1
|
Wang J, Al-Lamki RS, Zhu X, Liu H, Pober JS, Bradley JR. TL1-A can engage death receptor-3 and activate NF-kappa B in endothelial cells. BMC Nephrol 2014; 15:178. [PMID: 25399326 PMCID: PMC4239315 DOI: 10.1186/1471-2369-15-178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Death receptors (DRs) play an important role in renal pathology. We have shown that DR3 is inducibly expressed on renal tubular epithelial cells in the setting of inflammatory injuries. In this study we investigate the expression of DR3 in renal endothelial cells and their response to TL1A, the only known ligand of DR3. METHODS We did RT-PCR, flow cytometry and subcellular immunoblotting to examine the expression and function of DR3 in cells in vitro. We did organ culture of human and mouse tissue to examine expression and signal of DR3 in vivo. RESULTS DR3 is expressed in some interstitial vascular endothelial cells (EC) in human kidney in situ; these EC also respond to its ligand TL1A by activating NF-κB. Very low levels of DR3 can be detected on the cell surface of cultured human umbilical vein (HUV) EC, which do not respond to TL1A. HUVEC transfected to overexpress DR3 become responsive to TL1A, assessed by IκBα degradation and E-selectin induction, indicating that the signaling components needed for DR3 responsiveness are expressed. TL1A induces NF-κB activation in EC in renal and cardiac tissue from wild type but not DR3 knock-out mice. CONCLUSION TL1A and DR3 activate NF-κB in vascular endothelial cells, and can be an important regulator of renal interstitial vascular injury.
Collapse
Affiliation(s)
- Jun Wang
- Department of nephrology, First Hospital of China Medical University, Nanjing Street, 110001 Shenyang, P,R, China.
| | | | | | | | | | | |
Collapse
|
2
|
Lo Vasco VR. 1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours. J Neurooncol 2011; 103:409-416. [DOI: 10.1007/s11060-010-0422-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/13/2010] [Indexed: 02/02/2023]
|
3
|
Ge Z, Sanders AJ, Ye L, Jiang WG. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer. Exp Ther Med 2011; 2:167-172. [PMID: 22977485 DOI: 10.3892/etm.2011.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/17/2011] [Indexed: 12/15/2022] Open
Abstract
Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer.
Collapse
Affiliation(s)
- Zhicheng Ge
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
4
|
Thorell K, Bergman A, Carén H, Nilsson S, Kogner P, Martinsson T, Abel F. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes. BMC Med Genomics 2009; 2:53. [PMID: 19686582 PMCID: PMC2743704 DOI: 10.1186/1755-8794-2-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified. METHODS In this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples. RESULTS By TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, ATBF1, CACNA2D3, CNTNAP2, FUSIP1, GNB1, SLC35E2, and TFAP2B. The gene that showed the highest fold change in the TLDA analysis, POU4F2, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene CNTNAP2 that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of POU4F2 and CNTNAP2 showed no genetic alterations that could explain a lower expression in unfavourable NB tumours. CONCLUSION Through two steps of verification, seven transcripts were found to significantly discriminate between favourable and unfavourable NB tumours. Four of the transcripts, CACNA2D3, GNB1, SLC35E2, and TFAP2B, have been observed in previous microarray studies, and are in this study independently verified. Our results suggest these transcripts to be markers of malignancy, which could have a potential usefulness in the clinic.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Clinical Genetics, Gothenburg University, S-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
Wei JS, Song YK, Durinck S, Chen QR, Cheuk ATC, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27:5204-13. [PMID: 18504438 PMCID: PMC2562938 DOI: 10.1038/onc.2008.154] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/18/2008] [Accepted: 04/04/2008] [Indexed: 01/07/2023]
Abstract
Loss of 1p36 heterozygosity commonly occurs with MYCN amplification in neuroblastoma tumors, and both are associated with an aggressive phenotype. Database searches identified five microRNAs that map to the commonly deleted region of 1p36 and we hypothesized that the loss of one or more of these microRNAs contributes to the malignant phenotype of MYCN-amplified tumors. By bioinformatic analysis, we identified that three out of the five microRNAs target MYCN and of these miR-34a caused the most significant suppression of cell growth through increased apoptosis and decreased DNA synthesis in neuroblastoma cell lines with MYCN amplification. Quantitative RT-PCR showed that neuroblastoma tumors with 1p36 loss expressed lower level of miR-34a than those with normal copies of 1p36. Furthermore, we demonstrated that MYCN is a direct target of miR-34a. Finally, using a series of mRNA expression profiling experiments, we identified other potential direct targets of miR-34a, and pathway analysis demonstrated that miR-34a suppresses cell-cycle genes and induces several neural-related genes. This study demonstrates one important regulatory role of miR-34a in cell growth and MYCN suppression in neuroblastoma.
