1
|
Kwak YT, Montalbano AP, Kelleher AM, Colon-Caraballo M, Kraus WL, Mahendroo M, Mendelson CR. Decline in corepressor CNOT1 in the pregnant myometrium near term impairs progesterone receptor function and increases contractile gene expression. J Biol Chem 2024; 300:107484. [PMID: 38897566 PMCID: PMC11301068 DOI: 10.1016/j.jbc.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Progesterone (P4), acting via its nuclear receptor (PR), is critical for pregnancy maintenance by suppressing proinflammatory and contraction-associated protein (CAP)/contractile genes in the myometrium. P4/PR partially exerts these effects by tethering to NF-κB bound to their promot-ers, thereby decreasing NF-κB transcriptional activity. However, the underlying mechanisms whereby P4/PR interaction blocks proinflammatory and CAP gene expression are not fully understood. Herein, we characterized CCR-NOT transcription complex subunit 1 (CNOT1) as a corepressor that also interacts within the same chromatin complex as PR-B. In mouse myome-trium increased expression of CAP genes Oxtr and Cx43 at term coincided with a marked decline in expression and binding of CNOT1 to NF-κB-response elements within the Oxtr and Cx43 promoters. Increased CAP gene expression was accompanied by a pronounced decrease in enrichment of repressive histone marks and increase in enrichment of active histone marks to this genomic region. These changes in histone modification were associated with changes in expression of corresponding histone modifying enzymes. Myometrial tissues from P4-treated 18.5 dpc pregnant mice manifested increased Cnot1 expression at 18.5 dpc, compared to vehicle-treated controls. P4 treatment of PR-expressing hTERT-HM cells enhanced CNOT1 expression and its recruitment to PR bound NF-κB-response elements within the CX43 and OXTR promoters. Furthermore, knockdown of CNOT1 significantly increased expression of contractile genes. These novel findings suggest that decreased expression and DNA-binding of the P4/PR-regulated transcriptional corepressor CNOT1 near term and associated changes in histone modifications at the OXTR and CX43 promoters contribute to the induction of myometrial contractility leading to parturition.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew M Kelleher
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Mariano Colon-Caraballo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Chuang TD, Ton N, Rysling S, Khorram O. In Vivo Effects of Bay 11-7082 on Fibroid Growth and Gene Expression: A Preclinical Study. Cells 2024; 13:1091. [PMID: 38994944 PMCID: PMC11240737 DOI: 10.3390/cells13131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Current medical therapies for fibroids have major limitations due to their hypoestrogenic side effects. Based on our previous work showing the activation of NF-kB in fibroids, we hypothesized that inhibiting NF-kB in vivo would result in the shrinkage of tumors and reduced inflammation. Fibroid xenografts were implanted in SCID mice and treated daily with Bay 11-7082 (Bay) or vehicle for two months. Bay treatment led to a 50% reduction in tumor weight. RNAseq revealed decreased expression of genes related to cell proliferation, inflammation, extracellular matrix (ECM) composition, and growth factor expression. Validation through qRT-PCR, Western blotting, ELISA, and immunohistochemistry (IHC) confirmed these findings. Bay treatment reduced mRNA expression of cell cycle regulators (CCND1, E2F1, and CKS2), inflammatory markers (SPARC, TDO2, MYD88, TLR3, TLR6, IL6, TNFα, TNFRSF11A, and IL1β), ECM remodelers (COL3A1, FN1, LOX, and TGFβ3), growth factors (PRL, PDGFA, and VEGFC), progesterone receptor, and miR-29c and miR-200c. Collagen levels were reduced in Bay-treated xenografts. Western blotting and IHC showed decreased protein abundance in certain ECM components and inflammatory markers, but not cleaved caspase three. Ki67, CCND1, and E2F1 expression decreased with Bay treatment. This preclinical study suggests NF-kB inhibition as an effective fibroid treatment, suppressing genes involved in proliferation, inflammation, and ECM remodeling.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Mendelson CR, Gao L, Montalbano AP. Multifactorial Regulation of Myometrial Contractility During Pregnancy and Parturition. Front Endocrinol (Lausanne) 2019; 10:714. [PMID: 31708868 PMCID: PMC6823183 DOI: 10.3389/fendo.2019.00714] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
