1
|
Bakkensen Bruun S, Fredslund Andersen R, Skov Madsen J, Frøstrup Hansen T, Tabor TP, Bechmann T, Kjær IM. Circulating methylated HOXA9 tumor DNA as a biomarker for mortality in recurrent breast cancer: An exploratory study. Oncol Lett 2024; 28:581. [PMID: 39421315 PMCID: PMC11484173 DOI: 10.3892/ol.2024.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Methylated homeobox A9 (meth-HOXA9) circulating tumor DNA may be a relevant biomarker in breast cancer, although its clinical significance remains unknown. The present exploratory study aimed to investigate the association between meth-HOXA9 and mortality in patients with recurrent breast cancer. The cohort study enrolled 51 patients with breast cancer recurrence from the Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark (Vejle, Denmark). Tissue samples from primary surgery and biopsies, and plasma samples obtained at the time of recurrence were analyzed for meth-HOXA9 using a methylation-specific droplet digital polymerase chain reaction. Using Cox regression, hazard ratios (HRs) for mortality with 95% confidence intervals (CIs) comparing patients with detectable and undetectable meth-HOXA9 in both tumor tissue and plasma were estimated. Among the 50 patients with data on tumor tissue meth-HOXA9, there was no association between meth-HOXA9 in the primary tumor and mortality (HR 1.09, 95% CI 0.47-2.52). A total of 34 patients had data on plasma meth-HOXA9 at the time of recurrence. Detectable plasma meth-HOXA9 was associated with higher mortality (HR 3.95, 95% CI 1.50-10.37). Among the 20 patients with data on both plasma and metastatic tissue meth-HOXA9, meth-HOXA9 was detectable in 90% of metastases and 65% of plasma samples. In conclusion, detectable plasma meth-HOXA9 was significantly associated with higher mortality in recurrent breast cancer; therefore, plasma meth-HOXA9 may prove useful as a prognostic marker in patients with breast cancer.
Collapse
Affiliation(s)
- Stine Bakkensen Bruun
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Rikke Fredslund Andersen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Torben Frøstrup Hansen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Tomasz Piotr Tabor
- Department of Pathology, Regional Hospital Central Jutland, 8800 Viborg, Denmark
- Department of Pathology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Troels Bechmann
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Oncology, Regional Hospital West Jutland, 7400 Herning, Denmark
| | - Ina Mathilde Kjær
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
2
|
Khan MI, Bertram H, Schmitt AO, Ramzan F, Gültas M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. BIOLOGY 2024; 13:929. [PMID: 39596884 PMCID: PMC11591944 DOI: 10.3390/biology13110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The Murciano-Granadina goat (MUG) is a renowned dairy breed, known for its adaptability and resilience, as well as for its exceptional milk traits characterized by high protein and fat content, along with low somatic cell counts. These traits are governed by complex biological processes, crucial in shaping phenotypic diversity. Thus, it is imperative to explore the factors regulating milk production and lactation for this breed. In this study, we investigated the genetic architecture of seven milk traits in MUGs, employing a two-step computational analysis to examine genotype-phenotype associations. Initially, a random forest algorithm identified the relative importance of each single-nucleotide polymorphism (SNP) in determining the traits of interest. The second step applied an information theory-based approach to exploring the complex genetic architecture of quantitative milk traits, focusing on epistatic interactions that may have been overlooked in the first step. These approaches allowed us to identify an almost distinct set of candidate genes for each trait. In contrast, by analyzing the promoter regions of these genes, we revealed common regulatory networks among the milk traits under study. These findings are crucial for understanding the molecular mechanisms underlying gene regulation, and they highlight the pivotal role of transcription factors (TFs) and their preferential interactions in the development of these traits. Notably, TFs such as DBP, HAND1E47, HOXA4, PPARA, and THAP1 were consistently identified for all traits, highlighting their important roles in immunity within the mammary gland and milk production during lactation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P, Tanwar M. Role of HOX genes in cancer progression and their therapeutical aspects. Gene 2024; 919:148501. [PMID: 38670395 DOI: 10.1016/j.gene.2024.148501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
HOX genes constitute a family of evolutionarily conserved transcription factors that play pivotal roles in embryonic development, tissue patterning, and cell differentiation. These genes are essential for the precise spatial and temporal control of body axis formation in vertebrates. In addition to their developmental functions, HOX genes have garnered significant attention for their involvement in various diseases, including cancer. Deregulation of HOX gene expression has been observed in numerous malignancies, where they can influence tumorigenesis, progression, and therapeutic responses. This review provides an overview of the diverse roles of HOX genes in development, disease, and potential therapeutic targets, highlighting their significance in understanding biological processes and their potential clinical implications.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| | - Smiti Nanda
- Retd. Senior Professor and Head, Department of Gynaecology and Obstetrics, Pt. B.D. Sharma University of Health Sciences, Rohtak 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
4
|
Wang WC, Hou TC, Kuo CY, Lai YC. Amplifications of EVX2 and HOXD9-HOXD13 on 2q31 in mature cystic teratomas of the ovary identified by array comparative genomic hybridization may explain teratoma characteristics in chondrogenesis and osteogenesis. J Ovarian Res 2024; 17:129. [PMID: 38907278 PMCID: PMC11193297 DOI: 10.1186/s13048-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Teratomas are a common type of germ cell tumor. However, only a few reports on their genomic constitution have been published. The study of teratomas may provide a better understanding of their stepwise differentiation processes and molecular bases, which could prove useful for the development of tissue-engineering technologies. METHODS In the present study, we analyzed the copy number aberrations of nine ovarian mature cystic teratomas using array comparative genomic hybridization in an attempt to reveal their genomic aberrations. RESULTS The many chromosomal aberrations observed on array comparative genomic hybridization analysis reveal the complex genetics of this tumor. Amplifications and deletions of large DNA fragments were observed in some samples, while amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, NDUFV1 on 11q13.2, and RPL10, SNORA70, DNASE1L1, TAZ, ATP6AP1, and GDI1 on Xq28 were found in all nine mature cystic teratomas. CONCLUSIONS Our results indicated that amplifications of these genes may play an important etiological role in teratoma formation. Moreover, amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, found on array comparative genomic hybridization, may help to explain the characteristics of teratomas in chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Wen-Chung Wang
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
| | - Tai-Cheng Hou
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Chen-Yun Kuo
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Yen-Chein Lai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Road, Taichung, 402, Taiwan, R.O.C..
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Zhou Y, Wu Q, Guo Y. Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). Int J Mol Med 2024; 53:17. [PMID: 38131178 PMCID: PMC10781420 DOI: 10.3892/ijmm.2023.5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yingchu Guo
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
6
|
Surendran H, Palaniyandi T, Natarajan S, Hari R, Viwanathan S, Baskar G, Abdul Wahab MR, Ravi M, Rajendran BK. Role of homeobox d10 gene targeted signaling pathways in cancers. Pathol Res Pract 2023; 248:154643. [PMID: 37406379 DOI: 10.1016/j.prp.2023.154643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Homeobox D10 (HOXD10) is a transcription factor from the homeobox gene family that controls cell differentiation and morphogenesis throughout development.Due to their functional interaction, changes in HOXD10 gene expression might induce tumors. This narrative review focuses on how and why the dysregulation in the signaling pathways linked with HOXD10 contributes to the metastatic development of cancer. Organ development and tissue homeostasis need highly conserved homeotic transcription factors from homeobox (HOX) genes. Their dysregulation disrupts regulatory molecule action, causing tumors. The HOXD10 gene is upregulated in breast, gastric, hepatocellular, colorectal, bladder, cholangiocellular carcinoma and prostate cancer. Tumor signaling pathways are affected by HOXD10 gene expression changes. This study examines HOXD10-associated signaling pathway dysregulation, which may alter metastatic cancer signaling. In addition, the theoretical foundations that alter HOXD10-mediated therapeutic resistance in malignancies has been presented. New cancer therapy methods will be simpler to develop with the newly discovered knowledge. This review showed that HOXD10 may be a tumor suppressor gene and a new cancer treatment target signaling pathway.