Collapse
Affiliation(s)
- Jun Stephen Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Young Kook Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Steffen Durinck
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Qing-Rong Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Adam Tai Chi Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Patricia Tsang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Quangeng Zhang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Carol Jean Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew Slack
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Shohet
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| |
Collapse
|
6
|
Okawa ER, Gotoh T, Manne J, Igarashi J, Fujita T, Silverman KA, Xhao H, Mosse YP, White PS, Brodeur GM. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene 2007; 27:803-10. [PMID: 17667943 DOI: 10.1038/sj.onc.1210675] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuroblastomas are characterized by 1p deletions, suggesting that a tumor suppressor gene (TSG) resides in this region. We have mapped the smallest region of deletion (SRD) to a 2 Mb region of 1p36.31 using microsatellite and single nucleotide polymorphisms. We have identified 23 genes in this region, and we have analysed these genes for mutations and RNA expression patterns to identify candidate TSGs. We sequenced the coding exons of these genes in 30 neuroblastoma cell lines. Although rare mutations were found in 10 of the 23 genes, none showed a pattern of genetic change consistent with homozygous inactivation. We examined the expression of these 23 genes in 20 neuroblastoma cell lines, and most showed readily detectable expression, and no correlation with 1p deletion. However, 7 genes showed uniformly low expression in the lines, and 2 genes (CHD5, RNF207) had virtually absent expression, consistent with the expected pattern for a TSG. Our mutation and expression analysis in neuroblastoma cell lines, combined with expression analysis in normal tissues, putative function and prior implication in neuroblastoma pathogenesis, suggests that the most promising TSG deleted from the 1p36 SRD is CHD5, but TNFRSF25, CAMTA1 and AJAP1 are also viable candidates.
Collapse
Affiliation(s)
- E R Okawa
- Division of Oncology, The Children's Hospital of Philadelphia, Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jensen EH, Lewis JM, McLoughlin JM, Alvarado MD, Daud A, Messina J, Enkemann S, Yeatman TJ, Sondak VK, Riker AI. Down-regulation of pro-apoptotic genes is an early event in the progression of malignant melanoma. Ann Surg Oncol 2006; 14:1416-23. [PMID: 17195911 DOI: 10.1245/s10434-006-9226-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Down-regulation of apoptosis genes has been implicated in the development and progression of malignant melanoma. We used cDNA microarray to evaluate pro-apoptotic gene expression comparing normal skin to melanoma (thin and thick), nodal disease and distant metastases. METHODS Twenty-eight specimens including skin (n = 1), thin melanoma (n = 6), thick melanoma (n = 7), nodal disease (n = 6), and distant metastases (n = 8), were harvested at the time of resection from 16 individuals. RNA was isolated and microarray analysis utilizing the Affymetrix GeneChip (54,000 genetic elements, U133A+B... levels) was performed. Mean level of expression was calculated for each gene within a sample group. Expression profiles were then compared between tissue groups. Student's t-test was used to determine variance in expression between groups. RESULTS We reviewed the expression of 54,000 genetic elements, of which 2,015 were found to have significantly altered expression. This represents 1,602 genes. Twenty-two pro-apoptotic genes were found to be down-regulated when compared to normal skin. Overall reduction was evaluated comparing normal skin to metastases with a range of 3.31-64.04-fold-decrease. When comparing the tissue types sequentially, the greatest fold-decrease in gene expression occurred when comparing skin to all melanomas (thin and thick) (p = 0.011). Subset analysis comparing normal skin to thin melanoma or thick melanoma, revealed the greatest component of overall reduction at the transition from thin to thick lesions (p = 0.003). CONCLUSION Sequential down-regulation of pro-apoptotic genes is associated with the progression of malignant melanoma. The greatest fold-decrease occurs in the transformation from thin to thick lesions.