The steroid hormones progesterone (P4) and estradiol-17β (E2), produced by the placenta in humans and the ovaries in rodents, serve crucial roles in the maintenance of pregnancy, and the initiation of parturition. Because of their critical importance for species survival, the mechanisms whereby P4 and its nuclear receptor (PR) maintain myometrial quiescence during pregnancy, and for the decline in P4/PR and increase in E2/estrogen receptor (ER) function leading to parturition, are multifaceted, cooperative, and redundant. These actions of P4/PR include: (1) PR interaction with proinflammatory transcription factors, nuclear factor κB (NF-κB), and activating protein 1 (AP-1) bound to promoters of proinflammatory and contractile/contraction-associated protein (CAP) genes and recruitment of corepressors to inhibit NF-κB and AP-1 activation of gene expression; (2) upregulation of inhibitors of proinflammatory transcription factor activation (IκBα, MKP-1); (3) induction of transcriptional repressors of CAP genes (e.g., ZEB1). In rodents and most other mammals, circulating maternal P4 levels remain elevated throughout most of pregnancy and decline precipitously near term. By contrast, in humans, circulating P4 levels and myometrial PR levels remain elevated throughout pregnancy and into labor. However, even in rodents, wherein P4 levels decline near term, P4 levels remain higher than the Kd for PR binding. Thus, parturition is initiated in all species by a series of molecular events that antagonize the P4/PR maintenance of uterine quiescence. These events include: direct interaction of inflammatory transcription factors (e.g., NF-κB, AP-1) with PR; increased expression of P4 metabolizing enzymes; increased expression of truncated/inhibitory PR isoforms; altered expression of PR coactivators and corepressors. This article will review various mechanisms whereby P4 acting through PR isoforms maintains myometrial quiescence during pregnancy as well as those that underlie the decline in PR function leading to labor. The roles of P4- and E2-regulated miRNAs in the regulation and integration of these mechanisms will also be considered.
Collapse
|
4
|
Renthal NE, Williams KC, Montalbano AP, Chen CC, Gao L, Mendelson CR. Molecular Regulation of Parturition: A Myometrial Perspective. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023069. [PMID: 26337112 DOI: 10.1101/cshperspect.a023069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular mechanisms that maintain quiescence of the myometrium throughout most of pregnancy and promote its transformation to a highly coordinated contractile unit culminating in labor are complex and intertwined. During pregnancy, progesterone (P4) produced by the placenta and/or ovary serves a dominant role in maintaining myometrial quiescence by blocking proinflammatory response pathways and expression of so-called "contractile" genes. In the majority of placental mammals, increased uterine contractility near term is heralded by an increase in circulating estradiol-17β (E2) and/or increased estrogen receptor α (ERα) activity and a sharp decline in circulating P4 levels. However, in women, circulating levels of P4 and progesterone receptors (PR) in myometrium remain elevated throughout pregnancy and into labor. This has led to the concept that increased uterine contractility leading to term and preterm labor is mediated, in part, by a decline in PR function. The biochemical mechanisms for this decrease in PR function are also multifaceted and interwoven. In this paper, we focus on the molecular mechanisms that mediate myometrial quiescence and contractility and their regulation by the two central hormones of pregnancy, P4 and estradiol-17β. The integrative roles of microRNAs also are considered.