Collapse
Affiliation(s)
- Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamilnadu, India.
| | - Sudhakar Natarajan
- Department of Virology and Biotechnology, ICMR - National institute for Research in Tuberculosis (NIRT), Chetpet, Chennai 600031 Tamil Nadu, India
| | - Rajeswary Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Sandhiya Viwanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116 Tamil Nadu, India
| | | |
Collapse
|
7
|
Chen F, Zhao RR, Li Q, Chen ZH, Luo C. Knockdown of lncRNA HOXD-AS2 Improves the Prognosis of Glioma Patients by Inhibiting the Proliferation and Migration of Glioma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9337647. [PMID: 36408341 PMCID: PMC9668444 DOI: 10.1155/2022/9337647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 07/29/2023]
Abstract
Objective Increasing studies reported that long noncoding RNAs are involved in regulating glioma progression. However, the specific roles and mechanisms of lncRNAs in glioma remain unclear. Here, we sought to explore the functions of HOXD-AS2 in glioma progression. Methods Gene expressions of lncRNAs in 5 normal brain tissue specimens and 5 glioblastoma tissue specimens were detected by gene expression profile chip technology. Bioinformatic analysis was performed to see whether differential expression of lncRNAs played any significant role in glioma occurrence and progression. The relationship between HOXD-AS2 level and clinical prognosis of the patients was analyzed. HOXD-AS2 was specifically interfered with by siRNA technology to observe its effects on U251 cell growth, proliferation, apoptosis, and invasion. Results The expression level of HOXD-AS2 gene in glioma was significantly higher than that in the normal brain tissue, which was related to the tumor grade. The level of HOXD-AS2 gene in patients with high-grade glioma was higher than that in patients with low-grade glioma. High expression of HOXD-AS2 gene was a risk factor for poor prognosis of glioma patients. Knocking down the expression of HOXD-AS2 in glioma cell line U251 arrested the cell cycle and reduced the cell proliferation. Furthermore, it could significantly reduce the migration ability of the cells but had no significant effect on the invasion. Conclusion HOXD-AS2 is an oncogenic lncRNA associated with the poor prognosis of glioma. Knockdown of HOXD-AS2 may reduce the growth of glioma, which may provide a new avenue for treatment.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ru-Ru Zhao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen-Hua Chen
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
9
|
El-Huneidi W, Eladl MA, Muhammad JS. Single nucleotide polymorphisms in microRNA binding sites on the HOX genes regulate carcinogenesis: An in-silico approach. Biochem Biophys Rep 2021; 27:101083. [PMID: 34368470 PMCID: PMC8326182 DOI: 10.1016/j.bbrep.2021.101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Homeobox proteins, encoded by HOX genes, are transcriptional factors playing a crucial role in the master regulatory pathway in the cells. Any mutations in HOX genes will affect the expression of its allied proteins. Such mutations were correlated to the development of different cancer types. In this study, we found 15 HOX genes with a potential target to miRNA, which regulates the translation of the protein by binding to its mRNA through the 3′UTR region. Single nucleotide polymorphisms (SNPs) in this binding region could drastically affect the protein expression by affecting the number and the stability of miRNA-mRNA complexes. We found 77 miRNAs in 15 genes which were found to have altered binding efficiency because of 26 SNPs. After which, we tried to evaluate the impact of each of these SNPs on related HOX genes. Some SNPs such as SNP 15689 on the HOXB7 gene will decrease gene expression by creating or enhancing new binding sites for miRNA to mRNA, while other SNPs such as SNP 872760 on the HOXB5 gene will overexpress the gene by breaking or decreasing existing binding sites from miRNA to mRNA. Then we conducted an expression analysis to compare the mRNA expression profiles in normal and cancer tissue. Subsequently, we did an enrichment analysis followed by a network analysis to shed light on the metabolic function of the gene that could be affected by mutation and whether these mutations may affect other genes. For the first time, this study delivers information on the possible epigenetic regulation of HOX genes via the 77 miRNAs that have predicted target binding sites on HOX mRNAs, and SNPs may regulate those. Furthermore, we show that the HOX gene misregulation may influence other HOX and non-HOX genes, based on network analysis. Genes affected by SNPs in miRNA lead to deregulation of HOX genes that will cause cancer. HOX genes have role in posttranscriptional nucleic acid and protein binding. The mutational effect of any HOX gene affects other members of HOX genes.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
10
|
Estrogen suppresses HOXB2 expression via ERα in breast cancer cells. Gene 2021; 794:145746. [PMID: 34062258 DOI: 10.1016/j.gene.2021.145746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022]
Abstract
The expression of HOXB2, a homeobox transcription factor, is altered in a variety of solid tumors. Using an in vivo screen to identify regulators of breast tumor growth in murine mammary fat pads, Boimel and co-workers recently identified HOXB2 as a tumor suppressor. However, the mechanistic underpinnings of its role in breast cancer is not understood. Given the emerging interaction of estrogen-regulated gene expression and altered HOX gene expression network in the pathophysiology of breast cancer, this study addressed the relationship between estrogen signaling and HOXB2 expression. Using a mouse model and human breast cancer cell lines, we show that estrogen suppresses HOXB2 expression. Suppression of HOXB2 by PPT, a known ERα agonist, in MCF-7 and T47D cells indicated the involvement of ERα, which was confirmed by siRNA-mediated ERα knockdown experiments. In-silico analysis of the upstream promoter region revealed the presence of three putative EREs. Chromatin immunoprecipitation experiments showed that upon estrogen binding, ERα engaged with EREs in the 5' upstream region of HOXB2 in MCF-7 and T47D cells. Future investigations should address the implications of estrogen-mediated suppression on the proposed tumor suppressor function of HOXB2.
Collapse
|
11
|
Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. Cancers (Basel) 2021; 13:2188. [PMID: 34063254 PMCID: PMC8125677 DOI: 10.3390/cancers13092188] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
Collapse
Affiliation(s)
- Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Le Boiteux E, Court F, Guichet PO, Vaurs-Barrière C, Vaillant I, Chautard E, Verrelle P, Costa BM, Karayan-Tapon L, Fogli A, Arnaud P. Widespread overexpression from the four DNA hypermethylated HOX clusters in aggressive (IDHwt) glioma is associated with H3K27me3 depletion and alternative promoter usage. Mol Oncol 2021; 15:1995-2010. [PMID: 33720519 PMCID: PMC8334257 DOI: 10.1002/1878-0261.12944] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
In human, the 39 coding HOX genes and 18 referenced noncoding antisense transcripts are arranged in four genomic clusters named HOXA, B, C, and D. This highly conserved family belongs to the homeobox class of genes that encode transcription factors required for normal development. Therefore, HOX gene deregulation might contribute to the development of many cancer types. Here, we study HOX gene deregulation in adult glioma, a common type of primary brain tumor. We performed extensive molecular analysis of tumor samples, classified according to their isocitrate dehydrogenase (IDH1) gene mutation status, and of glioma stem cells. We found widespread expression of sense and antisense HOX transcripts only in aggressive (IDHwt) glioma samples, although the four HOX clusters displayed DNA hypermethylation. Integrative analysis of expression, DNA methylation, and histone modification signatures along the clusters revealed that HOX gene upregulation relies on canonical and alternative bivalent CpG island promoters that escape hypermethylation. H3K27me3 loss at these promoters emerges as the main cause of widespread HOX gene upregulation in IDHwt glioma cell lines and tumors. Our study provides the first comprehensive description of the epigenetic changes at HOX clusters and their contribution to the transcriptional changes observed in adult glioma. It also identified putative 'master' HOX proteins that might contribute to the tumorigenic potential of glioma stem cells.
Collapse
Affiliation(s)
- Elisa Le Boiteux
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Franck Court
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre-Olivier Guichet
- INSERM-U1084, Poitiers, France.,Poitiers University, France.,Department of Cancer Biology, Poitiers Hospital, France
| | | | - Isabelle Vaillant
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Pathology Department, Jean Perrin Center, Clermont-Ferrand, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Verrelle
- CIMB, INSERM U1196 CNRS UMR9187, Curie Institute, Orsay, France.,Radiotherapy Department, Curie Institute, Paris, France.,Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucie Karayan-Tapon
- INSERM-U1084, Poitiers, France.,Poitiers University, France.,Department of Cancer Biology, Poitiers Hospital, France
| | - Anne Fogli
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France.,Biochemistry and Molecular Biology Department, Clermont-Ferrand Hospital, France
| | - Philippe Arnaud
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
13
|
Zhang Y, Wu Y, Gong ZY, Ye HD, Zhao XK, Li JY, Zhang XM, Li S, Zhu W, Wang M, Liang GY, Liu Y, Guan X, Zhang DY, Shen B. Distinguishing Rectal Cancer from Colon Cancer Based on the Support Vector Machine Method and RNA-sequencing Data. Curr Med Sci 2021; 41:368-374. [PMID: 33877555 DOI: 10.1007/s11596-021-2356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Several studies have indicated that rectal cancer is significantly different from colon cancer in terms of treatment, prognosis, and metastasis. Recently, the differential mRNA expression of colon cancer and rectal cancer has received a great deal of attention. The current study aimed to identify significant differences between colon cancer and rectal cancer based on RNA sequencing (RNA-seq) data via support vector machines (SVM). Here, 393 CRC samples from the The Cancer Genome Atlas (TCGA) database were investigated, including 298 patients with colon cancer and 95 with rectal cancer. Following the random forest (RF) analysis of the mRNA expression data, 96 genes such as HOXB13, PRAC, and BCLAF1 were identified and utilized to build the SVM classification model with the Leave-One-Out Cross-validation (LOOCV) algorithm. In the training (n=196) and the validation cohorts (n=197), the accuracy (82.1 % and 82.2 %, respectively) and the AUC (0.87 and 0.91, respectively) indicated that the established optimal SVM classification model distinguished colon cancer from rectal cancer reasonably. However, additional experiments are required to validate the predicted gene expression levels and functions.