Collapse
Affiliation(s)
- Eric H Jensen
- Department of Interdisciplinary Oncology, Cutaneous Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Stabile Research Building, Room 22043, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Oberthuer A, Warnat P, Kahlert Y, Westermann F, Spitz R, Brors B, Hero B, Eils R, Schwab M, Berthold F, Fischer M. Classification of neuroblastoma patients by published gene-expression markers reveals a low sensitivity for unfavorable courses of MYCN non-amplified disease. Cancer Lett 2006; 250:250-67. [PMID: 17126996 DOI: 10.1016/j.canlet.2006.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/09/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
Currently, Pubmed lists 385 marker genes for neuroblastoma outcome. Using a customized neuroblastoma-microarray, we evaluated the prognostic impact of the gene-expression pattern of 349 of these candidates (90.6%) in 127 neuroblastoma patients with divergent outcome. By significance analysis of microarrays (SAM) and both uncorrected and Bonferroni-corrected ANOVA, 166/349 (47.5%), 218/349 (62.5%) and 128/349 (36.4%) candidates showed significant differential expression between patients with contrasting outcome. By Prediction Analysis for Microarrays (PAM), a 38-gene-classifier was derived from all markers, which classified patients outcome with an overall accuracy of 78.5%. However, patients with unfavorable outcome of MYCN non-amplified disease were largely misclassified (accuracy: 35%), suggesting that these courses are not identified by current marker genes.
Collapse
Affiliation(s)
- André Oberthuer
- Children's Hospital, Department of Pediatric Oncology and Hematology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gabellini N, Masola V, Quartesan S, Oselladore B, Nobile C, Michelucci R, Curtarello M, Parolin C, Palù G. Increased expression of LGI1 gene triggers growth inhibition and apoptosis of neuroblastoma cells. J Cell Physiol 2006; 207:711-21. [PMID: 16518856 DOI: 10.1002/jcp.20627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The LGI1 gene has been implicated in the malignant progression of glioblastoma and it has also been genetically linked to a form of partial epilepsy (ADLTE). In this study, we investigated the relevance of LGI1 expression for neuroblastoma cells. The analysis of two cell lines (SH-SY5Y and SK-N-BE) revealed unpredictably low levels of LGI1 and stable cell transfection with LGI1 cDNA yielded moderate increases of LGI1 expression. Neuroblastoma cell clones exhibited impaired cell growth and survival ability in relation to LGI1 levels. The process of growth inhibition could be discerned under experimental conditions of low cell density, since conditions of elevated cell density, which enhance the requirement for survival stimuli, resulted in massive cellular death. At high cell density, spontaneous apoptosis of LGI1 cells was clearly shown by the release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria and by phosphatydil serine exposure and nuclear fragmentation. Activation of apoptotic effectors caspase-3/7 also occurred, however, the broad caspase inhibitor Z-VAD-FMK substantially failed to block cell death. Thus the possibility that LGI1-triggered apoptosis may involve initiator caspases linked to activation of death receptors, appears unlikely. The decreased ratio of Bcl-2 to Bax suggests that apoptosis is initiated by the intrinsic mitochondrial pathway through the release of caspase-dependent and -independent apoptogenic molecules. This study provides the first evidence that LGI1 controls neuronal cell survival, suggesting its role in the development of the nervous system in relation to the pathogenesis of neuroblastoma and ADLTE.