Collapse
Affiliation(s)
- Nora E Renthal
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Koriand'r C Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Chien-Cheng Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Lu Gao
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 Department of Obstetrics-Gynecology, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| |
Collapse
|
5
|
Gomez-Lucia E, Sanjosé L, Crespo O, Reina R, Glaria I, Ballesteros N, Amorena B, Doménech A. Modulation of the long terminal repeat promoter activity of small ruminant lentiviruses by steroids. Vet J 2014; 202:323-8. [PMID: 25168719 DOI: 10.1016/j.tvjl.2014.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 08/02/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
Production and excretion of small ruminant lentiviruses (SRLVs) varies with the stage of the host reproductive cycle, suggesting hormonal involvement in this variation. Stress may also affect viral expression. To determine if hormones affect SRLV transcriptional activity, the expression of green fluorescent protein (GFP) driven by the promoters in the U3-cap region of the long terminal repeats (LTRs) of different strains of SRLV was assessed in cell culture. High concentrations of steroids (progesterone, cortisol and dehydroepiandrosterone) inhibited expression of GFP driven by SRLV promoters. This effect decreased in a dose-dependent manner with decreasing concentrations of steroids. In some strains, physiological concentrations of cortisol or dehydroepiandrosterone (DHEA) induced the expression of GFP above the baseline. There was strain variation in sensitivity to hormones, but this differed for different hormones. The presence of deletions and a 43 base repeat in the U3 region upstream of the TATA box of the LTR made strain EV1 less sensitive to DHEA. However, no clear tendencies or patterns were observed when comparing strains of different genotypes and/or subtypes, or those triggering different forms of disease.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Leticia Sanjosé
- Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), 31192 Mutilva Baja, Spain
| | - Oscar Crespo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ramsés Reina
- Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), 31192 Mutilva Baja, Spain
| | - Idoia Glaria
- Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), 31192 Mutilva Baja, Spain
| | - Natalia Ballesteros
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Beatriz Amorena
- Instituto de Agrobiotecnología (CSIC-UPNA-Gobierno de Navarra), 31192 Mutilva Baja, Spain
| | - Ana Doménech
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Kavandi L, Collier MA, Nguyen H, Syed V. Progesterone and calcitriol attenuate inflammatory cytokines CXCL1 and CXCL2 in ovarian and endometrial cancer cells. J Cell Biochem 2013; 113:3143-52. [PMID: 22615136 DOI: 10.1002/jcb.24191] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokines/chemokines are key players in cancer-related inflammation. Increasing evidence suggests that chemokines produced by tumor cells are the mediators of metastasis. Thus, agents that can downregulate chemokines expression have potential against cancer metastasis. We have previously shown inhibition of ovarian and endometrial cancer cell growth with progesterone and calcitriol. In the present study, we evaluated the effect of these two agents on the expression of inflammatory genes. Using a RT-PCR array of inflammatory cytokines/chemokines and their receptors, we found a marked attenuation of CXCL1 and CXCL2 (GRO-α and -β) in cancer cells by both treatments. Knockdown of NFκB resulted in a reduced expression of CXCL1 and CXCL2 and the inhibitory effect of progesterone and calcitriol on the expression of chemokines was abrogated in NFκB-silenced cancer cells. Silencing of IκBα increased the expression of CXCL1 and CXCL2 in cancer cells, which can be attributed to the increased activation of NFκB-p65, caused by the lack of its inhibitor. Progesterone and calcitriol-induced inhibition was abolished in IκBα-knockdown cells. Our results demonstrate that suppression of IκBα phosphorylation by progesterone and calcitriol contributes to the reduced expression of CXCL1 and CXCL2. Downregulation of CXCL1 and CXCL2 was associated with a marked inhibition of metastasis-promoting genes. Overall, our results indicate that progesterone and calcitriol inhibit IκBα phosphorylation, NFκB activation, and the expression of NFκB regulated metastasis promoting genes. These results provide attractive data for the possible use of progesterone and calcitriol in the management of endometrial and ovarian tumors.