Collapse
Affiliation(s)
- Yan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yuan Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zi-Ying Gong
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, 201612, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, 314000, China
| | - Hai-Dan Ye
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, 201612, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, 314000, China
| | - Xiao-Kai Zhao
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, 201612, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, 314000, China
| | - Jie-Yi Li
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, 201612, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, 314000, China
| | - Xiao-Mei Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Sheng Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ge-Yu Liang
- School of Public Health, Southeast University, Nanjing, 211189, China
| | - Yun Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Xin Guan
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Dao-Yun Zhang
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, 201612, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, 314000, China
| | - Bo Shen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
García-Cortés D, Hernández-Lemus E, Espinal-Enríquez J. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations. Front Genet 2021; 12:629475. [PMID: 33959148 PMCID: PMC8096206 DOI: 10.3389/fgene.2021.629475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Luminal A is the most common breast cancer molecular subtype in women worldwide. These tumors have characteristic yet heterogeneous alterations at the genomic and transcriptomic level. Gene co-expression networks (GCNs) have contributed to better characterize the cancerous phenotype. We have previously shown an imbalance in the proportion of intra-chromosomal (cis-) over inter-chromosomal (trans-) interactions when comparing cancer and healthy tissue GCNs. In particular, for breast cancer molecular subtypes (Luminal A included), the majority of high co-expression interactions connect gene-pairs in the same chromosome, a phenomenon that we have called loss of trans- co-expression. Despite this phenomenon has been described, the functional implication of this specific network topology has not been studied yet. To understand the biological role that communities of co-expressed genes may have, we constructed GCNs for healthy and Luminal A phenotypes. Network modules were obtained based on their connectivity patterns and they were classified according to their chromosomal homophily (proportion of cis-/trans- interactions). A functional overrepresentation analysis was performed on communities in both networks to observe the significantly enriched processes for each community. We also investigated possible mechanisms for which the loss of trans- co-expression emerges in cancer GCN. To this end we evaluated transcription factor binding sites, CTCF binding sites, differential gene expression and copy number alterations (CNAs) in the cancer GCN. We found that trans- communities in Luminal A present more significantly enriched categories than cis- ones. Processes, such as angiogenesis, cell proliferation, or cell adhesion were found in trans- modules. The differential expression analysis showed that FOXM1, CENPA, and CIITA transcription factors, exert a major regulatory role on their communities by regulating expression of their target genes in other chromosomes. Finally, identification of CNAs, displayed a high enrichment of deletion peaks in cis- communities. With this approach, we demonstrate that network topology determine, to at certain extent, the function in Luminal A breast cancer network. Furthermore, several mechanisms seem to be acting together to avoid trans- co-expression. Since this phenomenon has been observed in other cancer tissues, a remaining question is whether the loss of long distance co-expression is a novel hallmark of cancer.
Collapse
Affiliation(s)
- Diana García-Cortés
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Lei D, Yang WT, Zheng PS. HOXB4 inhibits the proliferation and tumorigenesis of cervical cancer cells by downregulating the activity of Wnt/β-catenin signaling pathway. Cell Death Dis 2021; 12:105. [PMID: 33479226 PMCID: PMC7820415 DOI: 10.1038/s41419-021-03411-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Homeobox B4 (HOXB4), which belongs to the homeobox (HOX) family, possesses transcription factor activity and has a crucial role in stem cell self-renewal and tumorigenesis. However, its biological function and exact mechanism in cervical cancer remain unknown. Here, we found that HOXB4 was markedly downregulated in cervical cancer. We demonstrated that HOXB4 obviously suppressed cervical cancer cell proliferation and tumorigenic potential in nude mice. Additionally, HOXB4-induced cell cycle arrest at the transition from the G0/G1 phase to the S phase. Conversely, loss of HOXB4 promoted cervical cancer cell growth both in vitro and in vivo. Bioinformatics analyses and mechanistic studies revealed that HOXB4 inhibited the activity of the Wnt/β-catenin signaling pathway by direct transcriptional repression of β-catenin. Furthermore, β-catenin re-expression rescued HOXB4-induced cervical cancer cell defects. Taken together, these findings suggested that HOXB4 directly transcriptional repressed β-catenin and subsequently inactivated the Wnt/β-catenin signaling pathway, leading to significant inhibition of cervical cancer cell growth and tumor formation.
Collapse
Affiliation(s)
- Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, 710061, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Gonçalves CS, Le Boiteux E, Arnaud P, Costa BM. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell Mol Life Sci 2020; 77:3797-3821. [PMID: 32239260 PMCID: PMC11105007 DOI: 10.1007/s00018-020-03508-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior-posterior body axis. This tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Janmaat VT, Liu H, da Silva RA, Wisse PHA, Spaander MCW, Ten Hagen TLM, Smits R, Bruno MJ, Fuhler GM, Peppelenbosch MP. HOXA9 mediates and marks premalignant compartment size expansion in colonic adenomas. Carcinogenesis 2020; 40:1514-1524. [PMID: 31099823 DOI: 10.1093/carcin/bgz038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
The transformation of normal colonic epithelium to colorectal cancer (CRC) involves a relatively ordered progression, and understanding the molecular alterations involved may aid rational design of strategies aimed at preventing or counteracting disease. Homeobox A9 (HOXA9) is an oncogene in leukemia and has been implicated in CRC pathology, although its role in disease etiology remains obscure at best. We observe that HOXA9 expression is increased in colonic adenomas compared with location-matched healthy colon epithelium. Its forced expression results in dramatic genetic and signaling changes, with increased expression of growth factors IGF1 and FLT3, super-activity of the AKT survival pathway and a concomitant increase in compartment size. Furthermore, a reduced mRNA expression of the epithelial to mesenchymal transition marker N-cadherin as well as reduced activity of the actin cytoskeletal mediator PAK was seen, which is in apparent agreement with an observed reduced migratory response in HOXA9-overexpressing cells. Thus, HOXA9 appears closely linked with adenoma growth while impairing migration and metastasis and hence is both a marker and driver of premalignant polyp growth. Colonic polyps grow but remain premalignant for up to decades. Here, we show that HOXA9 drives growth in premalignant polyps, but simultaneously prevents further transformation.
Collapse
Affiliation(s)
- Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Hui Liu
- Department of Surgery, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Rodrigo A da Silva
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Pieter H A Wisse
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Department of Surgery, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
18
|
de Bessa Garcia SA, Araújo M, Pereira T, Mouta J, Freitas R. HOX genes function in Breast Cancer development. Biochim Biophys Acta Rev Cancer 2020; 1873:188358. [PMID: 32147544 DOI: 10.1016/j.bbcan.2020.188358] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer develops in the mammary glands during mammalian adulthood and is considered the second most common type of human carcinoma and the most incident and mortal in the female population. In contrast to other human structures, the female mammary glands continue to develop after birth, undergoing various modifications during pregnancy, lactation and involution under the regulation of hormones and transcription factors, including those encoded by the HOX clusters (A, B, C, and D). Interestingly, HOX gene deregulation is often associated to breast cancer development. Within the HOXB cluster, 8 out of the 10 genes present altered expression levels in breast cancer with an impact in its aggressiveness and resistance to hormone therapy, which highlights the importance of HOXB genes as potential therapeutic targets used to overcome the limitations of tamoxifen-resistant cancer treatments. Here, we review the current state of knowledge on the role of HOX genes in breast cancer, specially focus on HOXB, discussing the causes and consequences of HOXB gene deregulation and their relevance as prognostic factors and therapeutic targets.
