the inflammatory cascade response. Microglia respond to acute brain injury by being activated and polarized to either a typical M1-like (pro-inflammatory) or an alternative M2-like (anti-inflammatory) phenotype. These two polarization states produce pro-inflammatory or anti-inflammatory. With the discovery of the molecular mechanisms and key signaling molecules related to the polarization of microglia in the brain, some targets that regulate the polarization of microglia to reduce the inflammatory response are considered a treatment for secondary brain tissue after ICH damage effective strategies. Therefore, how to promote the polarization of microglia to the M2 phenotype after ICH has become the focus of attention in recent years. This article reviews the mechanism of action of microglia’s M1 and M2 phenotypes in secondary brain injury after ICH. Moreover, it discusses compounds and natural pharmaceutical ingredients that can polarize the M1 to the M2 phenotype.
Collapse
Affiliation(s)
- Yuting Guo
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan 528401, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Weilin Qiao
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528411, China
| | - Weixuan Chen
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528411, China
| | - Lihua Peng
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528411, China
| | - Hua Zhou
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tingting Zhao
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| | - Huimin Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| |
Collapse
|
44
|
Liu Z, Suh JS, Deng P, Bezouglaia O, Do M, Mirnia M, Cui ZK, Lee M, Aghaloo T, Wang CY, Hong C. Epigenetic Regulation of NGF-Mediated Osteogenic Differentiation in Human Dental Mesenchymal Stem Cells. Stem Cells 2022; 40:818-830. [PMID: 35728620 PMCID: PMC9512103 DOI: 10.1093/stmcls/sxac042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022]
Abstract
Nerve growth factor (NGF) is the best-characterized neurotrophin and is primarily recognized for its key role in the embryonic development of the nervous system and neuronal cell survival/differentiation. Recently, unexpected actions of NGF in bone regeneration have emerged as NGF is able to enhance the osteogenic differentiation of mesenchymal stem cells. However, little is known regarding how NGF signaling regulates osteogenic differentiation through epigenetic mechanisms. In this study, using human dental mesenchymal stem cells (DMSCs), we demonstrated that NGF mediates osteogenic differentiation through p75NTR, a low-affinity NGF receptor. P75NTR-mediated NGF signaling activates the JNK cascade and the expression of KDM4B, an activating histone demethylase, by removing repressive H3K9me3 epigenetic marks. Mechanistically, NGF-activated c-Jun binds to the KDM4B promoter region and directly upregulates KDM4B expression. Subsequently, KDM4B directly and epigenetically activates DLX5, a master osteogenic gene, by demethylating H3K9me3 marks. Furthermore, we revealed that KDM4B and c-Jun from the JNK signaling pathway work in concert to regulate NGF-mediated osteogenic differentiation through simultaneous recruitment to the promoter region of DLX5. We identified KDM4B as a key epigenetic regulator during the NGF-mediated osteogenesis both in vitro and in vivo using the calvarial defect regeneration mouse model. In conclusion, our study thoroughly elucidated the molecular and epigenetic mechanisms during NGF-mediated osteogenesis.
Collapse
Affiliation(s)
- Zhenqing Liu
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jin Sook Suh
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Peng Deng
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Megan Do
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Mojan Mirnia
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Hong
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
45
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
46
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
47
|
Liu Y, Zhang L, Mei R, Ai M, Pang R, Xia D, Chen L, Zhong L. The Role of SliTrk5 in Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4678026. [PMID: 35872846 PMCID: PMC9303146 DOI: 10.1155/2022/4678026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
SLIT and NTRK-like protein-5 (SliTrk5) is one of the six members of SliTrk protein family, which is widely expressed in the central nervous system (CNS), regulating and participating in many essential steps of central nervous system development, including axon and dendritic growth, neuron differentiation, and synaptogenesis. SliTrk5, as a neuron transmembrane protein, contains two important conservative domains consisting of leucine repeats (LRRs) located at the amino terminal in the extracellular region and tyrosine residues (Tyr) located at the carboxyl terminal in the intracellular domains. These special structures make SliTrk5 play an important role in the pathological process of the CNS. A large number of studies have shown that SliTrk5 may be involved in the pathogenesis of CNS diseases, such as obsessive-compulsive-disorder (OCD), attention deficit/hyperactivity disorder (ADHD), glioma, autism spectrum disorders (ASDs), and Parkinson's disease (PD). Targeting SliTrk5 is expected to become a new target for the treatment of CNS diseases, promoting the functional recovery of CNS. The purpose of this article is to review the current research progression of the role of SliTrk5 in CNS and its potential mechanisms in CNS diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| | - Mingda Ai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ruijing Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| |
Collapse
|
48
|
Wang L, Zhang D, Luo Z, Feng J, Liao W, Li J, Wang J. Gram-scale stereoselective synthesis of next generation of Trk Inhibitor LOXO-195. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Cheng SM, Lee SD. Exercise Training Enhances BDNF/TrkB Signaling Pathway and Inhibits Apoptosis in Diabetic Cerebral Cortex. Int J Mol Sci 2022; 23:6740. [PMID: 35743182 PMCID: PMC9223566 DOI: 10.3390/ijms23126740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
This study aimed to clarify the therapeutic effects of exercise training on neural BDNF/TrkB signaling and apoptotic pathways in diabetic cerebral cortex. Thirty-six male C57BL/6JNarl mice were randomly divided into three groups: control (CON-G), diabetic group (DM-G, 100 mg/kg streptozotocin, i.p.), and diabetic with exercise training group (DMEX-G, Swim training for 30 min/day, 5 days/week). After 12 weeks, H&E staining, TUNEL staining, and Western blotting were performed to detect the morphological changes, neural apoptosis, and protein levels in the cerebral cortex. The Bcl2, BclxL, and pBad were significant decreased in DM-G compared with CON-G, whereas they (excluded the Ras and pRaf1) were increased in DMEX-G. In addition, interstitial space and TUNEL(+) apoptotic cells found increased in DM-G with increases in Fas/FasL-mediated (FasL, Fas, FADD, cleaved-caspase-8, and cleaved-caspase-3) and mitochondria-initiated (tBid, Bax/Bcl2, Bak/BclxL, Bad, Apaf1, cytochrome c, and cleaved-caspase-9) apoptotic pathways. However, diabetes-induced neural apoptosis was less in DMEX-G than DM-G with observed raises in the BDNF/TrkB signaling pathway as well as decreases in Fas/FasL-mediated and mitochondria-initiated pathways. In conclusion, exercise training provided neuroprotective effects via enhanced neural BDNF/TrkB signaling pathway and prevent Fas/FasL-mediated and mitochondria-initiated apoptotic pathways in diabetic cerebral cortex.
Collapse
Affiliation(s)
- Shiu-Min Cheng
- Department of Long-Term Care, National Quemoy University, Kinmen 892009, Taiwan;
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
- Department of Physical Therapy, Asia University, Taichung 413305, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
50
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|