Collapse
Affiliation(s)
- Leyla Kavandi
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | |
Collapse
|
7
|
Chen CC, Hardy DB, Mendelson CR. Progesterone receptor inhibits proliferation of human breast cancer cells via induction of MAPK phosphatase 1 (MKP-1/DUSP1). J Biol Chem 2011; 286:43091-102. [PMID: 22020934 DOI: 10.1074/jbc.m111.295865] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of progesterone (P(4)) and of progesterone receptor (PR) in development and pathogenesis of breast cancer remain unclear. In this study, we observed that treatment of T47D breast cancer cells with progestin antagonized effects of fetal bovine serum (FBS) to stimulate cell proliferation, whereas siRNA-mediated knockdown of endogenous PR abrogated progestin-mediated anti-proliferative effects. To begin to define mechanisms for the anti-proliferative action of P(4)/PR, we considered the role of MAPK phosphatase 1 (MKP-1/DUSP1), which catalyzes dephosphorylation and inactivation of MAPKs. Progestin treatment of T47D cells rapidly induced MKP-1 expression in a PR-dependent manner. Importantly, P(4) induction of MKP-1 was associated with reduced levels of phosphorylated ERK1/2, whereas siRNA knockdown of MKP-1 blocked progestin-mediated ERK1/2 dephosphorylation and repression of FBS-induced cell proliferation. The importance of PR in MKP-1 expression was supported by findings that MKP-1 and PR mRNA levels were significantly correlated in 30 human breast cancer cell lines. By contrast, no correlation was observed with the glucocorticoid receptor, a known regulator of MKP-1 in other cell types. ChIP and luciferase reporter assay findings suggest that PR acts in a ligand-dependent manner through binding to two progesterone response elements downstream of the MKP-1 transcription start site to up-regulate MKP-1 promoter activity. PR also interacts with two Sp1 sites just downstream of the transcription start site to increase MKP-1 expression. Collectively, these findings suggest that MKP-1 is a critical mediator of anti-proliferative and anti-inflammatory actions of PR in the breast.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Departments of Biochemistry and Obstetrics & Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
8
|
Selective Glucocorticoid Receptor modulators. J Steroid Biochem Mol Biol 2010; 120:96-104. [PMID: 20206690 DOI: 10.1016/j.jsbmb.2010.02.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/04/2010] [Accepted: 02/13/2010] [Indexed: 01/31/2023]
Abstract
The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review.
Collapse
|
9
|
Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol 2009; 23:947-54. [PMID: 19282364 DOI: 10.1210/me.2009-0016] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mechanisms underlying the initiation of parturition remain unclear. Throughout most of pregnancy, uterine quiescence is maintained by elevated progesterone acting through progesterone receptor (PR). Although in most mammals, parturition is associated with a marked decline in maternal progesterone, in humans, circulating progesterone and uterine PR remain elevated throughout pregnancy, suggesting a critical role for functional PR inactivation in the initiation of labor. Both term and preterm labor in humans and rodents are associated with an inflammatory response. In preterm labor, intraamniotic infection likely provides the stimulus for increased amniotic fluid interleukins and migration of inflammatory cells into the uterus and cervix. However, at term, the stimulus for this inflammatory response is unknown. Increasing evidence suggests that the developing fetus may produce physical and hormonal signals that stimulate macrophage migration to the uterus, with release of cytokines and activation of inflammatory transcription factors, such as nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1), which also is activated by myometrial stretch. We postulate that the increased inflammatory response and NF-kappaB activation promote uterine contractility via 1) direct activation of contractile genes (e.g. COX-2, oxytocin receptor, and connexin 43) and 2) impairment of the capacity of PR to mediate uterine quiescence. PR function near term may be compromised by direct interaction with NF-kappaB, altered expression of PR coregulators, increased metabolism of progesterone within the cervix and myometrium, and increased expression of inhibitory PR isoforms. Alternatively, we propose that uterine quiescence during pregnancy is regulated, in part, by PR antagonism of the inflammatory response.