Collapse
Affiliation(s)
- Simone Aparecida de Bessa Garcia
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Mafalda Araújo
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Tiago Pereira
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - João Mouta
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Renata Freitas
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal.; ICBAS- Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Portugal..
| |
Collapse
|
19
|
Park CK, Shin SJ, Cho YA, Joo JW, Cho NH. HoxB13 expression in ductal type adenocarcinoma of prostate: clinicopathologic characteristics and its utility as potential diagnostic marker. Sci Rep 2019; 9:20205. [PMID: 31882852 PMCID: PMC6934792 DOI: 10.1038/s41598-019-56657-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/18/2019] [Indexed: 01/12/2023] Open
Abstract
The histologic criteria and selective biomarkers of prostate ductal type adenocarcinoma (DAC) are relatively unknown compared to that known about acinar type adenocarcinoma (AAC). It is known that genetic alteration in Hox13 gene is associated with carcinogenesis of prostate cancer. In this study, we investigated clinicopathologic characteristics of HoxB13 expression in prostate cancer and compared clinicopathologic profiles of DAC and AAC of prostate. After slide review, some morphological variants of DAC, equivalent to Gleason pattern 3 and 5 of AAC were identified. High level of HoxB13 expression was identified in 46.5% (46 out of 99 cases) and 39.2% (31 out of 79 cases) of cases that belong to the training set and test set, respectively. In the training set, high level of HoxB13 expression was significantly correlated with DAC (P < 0.001), higher Gleason score (P < 0.001), advanced pathologic T stage (P = 0.010), and occurrence of biochemical recurrence (BCR; P < 0.001). The test set confirmed that high level of HoxB13 expression was associated with DAC (P < 0.001), higher Gleason score (P = 0.001), advanced pathologic T stage (P < 0.001), and occurrence of BCR (P < 0.001). Our findings suggest that HoxB13 may be a useful diagnostic marker for detection of DAC and a prognostic marker for prediction of BCR.
Collapse
Affiliation(s)
- Cheol Keun Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Armed Forces Capital Hospital, Seongnam, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yoon Ah Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational genomics, Samsung medical center, Seoul, Republic of Korea
| | - Jin Woo Joo
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Hoon Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Chen D, Zhang F, Zhao Q, Xu J. OmicsARules: a R package for integration of multi-omics datasets via association rules mining. BMC Bioinformatics 2019; 20:554. [PMID: 31703610 PMCID: PMC6839229 DOI: 10.1186/s12859-019-3171-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The improvements of high throughput technologies have produced large amounts of multi-omics experiments datasets. Initial analysis of these data has revealed many concurrent gene alterations within single dataset or/and among multiple omics datasets. Although powerful bioinformatics pipelines have been developed to store, manipulate and analyze these data, few explicitly find and assess the recurrent co-occurring aberrations across multiple regulation levels. RESULTS Here, we introduced a novel R-package (called OmicsARules) to identify the concerted changes among genes under association rules mining framework. OmicsARules embedded a new rule-interestingness measure, Lamda3, to evaluate the associated pattern and prioritize the most biologically meaningful gene associations. As demonstrated with DNA methlylation and RNA-seq datasets from breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA) and lung adenocarcinoma (LUAD), Lamda3 achieved better biological significance over other rule-ranking measures. Furthermore, OmicsARules can illustrate the mechanistic connections between methlylation and transcription, based on combined omics dataset. OmicsARules is available as a free and open-source R package. CONCLUSIONS OmicsARules searches for concurrent patterns among frequently altered genes, thus provides a new dimension for exploring single or multiple omics data across sequencing platforms.
Collapse
Affiliation(s)
- Danze Chen
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China
| | - Fan Zhang
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital, Shantou University Medical College (SUMC), Shantou, 515041, China
| | - Qianqian Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No.22, Rd. Xinling, Shantou, China.
| |
Collapse
|
21
|
Kuo TL, Cheng KH, Chen LT, Hung WC. Deciphering The Potential Role of Hox Genes in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11050734. [PMID: 31137902 PMCID: PMC6562939 DOI: 10.3390/cancers11050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The Hox gene family plays an important role in organogenesis and animal development. Currently, 39 Hox genes that are clustered in four chromosome regions have been identified in humans. Emerging evidence suggests that Hox genes are involved in the development of the pancreas. However, the expression of Hox genes in pancreatic tumor tissues has been investigated in only a few studies. In addition, whether specific Hox genes can promote or suppress cancer metastasis is not clear. In this article, we first review the recent progress in studies on the role of Hox genes in pancreatic cancer. By comparing the expression profiles of pancreatic cancer cells isolated from genetically engineered mice established in our laboratory with three different proliferative and metastatic abilities, we identified novel Hox genes that exhibited tumor-promoting activity in pancreatic cancer. Finally, a potential oncogenic mechanism of the Hox genes was hypothesized.
Collapse
Affiliation(s)
- Tzu-Lei Kuo
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
22
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
23
|
Yang S, Lee JY, Hur H, Oh JH, Kim MH. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells. BMB Rep 2018; 51:450-455. [PMID: 29804556 PMCID: PMC6177504 DOI: 10.5483/bmbrep.2018.51.9.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.
Collapse
Affiliation(s)
- Seoyeon Yang
- Department of Anatomy, Embryology Laboratory, and 2Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho Hur
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
24
|
Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:265. [PMID: 30376874 PMCID: PMC6208043 DOI: 10.1186/s13046-018-0941-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the common primary brain tumor classified the most malignant glioma. Long non-coding RNAs (LncRNAs) are important epigenetic regulators with critical roles in cancer initiation and progression. LncRNA HOTAIRM1 transcribes from the antisense strand of HOXA gene cluster which locus in chromosome 7p15.2. Recent studies have shown that HOTAIRM1 is involved in acute myeloid leukemia and colorectal cancer. Here we sought to investigate the role of HOTAIRM1 in GBM and explore its mechanisms of action. Methods The expressions of HOTAIRM1 and HOXA1 in GBM tissues and cells were determined by qRT-PCR, and the association between HOTAIRM1, HOXA1 transcription and tumor grade were analyzed. The biological function of HOTAIRM1 in GBM was evaluated both in vitro and in vivo. Chromatin immunoprecipitation (ChIP) assay and quantitative Sequenom MassARRAY methylation analysis were performed to explore whether HOTAIRM1 could regulate histone and DNA modification status of the HOXA1 gene transcription start sites (TSS) and activate its transcription. ChIP and RNA-ChIP were further performed to determine the molecular mechanism of HOTAIRM1 in epigenetic regulation of the HOXA1 gene. Results HOTAIRM1 was abnormally up-regulated in GBM tissues and cells, and this up-regulation was correlated with grade malignancy in glioma patients. HOTAIRM1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion, and inducing cell apoptosis. In vivo experiments showed knockdown of HOTAIRM1 lessened the tumor growth. Additionally, HOTAIRM1 action as regulating the expression of the HOXA1 gene. HOXA1, as an oncogene, it’s expression levels were markedly elevated in GBM tissues and cell lines. Mechanistically, HOTAIRM1 mediated demethylation of histone H3K9 and H3K27 and reduced DNA methylation levels by sequester epigenetic modifiers G9a and EZH2, which are H3K9me2 and H3K27me3 specific histone methyltransferases, and DNA methyltransferases (DnmTs) away from the TSS of HOXA1 gene. Conclusions We investigated the potential role of HOTAIRM1 to promote GBM cell proliferation, migration, invasion and inhibit cell apoptosis by epigenetic regulation of HOXA1 gene that can be targeted simultaneously to effectively treat GBM, thus putting forward a promising strategy for GBM treatment. Meanwhile, this finding provides an example of transcriptional control over the chromatin state of gene and may help explain the role of lncRNAs within the HOXA gene cluster. Electronic supplementary material The online version of this article (10.1186/s13046-018-0941-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Jiayue Cui
- Department of Histology and Embryology of Basic Medicine College, Jilin University, Changchun, Jilin Province, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
25
|
Transcriptional activation of EGFR by HOXB5 and its role in breast cancer cell invasion. Biochem Biophys Res Commun 2018; 503:2924-2930. [PMID: 30115380 DOI: 10.1016/j.bbrc.2018.08.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022]
Abstract
HOX genes are transcription factors that play important roles in body patterning and many cellular processes during embryonic, fetal, and adult development. Given their important function in normal tissues, it is reasonable to assume that abnormal expression of HOX genes in adults could lead to serious diseases such as cancer. Our previous study reported HOXB5 to be significantly up-regulated in breast cancer, and its expression was found to be associated with tumor cell proliferation and invasion. Furthermore, the epidermal growth factor receptor (EGFR), a cellular tyrosine kinase that plays an important role in breast cancer progression, was found significantly up-regulated by HOXB5 in ER-positive breast cancer cells. In the present study, we demonstrated that HOXB5 regulates EGFR expression at the transcriptional level by directly binding to its promoter region and promotes phosphorylation of EGFR as well as its downstream effectors. Patients with ER-positive breast cancer, having high co-expression of HOXB5 and EGFR, had poor prognosis than those with low expression. Knockdown studies validated a key role played by EGFR in the HOXB5-induced invasion of breast cancer cells. These results suggest that targeting EGFR could be an effective strategy to treat breast cancer in patients with high HOXB5 expression.
