1
|
Niepoth N, Merritt JR, Uminski M, Lei E, Esquibies VS, Bando IB, Hernandez K, Gebhardt C, Wacker SA, Lutzu S, Poudel A, Soma KK, Rudolph S, Bendesky A. Evolution of a novel adrenal cell type that promotes parental care. Nature 2024; 629:1082-1090. [PMID: 38750354 PMCID: PMC11329292 DOI: 10.1038/s41586-024-07423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Jennifer R Merritt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Michelle Uminski
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Emily Lei
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Victoria S Esquibies
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Ina B Bando
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Kimberly Hernandez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Christoph Gebhardt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Sarah A Wacker
- Department of Chemistry and Biochemistry, Manhattan College, New York, NY, USA
| | - Stefano Lutzu
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Asmita Poudel
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Rudolph
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Klossner R, Groessl M, Schumacher N, Fux M, Escher G, Verouti S, Jamin H, Vogt B, Mohaupt MG, Gennari-Moser C. Steroid hormone bioavailability is controlled by the lymphatic system. Sci Rep 2021; 11:9666. [PMID: 33958648 PMCID: PMC8102502 DOI: 10.1038/s41598-021-88508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/13/2021] [Indexed: 11/09/2022] Open
Abstract
The steroid hormone progesterone accounts for immune tolerance in pregnancy. Enhanced progesterone metabolism to 6α-OH-pregnanolone occurs in complicated pregnancies such as in preeclampsia with preterm delivery or intrauterine growth restriction, and in cancer. As lymphatic endothelial cells (LECs) promote tumor immunity, we hypothesized that human LECs modify progesterone bioavailability. Primary human LECs and mice lymph nodes were incubated with progesterone and progesterone metabolism was analyzed by thin layer chromatography and liquid chromatography-mass spectrometry. Expression of steroidogenic enzymes, down-stream signal and steroid hormone receptors was assessed by Real-time PCR. The placental cell line HTR-8/SV neo was used as reference. The impact of the progesterone metabolites of interest was investigated on the immune system by fluorescence-activated cell sorting analysis. LECs metabolize progesterone to 6α-OH-pregnanolone and reactivate progesterone from a precursor. LECs highly express 17β-hydroxysteroid dehydrogenase 2 and are therefore antiandrogenic and antiestrogenic. LECs express several steroid hormone receptors and PIBF1. Progesterone and its metabolites reduced TNF-α and IFN-γ production in CD4+ and CD8+ T cells. LECs modify progesterone bioavailability and are a target of steroid hormones. Given the global area represented by LECs, they might have a critical immunomodulatory control in pregnancy and cancer.
Collapse
Affiliation(s)
- Rahel Klossner
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department of Medicine, Lindenhofgruppe, 3006, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Nadine Schumacher
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland
| | - Michaela Fux
- Department for Clinical Chemistry, Inselspital, 3010, Bern, Switzerland
| | - Geneviève Escher
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Sophia Verouti
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Heidi Jamin
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Markus G Mohaupt
- Department of Medicine, Lindenhofgruppe, 3006, Bern, Switzerland.,Campus SLB, Sitem, 3010, Bern, Switzerland.,Division of Child Health, Obstetrics and Gynecology, University of Nottingham, Nottingham, NG5 1PB, UK
| | - Carine Gennari-Moser
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
3
|
Moon JY, Shin HJ, Son HH, Lee J, Jung U, Jo SK, Kim HS, Kwon KH, Park KH, Chung BC, Choi MH. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice. J Steroid Biochem Mol Biol 2014; 141:52-9. [PMID: 24462676 DOI: 10.1016/j.jsbmb.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/22/2022]
Abstract
The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.
Collapse
Affiliation(s)
- Ju-Yeon Moon
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hee-June Shin
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jeongae Lee
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Sung-Kee Jo
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun Sik Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyung-Hoon Kwon
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu Hwan Park
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bong Chul Chung
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
4
|
Löfgren M, Bengtsson SK, Johansson M, Bäckström T. Allopregnanolone promotes success in food competition in subordinate male rats. Neuropsychobiology 2013; 68:15-23. [PMID: 23774881 DOI: 10.1159/000350478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/21/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Allopregnanolone or 3α-hydroxy-5α-pregnan-20-one (AlloP) is normally sedative and anxiolytic, but can under provoking circumstances paradoxically induce aggressive behavior. Therefore, it is of particular interest to determine if there is a relationship between an anxiolytic effect and aggressive behavior following AlloP administration. METHOD Male Wistar rats were housed in triads comprising of 1 young rat (35 days) and 2 older rats (55 days), with the intent of producing a social hierarchy. The triads were sampled for total serum testosterone and submitted to a social challenge in the form of a food competition test (FCT), where the rats competed for access to drinking sweetened milk. At baseline, the younger rats were identified as subordinates. To test for the behavioral effect of AlloP, the subordinate rats were given intravenous AlloP injections of 0.5 and 1 mg/kg. To assess the optimal AlloP effect, 6 intervals (5, 10, 15, 20, 30 and 40 min) between injection and the FCT were used. In separate studies, AlloP was also given by subcutaneous and intraperitoneal administration at 10 and 17 mg/kg. RESULTS AlloP (1 mg/kg, i.v.) increased drinking time and aggressive behavior in subordinate rats, with a positive correlation between these behaviors. The subcutaneous injection (17 mg/kg) also increased drinking time in subordinate animals. Serum testosterone concentration was higher in dominant compared to subordinate rats, and correlated with drinking time and weight. CONCLUSIONS AlloP increased drinking time and aggressive behavior, and the correlation indicates a relationship between an anxiolytic effect and aggressive behavior.
Collapse
Affiliation(s)
- Magnus Löfgren
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Umeå Neurosteroid Research Center, Umeå University Hospital, Umeå, Sweden.
| | | | | | | |
Collapse
|
5
|
Abstract
5α-Reduced glucocorticoids (GCs) are formed when one of the two isozymes of 5α-reductase reduces the Δ(4-5) double bond in the A-ring of GCs. These steroids are largely viewed inert, despite the acceptance that other 5α-dihydro steroids, e.g. 5α-dihydrotestosterone, retain or have increased activity at their cognate receptors. However, recent findings suggest that 5α-reduced metabolites of corticosterone have dissociated actions on GC receptors (GRs) in vivo and in vitro and are thus potential candidates for safer anti-inflammatory steroids. 5α-Dihydro- and 5α-tetrahydro-corticosterone can bind with GRs, but interest in these compounds had been limited, since they only weakly activated metabolic gene transcription. However, a greater understanding of the signalling mechanisms has revealed that transactivation represents only one mode of signalling via the GR and recently the abilities of 5α-reduced GCs to suppress inflammation have been demonstrated in vitro and in vivo. Thus, the balance of parent GC and its 5α-reduced metabolite may critically affect the profile of GR signalling. 5α-Reduction of GCs is up-regulated in liver in metabolic disease and may represent a pathway that protects from both GC-induced fuel dyshomeostasis and concomitant inflammatory insult. Therefore, 5α-reduced steroids provide hope for drug development, but may also act as biomarkers of the inflammatory status of the liver in metabolic disease. With these proposals in mind, careful attention must be paid to the possible adverse metabolic effects of 5α-reductase inhibitors, drugs that are commonly administered long term for the treatment of benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Mark Nixon
- Endocrinology, Queen's Medical Research Institute, University/British Heart Foundation Centre for Cardiovascular Science, Edinburgh EH16 4TJ, UK
| | | | | |
Collapse
|