Collapse
Affiliation(s)
- Carole R Mendelson
- Departments of Biochemistry and Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038, USA.
| |
Collapse
|
10
|
Hardy DB, Janowski BA, Chen CC, Mendelson CR. Progesterone receptor inhibits aromatase and inflammatory response pathways in breast cancer cells via ligand-dependent and ligand-independent mechanisms. Mol Endocrinol 2008; 22:1812-24. [PMID: 18483177 DOI: 10.1210/me.2007-0443] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aromatase (product of CYP19 gene), the critical enzyme in estrogen biosynthesis, is up-regulated in 70% of all breast cancers and is highly correlated with cyclooxygenase 2 (COX-2), the rate-determining enzyme in prostanoid biosynthesis. Expression of COX-2 also is correlated with the oncogene HER-2/neu. The efficacy of current endocrine therapies for breast cancer is predicted only if the tumor contains significant amounts of estrogen receptor. Because the progesterone receptor (PR) is an estrogen-induced target gene, it has been suggested that its presence may serve as an indicator of estrogen receptor functional capacity and the differentiation state of the tumor. In the present study, we tested the hypothesis that PR serves a crucial protective role by antagonizing inflammatory response pathways in the breast. We observed that progesterone antagonized the stimulatory effects of cAMP and IL-1beta on aromatase, COX-2, and HER-2/neu expression in T47D breast cancer cells. These actions of progesterone were associated with increased expression of the nuclear factor-kappaB inhibitor, IkappaBalpha. In 28 breast cancer cell lines, IkappaBalpha expression was positively correlated with PR mRNA levels; overexpression of a phosphorylation-defective mutant of IkappaBalpha inhibited expression of aromatase, COX-2, and HER-2/neu. Moreover, in breast cancer cell lines cultured in the absence of progesterone, up-regulation of endogenous PR caused decreased expression of aromatase, COX-2, and HER-2/neu expression, whereas down-regulation of endogenous PR resulted in a marked induction of aromatase and HER-2/neu mRNA. Collectively, these findings suggest that PR plays an important antiinflammatory role in breast cancer cells via ligand-dependent and ligand-independent mechanisms.
Collapse
Affiliation(s)
- Daniel B Hardy
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | | | |
Collapse
|
11
|
Mendelson CR, Hardy DB. Role of the progesterone receptor (PR) in the regulation of inflammatory response pathways and aromatase in the breast. J Steroid Biochem Mol Biol 2006; 102:241-9. [PMID: 17049843 PMCID: PMC1890042 DOI: 10.1016/j.jsbmb.2006.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is convincing evidence to suggest that estrogen and inflammatory mediators play important roles in growth and progression of breast cancer. Moreover, local conversion of androgens to estrogens by aromatase (product of CYP19 gene) occurs in 70% of all breast cancers. The actions of aromatase in both the breast tumor and in surrounding adipose stromal and endothelial cells can result in high local levels of estrogen production that stimulate tumor growth. The efficacy of current endocrine therapies is predicted only if the tumor contains significant amounts of ER. Presence of PR in the tumor also is an important predictor of tumor aggressiveness and responsiveness to endocrine therapy. Immunoreactivity for aromatase in human breast tumors is highly correlated with that for cyclooxygenase 2 (COX-2), the rate-determining enzyme in prostanoid biosynthesis. COX-2 expression also is correlated with expression of HER-2/neu, an oncogene expressed in >30% of breast tumors. In this manuscript, we will review findings to suggest that induction of COX-2 by inflammatory cytokines acting through NF-kappaB contributes to the increase in CYP19 expression and breast cancer progression, and that PR plays a dominant protective role in breast cancer cells by antagonizing NF-kappaB activation of COX-2.