Collapse
|
26
|
Luan L, Ma Y, Zhang L. HOXD10 silencing suppresses human fibroblast-like synoviocyte migration in rheumatoid arthritis via downregulation of the p38/JNK pathway. Exp Ther Med 2018; 16:1621-1628. [PMID: 30186380 PMCID: PMC6122097 DOI: 10.3892/etm.2018.6432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Homeobox D10 (HOXD10) belongs to the human homeobox (HOX) gene family, and the homologous protein encoded by HOX primarily controls cell differentiation and morphogenesis during embryonic development. The current study aimed to explore the roles and mechanisms of HOXD10 in the migration of human fibroblast-like synoviocytes in rheumatoid arthritis (RAFLS). Cell counting kit-8, cell migration and wound healing assays were performed to examine the cell viability and migration, respectively. Western blot and reverse transcription-quantitative polymerase chain reaction assays were used to evaluate the association between mRNA and protein expression levels. The results revealed HOXD10 expression was upregulated in tissues from patients with RA. HOXD10 silencing inhibited the viability of RAFLS. In addition, HOXD10 silencing suppressed the migration of RAFLS through modulating the expression of cadherin-11, N-cadherin, E-cadherin, vimentin, zonula occludens-1, integrinβ1 and paxillin. In conclusion, HOXD10 silencing downregulates the p38/c-Jun N-terminal kinase signaling pathway, which in turn may suppress the migration of RAFLS.
Collapse
Affiliation(s)
- Luan Luan
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Yingying Ma
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Lihua Zhang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
27
|
Lou Y, Fallah Y, Yamane K, Berg PE. BP1, a potential biomarker for breast cancer prognosis. Biomark Med 2018; 12:535-545. [DOI: 10.2217/bmm-2017-0212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeobox genes are critical in tumor development. An isoform protein of DLX4 called BP1 is expressed in 80% of invasive ductal breast carcinomas. BP1 overexpression is implicated in an aggressive phenotype and poor prognosis. BP1 upregulation is associated with estrogen receptor negativity so those tumors do not respond to antiestrogens. Breast cancer is the second leading cause of death in women. BP1 could serve as both a novel prognostic biomarker for breast cancer and a therapeutic target. In this review, we address the role of BP1 protein in tumorigenesis of breast cancer and four other malignancies. A number of functions of BP1 in cancer are also discussed.
Collapse
Affiliation(s)
- Yaoxian Lou
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Yassi Fallah
- Department of Oncology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Kellie Yamane
- NantOmics, Diagnostic Center in Montgomery County, Rockville, MD 20850, USA
| | - Patricia E Berg
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
28
|
Xu K, Qiu C, Pei H, Mehmood MA, Wang H, Li L, Xia Q. Homeobox B3 promotes tumor cell proliferation and invasion in glioblastoma. Oncol Lett 2018; 15:3712-3718. [PMID: 29456734 PMCID: PMC5795893 DOI: 10.3892/ol.2018.7750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/10/2017] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor in adults with the highest mortality rate. Despite advances achieved in treatment and research, the median survival for patients with GBM remains <1.5 years. This figure prompted the present study to identify novel genes associated with GBM development and progression to ultimately improve GBM treatment. The current study sought to determine the role of homeobox B3 (HOXB3) in GBM cell invasion and proliferation. HOXB3 was highly expressed in GBM tissues and glioma cell lines. To establish in vitro cell models for investigation, U87-MG and U251-MG, two typical GBM cells, were selected to generate corresponding cells lines that constitutively silenced HOXB3 expression using a lentivirus-mediated RNA interference approach. The results of the knockdown revealed that glioma cells stably expressing HOXB3 short hairpin RNA exhibited significantly decreased proliferation levels when compared with untransfected cells. The effect of HOXB3 on glioma cell invasion was also examined. Silencing of HOXB3 resulted in a marked reduction in invasiveness. Furthermore, HOXB3 silencing led to the upregulation of E-cadherin and downregulation of mesenchymal markers, N-cadherin and vimentin. Taken together, the findings of the present study indicate that HOXB3 promotes cell proliferation and invasion.
Collapse
Affiliation(s)
- Ke Xu
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Chun Qiu
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Hua Pei
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Huamin Wang
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Liang Li
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Qianfeng Xia
- Key Laboratory of Tropical Biomedicine, and Faculty of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| |
Collapse
|
29
|
Overexpression of HOXB7 protein reduces sensitivity of oral cancer cells to chemo-radiotherapy. Cancer Gene Ther 2016; 23:419-424. [PMID: 27834359 DOI: 10.1038/cgt.2016.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
The upregulation of homeobox-B7 (HOXB7) in cancers has been reported. However, its role in oral cancer progression remains to be investigated. In current study, our data revealed that reconstitution of HOXB7 expression by transient transfection resulted in increased cell growth, migration and invasion in vitro. In addition, apoptosis and clonogenic assay data showed that overexpression of HOXB7 decreased the sensitivity of oral cancer cells to vincristine-induced apoptosis of HSC-4 and KB/VCR cells. Furthermore, overexpression of HOXB7 promoted oral cancer cells' migration and invasion through activation of TGFβ2/SMAD3 signaling pathway. Moreover, forced expression of HOXB7 increased Bcl-2 to Bax ratio, which would promote cell survival and induce drug and radiotherapy resistance. Altogether, our findings support the role of HOXB7 in the progression of oral cancer. Therefore, HOXB7 potentially can be a therapeutic target for oral cancer.
Collapse
|
30
|
Zhang J, Xiao L, Qin Z, Xu A, Zhao K, Liang C, Miao C, Zhu J, Chen W, Hua Y, Liu Y, Zhang C, Yu Y, Su S, Wang Z. Association between germline homeobox B13 (HOXB13) G84E allele and prostate cancer susceptibility: a meta-analysis and trial sequential analysis. Oncotarget 2016; 7:67101-67110. [PMID: 27626483 PMCID: PMC5341860 DOI: 10.18632/oncotarget.11937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Germline HOXB13 G84E mutation (rs138213197) has been described associated with prostate cancer (PCa) susceptibility but results of different studies are inconsistent. We conducted this meta-analysis to evaluate the specific role of this mutation. Relevant available studies were identified by searching the databases Pubmed, Embase and Web of Science. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure the strength of the association. Subgroup analysis were performed to evaluate the specific role of rs138213197 in disease aggressiveness, diagnostic age and family history. Furthermore, trial sequential analysis (TSA) was conducted for the first time to estimate whether the evidence of the results is sufficient. Our results indicated that significant increased PCa susceptibility was associated with rs138213197 compared with non-carriers (OR = 3.38, 95% CI: 2.45-4.66). Besides, in subgroup analysis, HOXB13 G84E variant was obviously associated with early onset (OR = 2.90, 95% CI: 2.24-3.75), affected relatives (OR = 2.60, 95% CI 2.19-3.10) and highly aggressive disease (OR = 2.38, 95% CI 1.84-3.08). By TSA, the findings in the current study were based on sufficient evidence. Therefore, our results indicated that the G84E mutation in HOXB13 gene might increase susceptibility to PCa.
Collapse
Affiliation(s)
- Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Xiao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Qin
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyang Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Yu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shifeng Su
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Germline HOXB13 p.Gly84Glu mutation and cancer susceptibility: a pooled analysis of 25 epidemiological studies with 145,257 participates. Oncotarget 2016; 6:42312-21. [PMID: 26517352 PMCID: PMC4747227 DOI: 10.18632/oncotarget.5994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/05/2015] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have investigated association between the germline HOXB13 p.Gly84Glu mutation and cancer risk. However, the results were inconsistent. Herein, we performed this meta-analysis to get a precise conclusion of the associations. A comprehensive literature search was conducted through Medline (mainly Pubmed), Embase, Cochrane Library databases. Crude odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by STATA 12.1 software to evaluate the association of HOXB13 p.Gly84Glu mutation and cancer susceptibility. Then, 25 studies including 51,390 cases and 93,867 controls were included, and there was significant association between HOXB13 p.Gly84Glu mutation and overall cancer risk (OR = 2.872, 95% CI = 2.121-3.888, P < 0.001), particularly in prostate cancer (OR = 3.248, 95% CI = 2.313-4.560, P < 0.001), while no association was found in breast (OR = 1.424, 95% CI = 0.776-2.613, P = 0.253) and colorectal cancers (OR = 2.070, 95% CI = 0.485-8.841, P = 0.326). When we stratified analysis by ethnicity, significant association was found in Caucasians (OR = 2.673, 95%CI = 1.920-3.720, P < 0.001). Further well-designed with large samples and other various cancers should be performed to validate our results.
Collapse
|
32
|
The function of homeobox genes and lncRNAs in cancer. Oncol Lett 2016; 12:1635-1641. [PMID: 27588114 DOI: 10.3892/ol.2016.4901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/24/2016] [Indexed: 02/02/2023] Open
Abstract
Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs.
