1
|
P SS, Naresh P, A J, Wadhwani A, M SK, Jubie S. Dual Modulators of p53 and Cyclin D in ER Alpha Signaling by Albumin Nanovectors Bearing Zinc Chaperones for ER-positive Breast Cancer Therapy. Mini Rev Med Chem 2021; 21:792-802. [PMID: 33238842 DOI: 10.2174/1389557520999201124212347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
CDATA[The inherited mutations and underexpression of BRCA1 in sporadic breast cancers resulting in the loss or functional inactivation of BRCA1 may contribute to a high risk of breast cancer. Recent researchers have identified small molecules (BRCA1 mimetics) that fit into a BRCA1 binding pocket within Estrogen Receptor alpha (ERα), mimic the ability of BRCA1 to inhibit ERα activity, and overcome antiestrogen resistance. Studies indicate that most of the BRCA1 breast cancer cases are associated with p53 mutations. It indicates that there is a potential connection between BRCA1 and p53. Most p53 mutations are missense point mutations that occur in the DNA-binding domain. Structural studies have demonstrated that mutant p53 core domain misfolding, especially p53-R175H, is reversible. Mutant p53 reactivation with a new class of zinc metallochaperones (ZMC) restores WT p53 structure and functions by restoring Zn2+ to Zn2+ deficient mutant p53. Considering the role of WT BRCA1 and reactivation of p53 in tumor cells, our hypothesis is to target both tumor suppressor proteins by a novel biomolecule (ZMC). Since both proteins are present in the same cell and are functionally inactive, this state may be a novel efficacious therapeutic regime for breast cancer therapy. In addition, we propose to use Albumin Nanovector (ANV) formulation for target drug release.
Collapse
Affiliation(s)
- Shyam Sundar P
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, India
| | - Podila Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, India
| | - Justin A
- Department of Pharmacology, JSS College of Pharmacy, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, India
| | - Suresh Kumar M
- Department of Pharmacognosy & Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty, Nilgiris, Tamilnadu, India
| | - Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, India
| |
Collapse
|
2
|
Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel) 2020; 12:cancers12071959. [PMID: 32707666 PMCID: PMC7409047 DOI: 10.3390/cancers12071959] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most common causes of disease-related deaths worldwide. Despite the discovery of many chemotherapeutic drugs that inhibit uncontrolled cell division processes for the treatment of various cancers, serious side effects of these drugs are a crucial disadvantage. In addition, multi-drug resistance is another important problem in anticancer treatment. Due to problems such as cytotoxicity and drug resistance, many investigations are being conducted to discover and develop effective anticancer drugs. In recent years, researchers have focused on the anticancer activity coumarins, due to their high biological activity and low toxicity. Coumarins are commonly used in the treatment of prostate cancer, renal cell carcinoma and leukemia, and they also have the ability to counteract the side effects caused by radiotherapy. Both natural and synthetic coumarin derivatives draw attention due to their photochemotherapy and therapeutic applications in cancer. In this review, a compilation of various research reports on coumarins with anticancer activity and investigation and a review of structure-activity relationship studies on coumarin core are presented. Determination of important structural features around the coumarin core may help researchers to design and develop new analogues with a strong anticancer effect and reduce the potential side effects of existing therapeutics.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye 06100, Ankara, Turkey;
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| |
Collapse
|
3
|