Collapse
Affiliation(s)
- Carole R Mendelson
- Department of Biochemistry, The North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | | |
Collapse
|
12
|
Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol 2006; 20:2724-33. [PMID: 16772530 DOI: 10.1210/me.2006-0112] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spontaneous labor in women and in other mammals is likely mediated by a concerted series of biochemical events that negatively impact the ability of the progesterone receptor (PR) to regulate target genes that maintain myometrial quiescence. In the present study, we tested the hypothesis that progesterone/PR inhibits uterine contractility by blocking nuclear factor kappaB (NF-kappaB) activation and induction of cyclooxygenase-2 (COX-2), a contractile gene that is up-regulated in labor. To uncover mechanisms for regulation of uterine COX-2, immortalized human fundal myometrial cells were treated with IL-1beta +/- progesterone. IL-1beta alone caused a marked up-regulation of COX-2 mRNA, whereas treatment with progesterone suppressed this induction. This was also observed in human breast cancer (T47D) cells. In both cell lines, this inhibitory effect of progesterone was blocked by RU486. Using chromatin immunoprecipitation, we observed that IL-1beta stimulated recruitment of NF-kappaB p65 to both proximal and distal NF-kappaB elements of the COX-2 promoter; these effects were diminished by coincubation with progesterone. The ability of progesterone to inhibit COX-2 expression in myometrial cells was associated with rapid induction of mRNA and protein levels of inhibitor of kappaBalpha, a protein that blocks NF-kappaB transactivation. Furthermore, small interfering RNA-mediated ablation of both PR-A and PR-B isoforms in T47D cells greatly enhanced NF-kappaB activation and COX-2 expression. These effects were observed in the absence of exogenous progesterone, suggesting a ligand-independent action of PR. Based on these findings, we propose that PR may inhibit NF-kappaB activation of COX-2 gene expression and uterine contractility via ligand-dependent and ligand-independent mechanisms.
Collapse
Affiliation(s)
- Daniel B Hardy
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | | | |
Collapse
|
13
|
Palmieri D, Halverson DO, Ouatas T, Horak CE, Salerno M, Johnson J, Figg WD, Hollingshead M, Hursting S, Berrigan D, Steinberg SM, Merino MJ, Steeg PS. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 2005; 97:632-42. [PMID: 15870434 DOI: 10.1093/jnci/dji111] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Reestablishment of metastasis suppressor gene expression may constitute a therapeutic strategy for high-risk breast cancer patients. We previously showed that medroxyprogesterone acetate (MPA), a progestin that has been tested as treatment for advanced breast cancer, elevates expression of the Nm23-H1 metastasis suppressor gene in hormone receptor-negative metastatic human breast carcinoma cell lines in vitro via a glucocorticoid receptor-based mechanism. Here, we tested whether MPA treatment inhibits metastatic colonization of a hormone receptor-negative breast cancer cell line in vivo. METHODS We tested the soft-agar colony-forming efficiency of untransfected MDA-MB-231T human breast carcinoma cells and MDA-MB-231T cells transfected with antisense Nm23-H1 in the presence and absence of MPA. Pharmacokinetic studies were used to establish dose and injection schedules that led to MPA serum levels in mice similar to those achievable in humans. For in vivo studies, nude mice were injected intravenously with MDA-MB-231T cells. After 4 weeks, mice were randomized to control or MPA arms. Endpoints included incidence, number, and size of gross pulmonary metastases; Nm23-H1 protein expression in gross metastases; and side effects. All statistical tests were two-sided. RESULTS MPA reduced colony formation of MDA-MB-231T cells by 40%-50% but had no effect on colony formation of Nm23-H1 antisense transfectants. Metastases developed in 100% (95% confidence interval [CI] = 78% to 100% and 77% to 100%, respectively) of control mice injected with MDA-MB-231T cells. In two independent experiments, only 73% (95% CI = 45% to 92%) and 64% (95% CI = 35% to 87%) of mice injected with 2 mg of MPA developed metastases. Mice injected with 2 mg of MPA showed reductions in the mean numbers, per mouse, of all metastases and of large (>3 mm) metastases (P = .04 and .013, respectively). Nm23-H1 was expressed at high levels in 43% of pulmonary metastases in MPA-treated mice but only 13% of metastases in untreated mice. Mice receiving at least 1-mg doses of MPA gained more weight than control-treated mice but exhibited no bone density alterations or abnormal mammary fat pad histology. CONCLUSION Our preclinical results show that MPA appears to elevate Nm23-H1 metastasis suppressor gene expression, thereby reducing metastatic colonization. The data suggest a new use for an old agent in a molecularly defined subset of breast cancer patients.