Collapse
|
33
|
Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, Renard P, Geerts D, Rezsöhazy R. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. Nucleic Acids Res 2016; 44:7331-49. [PMID: 27382069 PMCID: PMC5009750 DOI: 10.1093/nar/gkw606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 11/14/2022] Open
Abstract
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is functionally linked to the TNF/NF-κB signaling pathway. Here, we reveal a strong positive correlation between expression of HOXA1 and of members of the TNF/NF-κB pathway in breast tumor datasets. Functionally, we demonstrate that HOXA1 can activate NF-κB and operates upstream of the NF-κB inhibitor IκB. Consistently, we next demonstrate that the HOXA1-mediated activation of NF-κB is non-transcriptional and that RBCK1 and TRAF2 influences on NF-κB are epistatic to HOXA1. We also identify an 11 Histidine repeat and the homeodomain of HOXA1 to be required both for RBCK1 and TRAF2 interaction and NF-κB stimulation. Finally, we highlight that activation of NF-κB is crucial for HOXA1 oncogenic activity.
Collapse
Affiliation(s)
- Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Amandine Draime
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Barbara Lambert
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Julie Vandeputte
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Nathan Nguyen
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Patricia Renard
- Cellular Biology Research Unit, Université de Namur, Namur 5000, Belgium
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - René Rezsöhazy
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
34
|
Chang S, Liu J, Guo S, He S, Qiu G, Lu J, Wang J, Fan L, Zhao W, Che X. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep 2016; 35:3577-85. [PMID: 27108607 DOI: 10.3892/or.2016.4743] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
A long non-coding RNA named HOTTIP (HOXA transcript at the distal tip) coordinates the activation of various 5' HOXA genes which encode master regulators of development through targeting the WDR5/MLL complex. HOTTIP acts as an oncogene in several types of cancers, whereas its biological function in gastric cancer has never been studied. In the present study, we investigated the role of HOTTIP in gastric cancer. We found that HOTTIP was upregulated in gastric cancer cell lines. Knockdown of HOTTIP in gastric cancer cells inhibited cell proliferation, migration and invasion. Moreover, downregulation of HOTTIP led to decreased expression of homeobox protein Hox-A13 (HOXA13) in gastric cancer cell lines. HOXA13 was involved in HOTTIP‑induced malignant phenotypes of gastric cancer cells. Our data showed that the levels of HOTTIP and HOXA13 were both markedly upregulated in gastric cancer tissues compared with their counterparts in non-tumorous tissues. Furthermore, the expression levels of HOTTIP and HOXA13 were both higher in gastric cancer which was poorly differentiated, at advanced TNM stages and exhibited lymph node-metastasis. Spearman analyses indicated that HOTTIP and HOXA13 had a highly positive correlation both in non-tumor mucosae and cancer lesions. Collectively, these findings suggest that HOTTIP and HOXA13 play important roles in gastric cancer progression and provide a new insight into therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Shuai Chang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shaochun Guo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shicai He
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Lu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
35
|
Hur H, Lee JY, Yang S, Kim JM, Park AE, Kim MH. HOXC9 Induces Phenotypic Switching between Proliferation and Invasion in Breast Cancer Cells. J Cancer 2016; 7:768-73. [PMID: 27162534 PMCID: PMC4860792 DOI: 10.7150/jca.13894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/20/2016] [Indexed: 01/07/2023] Open
Abstract
HOX genes encode a family of transcriptional regulators that are involved in pattern formation and organogenesis during embryo development. In addition, these genes play important roles in adult tissues and some of the dysregulated HOX genes are associated with cancer development and metastasis. Like many other HOX genes, HOXC9 is aberrantly expressed in certain breast cancer cell lines and tissues; however, its specific functions in breast cancer progression were not investigated. In the present study, we demonstrated that HOXC9 overexpression in breast cancer cell lines such as MDA-MB-231 and MCF7 increased the invasiveness but reduced the proliferation of cells, resembling a phenotype switch from a proliferative to an invasive state. Furthermore, the reciprocal result was detected in MCF7 and BT474 cells when the expression level of HOXC9 was reduced with siRNA. The clinical impact of HOXC9 in breast cancer was interpreted from the survival analysis data, in which high HOXC9 expression led to considerably poorer disease-free survival and distant metastasis-free survival, especially in lymph node-positive patients. Together, the prognostic relevance of HOXC9 and the HOXC9-derived phenotypic switch between proliferative and invasive states in the breast cancer cell lines suggest that HOXC9 could be a prognostic marker in breast cancer patients with lymph node metastasis and a target for therapeutic intervention in malignant breast cancer.
Collapse
Affiliation(s)
- Ho Hur
- 1. Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang 410-719, Korea
| | - Ji-Yeon Lee
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seoyeon Yang
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jie Min Kim
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Anna E Park
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myoung Hee Kim
- 2. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
36
|
Guo YB, Shao YM, Chen J, Xu SB, Zhang XD, Wang MR, Liu HY. Effect of overexpression of HOX genes on its invasive tendency in cerebral glioma. Oncol Lett 2015; 11:75-80. [PMID: 26870170 DOI: 10.3892/ol.2015.3893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 09/04/2015] [Indexed: 12/13/2022] Open
Abstract
Transcription factors encoded by HOX genes are vital in the determination of cell fate and identity during embryonic development. In certain malignancies, HOX genes also behave as oncogenes. The present study demonstrated suppression of the invasive tendency of glioblastoma multiforme U-118 and U-138 cells by the introduction of the antisense fragments of HOXA6 and B13 genes using electroporation. The invasion index indicated 79 and 72% reductions in the invasive ability of antisense HOXA6 and B13, respectively. No significant differences in the invasive index of the parental and mock cells of each HOX gene were observed (invasive index, 0.75-0.91; P=0.05). A reduction in invasion tendency was also observed following betulinic acid (BA) treatment: The results from the matrigel assay analysis clearly demonstrated a significant inhibition in the invasive behaviour of U-118 and U-138 cell lines from day 15 following BA treatment, with a maximum effect on day 30. The invasion index demonstrated 62 and 65% reductions in invasion ability in the U-118 and U-138 cell lines, respectively. The suppression of HOXC6 and B13 expression by the introduction of the corresponding antisense fragments in addition to BA reduced invasion tendency in U-118 and U-138 cell lines. The mechanism underlying the association between the HOX gene and invasive behavior in glioma cells is yet to be understood. However, the anti-invasive behavior of BA may aid understanding of the mechanism in future studies.
Collapse
Affiliation(s)
- Yun-Bao Guo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi-Meng Shao
- Department of Surgery, Central Hospital of Changchun, Changchun, Jilin 130011, P.R. China
| | - Jing Chen
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Song-Bai Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xing-Dong Zhang
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mao-Ren Wang
- Department of Clinical Medicine, College of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Yan Liu
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
37
|
Wang X, Li Y, Qi W, Zhang N, Sun M, Huo Q, Cai C, Lv S, Yang Q. MicroRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells. Oncotarget 2015; 6:32737-32747. [PMID: 26417931 PMCID: PMC4741726 DOI: 10.18632/oncotarget.5355] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators of tumor progression. Based on microarray data, we identified miR-99a as a potential tumor suppressor in breast cancer. Expression of miR-99a is frequently down-regulated in breast cancer tissues relative to normal breast tissues. Reduced miR-99a expression was highly associated with lymph node metastasis and shorter overall survival of patients with breast cancer. Gain- and loss-of-function studies revealed that, miR-99a significantly inhibits breast cancer cell proliferation, migration, and invasion. An integrated bioinformatics analysis identified HOXA1 mRNA as the direct functional target of miR-99a, and this regulation was confirmed by luciferase reporter assay. Furthermore, we showed for the first time that HOXA1 expression is elevated in breast cancer tissues. Knockdown of HOXA1 significantly inhibited breast cancer cell proliferation, migration and invasion, and restoration of HOXA1 partially rescued the inhibitory effect of miR-99a in breast cancer cells. Collectively, our data indicate that miR-99a plays a tumor-suppressor role in the development of breast cancer, and could serve as a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yaming Li
- School of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wenwen Qi
- School of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Mingjuan Sun
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Qiang Huo
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chang Cai
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Shangge Lv
- School of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
- Department of Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
38
|
Ma R, Zhang D, Hu PC, Li Q, Lin CY. HOXB7-S3 inhibits the proliferation and invasion of MCF-7 human breast cancer cells. Mol Med Rep 2015; 12:4901-8. [PMID: 26135503 PMCID: PMC4581815 DOI: 10.3892/mmr.2015.4009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 06/03/2015] [Indexed: 12/23/2022] Open
Abstract
Homeobox B7 (HOXB7) has been found to be overexpressed in numerous types of human cancer. However, the role of HOXB7 in breast cancer remains to be elucidated. The aim of the present study was to investigate the effects of HOXB7 on the proliferation and invasion of breast cancer cells. Initially, reverse transcription quantitative polymerase chain reaction and western blotting were respectively employed to detect the mRNA and protein expression levels of the HOXB7 gene in the MDA-MB-231 and MCF-7 human breast cancer cell lines. Subsequently, small interfering RNAs designed to interfere with the expression of HOXB7 were used to knockdown the expression of HOXB7 in the MCF-7 cell line, the effects of which on cell proliferation, the apoptotic rate and invasion capacity were measured using a Cell Counting kit-8 assay, flow cytometry and transwell chambers, respectively. The results demonstrated that HOXB7 mRNA and protein were all overexpressed in MDA-MB-231 and MCF-7 breast cancer cell lines. Furthermore, HOXB7-S3 effectively inhibited the proliferation and invasion of MCF-7 breast cancer cells. In conclusion, these results demonstrated that HOXB7 may be a potential therapeutic target in human breast cancer.