Transcriptional Landscape of PARs in Epithelial Malignancies. Int J Mol Sci 2018; 19:ijms19113451. [PMID: 30400241 PMCID: PMC6275037 DOI: 10.3390/ijms19113451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet there is no therapeutic platform based on GPCR driver genes. As cancer progresses, it disrupts normal epithelial organization and maintains the cells outside their normal niche. The dynamic and flexible microenvironment of a tumor contains both soluble and matrix-immobilized proteases that contribute to the process of cancer advancement. An example is the activation of cell surface protease-activated receptors (PARs). Mammalian PARs are a subgroup of GPCRs that form a family of four members, PAR1–4, which are uniquely activated by proteases found in the microenvironment. PAR1 and PAR2 play central roles in tumor biology, and PAR3 acts as a coreceptor. The significance of PAR4 in neoplasia is just beginning to emerge. PAR1 has been shown to be overexpressed in malignant epithelia, in direct correlation with tumor aggressiveness, but there is no expression in normal epithelium. In this review, the involvement of key transcription factors such as Egr1, p53, Twist, AP2, and Sp1 that control PAR1 expression levels specifically, as well as hormone transcriptional regulation by both estrogen receptors (ER) and androgen receptors (AR) are discussed. The cloning of the human protease-activated receptor 2; Par2 (hPar2) promoter region and transcriptional regulation of estrogen (E2) via binding of the E2–ER complex to estrogen response elements (ERE) are shown. In addition, evidence that TEA domain 4 (TEAD4) motifs are present within the hPar2 promoter is presented since the YAP oncogene, which plays a central part in tumor etiology, acts via the TEAD4 transcription factor. As of now, no information is available on regulation of the hPar3 promoter. With regard to hPar4, only data showing CpG methylation promoter regulation is available. Characterization of the PAR transcriptional landscape may identify powerful targets for cancer therapies.
Collapse
|
4
|
Wan Z, Musa MA, Joseph P, Cooperwood JS. Synthesis and biological activity of 3-N-substituted estrogen derivatives as breast cancer agents. Mini Rev Med Chem 2014; 13:1381-8. [PMID: 22876946 DOI: 10.2174/1389557511313090012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 11/22/2022]
Abstract
3-N-substituted-estrogen derivatives were synthesized and characterized. Their antiproliferative activities against human ER (+) MCF-7 (Breast), ER (-) MDA-MB-231 (breast) and Ishikawa (endometrial) cancer cell lines were determined after 72 hours drug exposure employing CellTiter-Glo assay at concentrations ranging from (0.01-100,000 nM). The antiproliferative activities of these compounds were compared to tamoxifen (TAM), 4-hydroxytamoxifen (4-OHT, active metabolite of tamoxifen) and raloxifene (RAL). In vitro results indicated that compound 5 (IC50 = 12 µM) displayed comparable antiproliferative activity against MDA-MB 231 cell line; while compounds 6, 7 and 13 (IC50 = 12 µM) displayed higher activity against MCF-7 and Ishikawa cell lines, in comparison to TAM activity (19-33 µM).
Collapse
Affiliation(s)
- Zhongliang Wan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | | | | | | |
Collapse
|
5
|
Musa MA, Cooperwood JS, Khan MOF, Rahman T. In-vitro antiproliferative activity of benzopyranone derivatives in comparison with standard chemotherapeutic drugs. Arch Pharm (Weinheim) 2010; 344:102-10. [PMID: 21290426 DOI: 10.1002/ardp.201000207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/21/2010] [Accepted: 08/27/2010] [Indexed: 11/07/2022]
Abstract
The cytotoxic activities of five new benzopyranone derivatives containing basic amino side chain are described. Their cytotoxicities against ER(+) MCF-7 and ER(-) MDA-MB-231 human breast cancer cell lines, and Ishikawa human endometrial cell line were determined after 72 h drug exposure employing CellTiter-Glo assay at concentrations ranging from 0.01-1.0 × 10(5) nM. The antiproliferative activities of these compounds were compared to tamoxifen (TAM), 4-hydroxytamoxifen (4-OHT, active metabolite of tamoxifen), and raloxifene (RAL). In-vitro results indicated that compounds 9, 10, 12, and 13 were more potent than TAM against the human breast cancer cell lines with IC(50) < 20 µM. The in-silico structure-activity relationships of these compounds and their binding mode within the estrogen receptor (ER) binding site using AutoDock vina are discussed.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Florida A&M University, College of Arts and Sciences, Department of Chemistry, Tallahassee, FL, USA.