Collapse
Affiliation(s)
- Nadia Gabellini
- Department of Biological Chemistry, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sarkar C, Deb P, Sharma MC. Recent advances in embryonal tumours of the central nervous system. Childs Nerv Syst 2005; 21:272-93. [PMID: 15682321 DOI: 10.1007/s00381-004-1066-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Embryonal tumours of the central nervous system (CNS) are the commonest malignant paediatric brain tumours. This group includes medulloblastomas, supratentorial primitive neuroectodermal tumours, atypical teratoid/rhabdoid tumours, ependymoblastomas, and medulloepitheliomas. Earlier, all these tumours were grouped under a broad category of primitive neuroectodermal tumours (PNETs). However, the current WHO classification (2000) separates them into individual types based on significant progress in the understanding of their distinctive clinical, pathological, molecular genetic, histogenetic, and behavioural characteristics. Furthermore, advances in histopathology and molecular genetics have shown great promise for refining risk assessment in these tumours, especially medulloblastomas, thus providing a more accurate basis for tailoring therapies to individual patients. Correlation of histological changes with genetic events has also led to a new model of medulloblastoma tumorigenesis. REVIEW This review presents an updated comparative profile of these tumours, highlighting the clinical and biological relevance of the recent advances.
Collapse
Affiliation(s)
- Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi.
| | | | | |
Collapse
|
11
|
van den Berg H. Biology and therapy of malignant solid tumors in childhood. ACTA ACUST UNITED AC 2005; 22:643-76. [PMID: 16110632 DOI: 10.1016/s0921-4410(04)22028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Henk van den Berg
- Department of Paediatric Oncology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Al-Lamki RS, Wang J, Thiru S, Pritchard NR, Bradley JA, Pober JS, Bradley JR. Expression of silencer of death domains and death-receptor-3 in normal human kidney and in rejecting renal transplants. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:401-11. [PMID: 12875962 PMCID: PMC1868232 DOI: 10.1016/s0002-9440(10)63670-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously reported the pattern of cellular expression of tumor necrosis factor receptors (TNFR) in human kidney and their altered expression in transplant rejection. We have extended our studies to examine the expression of Silencer of Death Domains (SODD), a protein that binds to the cytoplasmic portion of TNFR1 to inhibit signaling in the absence of ligand. In normal human kidney SODD is expressed in glomerular endothelial cells where it colocalizes with TNFR1. During acute rejection both SODD and TNFR1 are lost from glomeruli, but we found strong expression of SODD on the luminal surface of tubular epithelial cells. This occurs in the absence of detectable TNFR1 expression, suggesting that SODD could interact with other proteins at these sites. Several other members of the TNF superfamily, including Fas and death receptors (DR)-3, -4, and -5, also contain intracellular death domains, but SODD only interacts with the death domain of DR3. We therefore studied the expression of DR3 in human kidney, and report that this death receptor is up-regulated in renal tubular epithelial cells and endothelial cells of some interlobular arteries, in parallel with SODD, during acute transplant rejection. In less severe rejection episodes, DR3 and SODD were more focally induced, generally at sites of mononuclear cell infiltrates. In ischemic allografts, eg, with acute tubular necrosis but no cellular rejection, DR3 was induced on tubular epithelial cells and on glomerular endothelial cells. These data confirm that TNF receptor family members are expressed in a regulated manner during renal transplant rejection, and identify DR3 as a potential inducible mediator of tubular inflammation and injury.
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
13
|
van den Berg H. Biology and therapy of malignant solid tumors in childhood. CANCER CHEMOTHERAPY AND BIOLOGICAL RESPONSE MODIFIERS 2003; 21:683-707. [PMID: 15338769 DOI: 10.1016/s0921-4410(03)21032-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hendrik van den Berg
- Department of Paediatric Oncology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Winquist E, Bramwell V, Vandenberg T. Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer: methodologic issues. J Clin Oncol 2002; 20:3748-9; author reply 3749-50. [PMID: 12202679 DOI: 10.1200/jco.2002.99.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|