Collapse
Affiliation(s)
- Rui Ma
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Key Laboratory of Tumor Biological Behavior of Hubei, Wuhan, Hubei 430071, P.R. China
| | - Dan Zhang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Key Laboratory of Tumor Biological Behavior of Hubei, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Pathology and Pathophysiology, Research Center of Food and Drug Evaluation, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qun Li
- Renmin Hospital of Wuhan University, The First College of Clinical Medicine of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Cong-Yao Lin
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Key Laboratory of Tumor Biological Behavior of Hubei, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
39
|
Marrero-Rodríguez D, Taniguchi-Ponciano K, Lopez-Sleman J, Romero-Morelos P, Mendoza-Rodríguez M, Garcia I, Huerta-Padilla V, Mantilla A, Duarte A, Piña P, Rodriguez-Esquivel M, Lopez-Romero R, Parrazal-Romero J, Tobias-Alonso S, Jimenez-Vega F, Alvarez-Blanco M, Salcedo M. Thymopoietin Beta and Gamma Isoforms as a Potential Diagnostic Molecular Marker for Breast Cancer: Preliminary Data. Pathol Oncol Res 2015; 21:1045-50. [PMID: 25837847 DOI: 10.1007/s12253-015-9907-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
Thymopoietin (TMPO) is an inner nuclear membrane protein, the coding gene named equally, can give arise to six isoforms by alternative splicing. This gene has been found up regulated in several types of cancer. At present work, we evaluated the TMPO isoforms generated by alternative splicing as well as the protein signal detection in breast cancer samples. TMPO expression was analyzed by immunohistochemistry in tissue microarray containing 46 breast tissue samples including normal (n = 6), benign lesions (n = 18) (fibroadenomas (n = 6), fibrocystic changes (n = 6), ductal hyperplasias (n = 6)) and breast carcinoma (n = 22). Isoforms -α, -β and -γ of TMPO were evaluated using RT-PCR; clinical-pathological correlation analysis were done by mean of X(2). Neither the normal nor the benign lesions of the breast showed positive TMPO immunodetection, whilst 45 % of the breast carcinomas were immunopositive (p = 0.000), nine of ten positives carcinomas correspond to the Luminal A subtype. Further, alpha isoform was present in all breast samples analyzed; however, beta and gamma isoforms were only present in ten (p = 0.003) and 17 (p = 0.000), respectively, in the breast cancer samples. According with the present data, we suggest that TMPOβ and -γ isoforms could provide a potential reliable diagnostic marker for breast cancer.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Laboratorio de Oncología genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI. IMSS, Av. Cuauhtémoc 330, Col. Doctores, México, DF, 06720, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hur H, Lee JY, Yun HJ, Park BW, Kim MH. Analysis of HOX gene expression patterns in human breast cancer. Mol Biotechnol 2014; 56:64-71. [PMID: 23820980 DOI: 10.1007/s12033-013-9682-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression.
Collapse
Affiliation(s)
- Ho Hur
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, 410-719, Korea
| | | | | | | | | |
Collapse
|
41
|
Brock A, Krause S, Li H, Kowalski M, Goldberg MS, Collins JJ, Ingber DE. Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 2014; 6:217ra2. [PMID: 24382894 DOI: 10.1126/scitranslmed.3007048] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With advances in screening, the incidence of detection of premalignant breast lesions has increased in recent decades; however, treatment options remain limited to surveillance or surgical removal by lumpectomy or mastectomy. We hypothesized that disease progression could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Using computational gene network modeling, we identified HoxA1 as a putative driver of early mammary cancer progression in transgenic C3(1)-SV40TAg mice. Silencing this gene in cultured mouse or human mammary tumor spheroids resulted in increased acinar lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization. When the HoxA1 gene was silenced in vivo via intraductal delivery of nanoparticle-formulated small interfering RNA (siRNA) through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. This approach that leverages new advances in systems biology and nanotechnology offers a novel noninvasive strategy to block breast cancer progression through targeted silencing of critical genes directly within the mammary epithelium.
Collapse
Affiliation(s)
- Amy Brock
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Vardhini NV, Rao PJM, Murthy PB, Sudhakar G. HOXD10 expression in human breast cancer. Tumour Biol 2014; 35:10855-60. [DOI: 10.1007/s13277-014-2324-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022] Open
|
43
|
Lindqvist BM, Wingren S, Motlagh PB, Nilsson TK. Whole genome DNA methylation signature of HER2-positive breast cancer. Epigenetics 2014; 9:1149-62. [PMID: 25089541 DOI: 10.4161/epi.29632] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a comprehensive DNA methylation signature of HER2-positive breast cancer (HER2+ breast cancer), we performed a genome-wide methylation analysis on 17 HER2+ breast cancer and compared with ten normal breast tissue samples using the Illumina Infinium HumanMethylation450 BeadChip (450K). In HER2+ breast cancer, we found altered DNA methylation in genes involved in multicellular development, differentiation and transcription. Within these genes, we observed an overrepresentation of homeobox family genes, including several genes that have not been previously reported in relation to cancer (DBX1, NKX2-6, SIX6). Other affected genes included several belonging to the PI3K and Wnt signaling pathways. Notably, HER2, AKT3, HK1, and PFKP, genes for which altered methylation has not been previously reported, were also identified in this analysis. In total, we report 69 candidate biomarker genes with maximum differential methylation in HER2+ breast cancer. External validation of gene expression in a selected group of these genes (n = 13) revealed lowered mean gene expression in HER2+ breast cancer. We analyzed DNA methylation in six top candidate genes (AKR1B1, INA, FOXC2, NEUROD1, CDKL2, IRF4) using EpiTect Methyl II Custom PCR Array and confirmed the 450K array findings. Future clinical studies focusing on these genes, as well as on homeobox-containing genes and HER2, AKT3, HK1, and PFKP, are warranted which could provide further insights into the biology of HER2+ breast cancer.
Collapse
Affiliation(s)
- Breezy M Lindqvist
- School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| | - Sten Wingren
- School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| | - Parviz B Motlagh
- Department of Medical Biosciences/Clinical Chemistry; Umeå University; Umeå, Sweden
| | - Torbjörn K Nilsson
- Department of Medical Biosciences/Clinical Chemistry; Umeå University; Umeå, Sweden
| |
Collapse
|
44
|
Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl) 2014; 92:811-23. [PMID: 24996520 DOI: 10.1007/s00109-014-1181-y] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/27/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022]
Abstract
In this review, we summarize published findings on the involvement of HOX genes in oncogenesis. HOX genes are developmental genes--they code for proteins that function as critical master regulatory transcription factors during embryogenesis. Many reports have shown that the protein products of HOX genes also play key roles in the development of cancers. Based on our review of the literature, we found that the expression of HOX genes is not only up- or downregulated in most solid tumors but also that the expression of specific HOX genes in cancers tends to differ based on tissue type and tumor site. It was also observed that HOXC family gene expression is upregulated in most solid tumor types, including colon, lung, and prostate cancer. The two HOX genes that were reported to be most commonly altered in solid tumors were HOXA9 and HOXB13. HOXA were often reported to have altered expression in breast and ovarian cancers, HOXB genes in colon cancers, HOXC genes in prostate and lung cancers, and HOXD genes in colon and breast cancers. It was found that HOX genes are also regulated at the nuclear-cytoplasmic transport level in carcinomas. Tumors arising from tissue having similar embryonic origin (endodermal), including colon, prostate, and lung, showed relatively similar HOXA and HOXB family gene expression patterns compared to breast tumors arising from mammary tissue, which originates from the ectoderm. The differential expression of HOX genes in various solid tumors thus provides an opportunity to advance our understanding of cancer development and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, 4701 Ogletown-Stanton Road, Newark, DE, 19713, USA
| | | | | |
Collapse
|
45
|
Hamid SM, Cicek S, Karamil S, Ozturk MB, Debelec-Butuner B, Erbaykent-Tepedelen B, Varisli L, Gonen-Korkmaz C, Yorukoglu K, Korkmaz KS. HOXB13 contributes to G1/S and G2/M checkpoint controls in prostate. Mol Cell Endocrinol 2014; 383:38-47. [PMID: 24325868 DOI: 10.1016/j.mce.2013.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
HOXB13 is a homeobox protein that is expressed in normal adult prostate and colon tissues; however, its deregulated expression was evidenced in various malignancies. To characterize the putative role of HOXB13 in cell cycle progression, we performed overexpression and siRNA-mediated knockdown studies in PC-3 and LNCaP cells. Immunohistochemistry (IHC) analyses were also performed using formalin-fixed, paraffin-embedded tissues containing normal, H-PIN and PCa sections from 20 radical prostatectomy specimens. Furthermore, when the role of HOXB13 during cell cycle progression, association with cyclins, cell growth and colony formation using real-time cell proliferation were assessed, we observed that ectopic expression of HOXB13 accumulated cells at G1 through decreasing the cyclin D1 level by promoting its ubiquitination and degradation. This loss slowed S phase entry in both cell lines examined, with an associated decrease in pRb((S780) and (S795)) phosphorylations. Contrary, siRNA-mediated depletion of HOXB13 expression noticeably increased cyclin levels, stabilized E2F1 and CDC25C, subsequent to increased pRb phosphorylations. This increase in Cyclin B1 and CDC25C both together facilitated activation of cyclin B complex via dephosphorylating CDK1((T14Y15)), and resumed the G2/M transition after nocodazole synchronization. Despite an increase in the total expression level and cytoplasmic retention of HOXB13 in H-PIN and PCa samples that were observed via IHC evaluation of prostate tissues, HOXB13 depletion facilitated to an increase in PC-3 and LNCaP cell proliferation. Thus, we suggest that HOXB13 expression is required for cell cycle regulation, and increases by an unknown mechanism consequent to its functional loss in cancer.