| | | | | | | |
Collapse
|
6
|
Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2010; 5:1145-68. [PMID: 19852727 DOI: 10.2217/fon.09.90] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-beta, and in doing so, converts TGF-beta to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-beta induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular and microenvironmental mechanisms used by TGF-beta to mediate its stimulation of EMT in normal and malignant cells.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
7
|
Abstract
The coumarin (benzopyran-2-one, or chromen-2-one) ring system, present in natural products (such as the anticoagulant warfarin) that display interesting pharmacological properties, has intrigued chemists and medicinal chemists for decades to explore the natural coumarins or synthetic analogs for their applicability as drugs. Many molecules based on the coumarin ring system have been synthesized utilizing innovative synthetic techniques. The diversity oriented synthetic routes have led to interesting derivatives including the furanocoumarins, pyranocoumarins, and coumarin sulfamates (COUMATES), which have been found to be useful in photochemotherapy, antitumor and anti-HIV therapy, and as stimulants for central nervous system, antibacterials, anti-inflammatory, anti-coagulants, and dyes. Of particular interest in breast cancer chemotherapy, some coumarins and their active metabolite 7-hydroxycoumarin analogs have shown sulfatase and aromatase inhibitory activities. Coumarin based selective estrogen receptor modulators (SERMs) and coumarin-estrogen conjugates have also been described as potential antibreast cancer agents. Since breast cancer is the second leading cause of death in American women behind lung cancer, there is a strong impetus to identify potential new drug treatments for breast cancer. Therefore, the objective of this review is to focus on important coumarin analogs with antibreast cancer activities, highlight their mechanisms of action and structure-activity relationships on selected receptors in breast tissues, and the different methods that have been applied in the construction of these pharmacologically important coumarin analogs.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Florida A&M University, College of Arts and Sciences, Department of Chemistry, Tallahassee, FL 32307, USA.
| | | | | |
Collapse
|
8
|
Uray IP, Brown PH. Prevention of breast cancer: current state of the science and future opportunities. Expert Opin Investig Drugs 2007; 15:1583-600. [PMID: 17107283 DOI: 10.1517/13543784.15.12.1583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite significant progress in breast cancer treatment, mammary tumours still represent the second most frequent cause of cancer-related death in women in the US, with > 211,000 new cases in 2005; however, an expanding range of options for early diagnosis and more reliable risk assessment offers new alternatives for disease control by cancer prevention. Completed large studies with the classical selective estrogen receptor modulator (SERM) tamoxifen have demonstrated that preventing breast cancer pharmacologically is now possible. Novel SERMs, aromatase inhibitors and gonadotropin-releasing hormone agonists targeting hormonal pathways are being tested in clinical trials, revealing the potential for dramatic reductions in tumour incidence with minimal side effects; however, SERMs and aromatase inhibitors are effective only against estrogen receptor-positive tumours, thus chemopreventive drugs targeting other critical signalling pathways (such as retinoids, selective COX inhibitors and tyrosine kinase inhibitors) may provide a means to prevent estrogen receptor-negative breast cancer. In the future, hormonal and estrogen receptor-independent agents may be combined to prevent the development of all mammary tumours. This article reviews the current and novel strategies for breast cancer prevention.