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taruscio D, Mantovani A. Factors regulating endogenous retroviral sequences in human and mouse. Cytogenet Genome Res 2005; 105:351-62. [PMID: 15237223 DOI: 10.1159/000078208] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 12/23/2003] [Indexed: 11/19/2022] Open
Abstract
Endogenous retroviruses (ERVs) are stably integrated in the genome of vertebrates and inherited as Mendelian genes. The several human ERV (HERV) families and related elements represent up to 5-8% of the DNA of our species. ERVs may be involved in the regulation of adjacent genomic loci, especially promoting the tissue-specific expression of genes; some HERVs may have functional roles, e.g., coding for the placental fusogenic protein, syncytin. This paper reviews the growing evidence about factors that may modulate ERVs, including: cell and tissue types (with special attention to placenta and germ cells), processes related to differentiation and aging, cytokines, agents that disrupt cell functions (e.g., DNA hypomethylating agents) and steroids. Special attention is given to HERVs, due to their possible involvement in autoimmunity and reproduction, as well as altered expression in some cancer types; moreover, different HERV families may deserve specific attention, due to remarkable differences concerning, e.g., expression in tissues. A comparison with factors interacting with murine ERV-related sequences indicates that the mouse may be a useful model for studying some patterns of HERV regulation. Overall, the available evidence identifies the diverse, potential interactions with endogenous or exogenous factors as a promising field for investigating the roles of ERVs in physiology and disease.
Collapse
Affiliation(s)
- D Taruscio
- National Centre on Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
15
|
Abstract
Cognitive aspects of aging represent a grave challenge for our societal circumstances as members of the baby-boom generation spiral toward a collective 'senior moment'. In addition, age-related changes in the CNS can contribute to motor deficits and other somatic aberrations. Inflammation and its regulation by cytokines have been connected to many aspects of aging, and mechanisms addressed here provide a rationale for this. Nevertheless, a role for cytokines in normal aging of the human brain has not been confirmed, and it seems to be possible to ameliorate both cognitive decline and cytokine elevation via lifestyle choices. So ignorance of the brain should not prohibit development of successful strategies for delaying or avoiding neurological deficits.
Collapse
Affiliation(s)
- Angela M Bodles
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
16
|
Abstract
Renal tubular epithelial cells (TEC) are thought to play an active role in tubulointerstitial inflammation. Various immune and non-immune factors activate TEC to produce a variety of cytokines and chemokines, contributing to attraction of inflammatory cells to the kidney. The proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) appears to be a key player in these responses and tubular expression of NF-kappaB has been demonstrated in vitro and in vivo. Although glucocorticoids are known to inhibit NF-kappaB activation at different levels, the proinflammatory capacity of TEC was not inhibited. In contrast, glucocorticoids seemed to enhance the profibrotic response of TEC, emphasizing the cell-type specific characteristics of glucocorticoid action. We propose that specific inhibition of NF-kappaB activation in TEC might be an attractive strategy for therapeutic intervention in renal inflammation.
Collapse
Affiliation(s)
- Simone de Haij
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522. [PMID: 12920152 DOI: 10.1210/er.2002-0006] [Citation(s) in RCA: 635] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Department of Molecular Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | |
Collapse
|