Collapse
Affiliation(s)
- Syed Muhammad Hamid
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Seher Cicek
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Selda Karamil
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Mert Burak Ozturk
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Bilge Debelec-Butuner
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey; Department of Biotechnology, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Burcu Erbaykent-Tepedelen
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Lokman Varisli
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | | | - Kutsal Yorukoglu
- Dokuz Eylul University, Faculty of Medicine, Department of Pathology, Inciralti, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey.
| |
Collapse
|
46
|
Evaluation of p53, HoxD10, and E-Cadherin Status in Breast Cancer and Correlation with Histological Grade and Other Prognostic Factors. JOURNAL OF ONCOLOGY 2014; 2014:702527. [PMID: 24634677 PMCID: PMC3929168 DOI: 10.1155/2014/702527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/29/2023]
Abstract
Background. Study of tumor molecular characteristics is necessary to understand both the risk of breast cancer recurrence and the response to therapy. Aims. To evaluate p53, HoxD10, and E-cadherin status in breast cancer and to correlate with histological grade and other prognostic factors. Material and Methods. The study was conducted in 60 cases of invasive ductal carcinoma NOS with 20 cases belonging to each grade and evaluation of p53 was done by IHC and that of HoxD10 and E Cadherin status by PCR and correlation was done with histological grade and other prognostic factors. Result. p53 expression was seen in 71.67% (43/60) of the tumors. HoxD10 gene was downregulated in 46.67% (28/60) of the tumors. p53 overexpression and lower HoxD10 mRNA levels showed statistically significant association higher histological grade of the tumor (P < 0.05). CDH1 gene mutation was seen in 60% (15/25) of the tumors. No significant association was found between p53 expression, HoxD10 gene, CDH1 gene mutation, and other prognostic factors. Conclusion. p53 over expression and lower HoxD10 mRNA levels were found to be significantly associated with higher grade tumours. This suggests that p53 and HoxD10 gene play an important tumor suppressor role and the loss of which results in breast cancer progression.
Collapse
|
47
|
Cantile M, Scognamiglio G, La Sala L, La Mantia E, Scaramuzza V, Valentino E, Tatangelo F, Losito S, Pezzullo L, Chiofalo MG, Fulciniti F, Franco R, Botti G. Aberrant expression of posterior HOX genes in well differentiated histotypes of thyroid cancers. Int J Mol Sci 2013; 14:21727-40. [PMID: 24189220 PMCID: PMC3856031 DOI: 10.3390/ijms141121727] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 12/23/2022] Open
Abstract
Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers.
Collapse
Affiliation(s)
- Monica Cantile
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Giosuè Scognamiglio
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Lucia La Sala
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Elvira La Mantia
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Veronica Scaramuzza
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Elena Valentino
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Fabiana Tatangelo
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Simona Losito
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Luciano Pezzullo
- Thyroid and Parathyroid Surgery Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (L.P.); (M.G.C.)
| | - Maria Grazia Chiofalo
- Thyroid and Parathyroid Surgery Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (L.P.); (M.G.C.)
| | - Franco Fulciniti
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| | - Renato Franco
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-5903-471; Fax: +39-081-5903-718
| | - Gerardo Botti
- Pathology Unit, National Cancer Institute “G. Pascale” Foundation, via Mariano Semmola 80131, Napoli, Italy; E-Mails: (M.C.); (G.S.); (L.L.S.); (E.L.M.); (V.S.); (E.V.); (F.T.); (S.L.); (F.F.); (G.B.)
| |
Collapse
|
48
|
Cantile M, Galletta F, Franco R, Aquino G, Scognamiglio G, Marra L, Cerrone M, Malzone G, Manna A, Apice G, Fazioli F, Botti G, De Chiara A. Hyperexpression of HOXC13, located in the 12q13 chromosomal region, in well‑differentiated and dedifferentiated human liposarcomas. Oncol Rep 2013; 30:2579-86. [PMID: 24085196 PMCID: PMC3839951 DOI: 10.3892/or.2013.2760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 01/13/2023] Open
Abstract
Liposarcoma (LPS) is the most common soft tissue neoplasm in adults and is characterized by neoplastic adipocyte proliferation. Some subtypes of LPSs show aberrations involving the chromosome 12. The most frequent are t(12;16) (q13;p11) present in more than 90% of myxoid LPSs and 12q13-15 amplification in well-differentiated and dedifferentiated LPSs. In this region, there are important oncogenes such as CHOP (DDIT3), GLI, MDM2, CDK4, SAS, HMGA2, but also the HOXC locus, involved in development and tumor progression. In this study, we evaluated the expression of HOXC13, included in this chromosomal region, in a series of adipocytic tumors. We included 18 well-differentiated, 4 dedifferentiated, 11 myxoid and 6 pleomorphic LPSs as well as 13 lipomas in a tissue microarray. We evaluated the HOXC13 protein and gene expression by immunohistochemistry and quantitative PCR. Amplification/translocation of the 12q13-15 region was verified by FISH. Immunohistochemical HOXC13 overexpression was observed in all well-differentiated and dedifferentiated LPSs, all characterized by the chromosome 12q13-15 amplification, and confirmed by quantitative PCR analysis. In conclusion, our data show a deregulation of the HOXC13 marker in well-differentiated and dedifferentiated LPSs, possibly related to 12q13-15 chromosomal amplification.
Collapse
Affiliation(s)
- Monica Cantile
- Division of Pathology, Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
DeInnocentes P, Perry AL, Graff EC, Lutful Kabir FM, Curtis Bird R. Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours. Vet Comp Oncol 2013; 13:322-36. [PMID: 24034269 DOI: 10.1111/vco.12062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Spatial/temporal controls of development are regulated by the homeotic (HOX) gene complex and require integration with oncogenes and tumour suppressors regulating cell cycle exit. Spontaneously derived neoplastic canine mammary carcinoma cell models were investigated to determine if HOX expression profiles were associated with neoplasia as HOX genes promote neoplastic potential in human cancers. Comparative assessment of human and canine breast cancer expression profiles revealed remarkable similarity for all four paralogous HOX gene clusters and several unlinked HOX genes. Five canine HOX genes were overexpressed with expression profiles consistent with oncogene-like character (HOXA1, HOXA13, HOXD4, HOXD9 and SIX1) and three HOX genes with underexpressed profiles (HOXA11, HOXC8 and HOXC9) were also identified as was an apparent nonsense mutation in HOXC6. This data, as well as a comparative analysis of similar data from human breast cancers suggested expression of selected HOX genes in canine mammary carcinoma could be contributing to the neoplastic phenotype.
Collapse
Affiliation(s)
- P DeInnocentes
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,AURIC-Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - A L Perry
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA
| | - E C Graff
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
| | - F M Lutful Kabir
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,AURIC-Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - R Curtis Bird
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,AURIC-Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
50
|
Coradini D, Oriana S. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation. CHINESE JOURNAL OF CANCER 2013; 33:51-67. [PMID: 23845141 PMCID: PMC3935006 DOI: 10.5732/cjc.013.10040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical and Community Health Sciences, Medical Statistics, Biometry and Bioinformatics, University of Milan 20133, Italy.
| | | |
Collapse
|