Collapse
Affiliation(s)
- Ivan P Uray
- Breast Care Center, Department of Medicine, Baylor College of Medicine, Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Renoir JM, Stella B, Ameller T, Connault E, Opolon P, Marsaud V. Improved anti-tumoral capacity of mixed and pure anti-oestrogens in breast cancer cell xenografts after their administration by entrapment in colloidal nanosystems. J Steroid Biochem Mol Biol 2006; 102:114-27. [PMID: 17056251 DOI: 10.1016/j.jsbmb.2006.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anti-oestrogens (AEs) are currently used for treating hormone-dependent breast cancers. They specifically bind to oestrogen receptors (ERs) and inhibit their transactivation capacity. However, ERs are present in various other tissues in which AEs may have either a beneficial or detrimental action. AE administration via systems targeting breast tumours may be an important therapeutic improvement. Thus, several biodegradable drug delivery systems containing either "mixed" (4-hydroxytamoxifen - 4-HT) or "pure" (RU 58668 - RU) AEs were prepared. Liposomes and nanospheres (NS, composed of non-toxic and biodegradable lipids and poly(d,l-lactic acid) incorporated up to 1 and 0.5 mM AE, respectively. Nanocapsules (NCs) in which an oily core solubilises the AE incorporated no more than 0.02 mM of the drug. PEG-functionalised nanoparticles survived longer in plasma and had better controlled release of the drug. The small size of the vectors (100-250 nm) was compatible with their extravasation through the discontinuous endothelium of tumour vasculature, allowing their accumulation in MCF-7 cell xenografts and leading to a prolonged exposure of the tumour to AEs. In these tumours and in MCF-7/ras xenografts, RU-NS and RU-NC (6.5mg/kg/week and 0.27 mg/kg/week, respectively, doses at which free RU had a very weak effect), both inhibited tumour growth. Entrapped RU significantly induced involution of tumours and strongly induced apoptosis in tumour cells, concomitantly with inhibiting tumour angiogenesis. 4-HT-nanoparticles also arrest oestradiol-induced tumour growth, inducing apoptosis and inhibiting angiogenesis. However, unlike RU-nanoparticles, they did not promote ERalpha subtype loss in tumour cells. Subcutaneous administration of both RU- and 4-HT-NS in MCF-7 xenografts strongly arrested tumour growth for prolonged periods and RUNS decreased the number of tumour epithelial cells. Analysis of the proteins involved in cell cycle proliferation and apoptosis confirmed that RU-nanoparticles were more efficient than 4-HT-nanoparticles. Their lack of toxicity and high anti-tumour potency that affects only tumour cells in the xenograft models mean these AE-loaded colloidal systems are a breakthrough in hormone-dependent breast cancer treatment.
Collapse
Affiliation(s)
- Jack-Michel Renoir
- CNRS, UMR 8612, and Université Paris-Sud, Faculté de Pharmacie, IFR 141, 92296 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
10
|
Fallowfield LJ, Bliss JM, Porter LS, Price MH, Snowdon CF, Jones SE, Coombes RC, Hall E. Quality of life in the intergroup exemestane study: a randomized trial of exemestane versus continued tamoxifen after 2 to 3 years of tamoxifen in postmenopausal women with primary breast cancer. J Clin Oncol 2006; 24:910-7. [PMID: 16484701 DOI: 10.1200/jco.2005.03.3654] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To compare and describe the quality of life (QOL) of women allocated to tamoxifen or exemestane within the Intergroup Exemestane Study (IES). PATIENTS AND METHODS Postmenopausal women with primary breast cancer who were disease free after 2 to 3 years were randomly assigned to switch from tamoxifen to exemestane or continue with tamoxifen until 5 years of treatment were completed. A subset of IES centers participated in a QOL substudy. The Functional Assessment of Cancer Therapy-Breast (FACT-B) and endocrine subscale (ES) were administered before random assignment and at predefined follow-up times. The primary end point was the FACT-B composite Trial Outcome Index (TOI). Secondary end points included total FACT-B+ES score, total ES score, and severity of individual endocrine symptoms. This analysis reports QOL up to 24 months. RESULTS Five hundred eighty-two patients from eight countries were enrolled onto the substudy. Completion and return of questionnaires was excellent, with 85% available for analysis. QOL was generally good and stable over 2 years, with no clinically meaningful differences found between groups in TOI or ES. Prevalence of severe endocrine symptoms at trial entry was high for vasomotor complaints and sexual problems, which persisted for both groups during the study. No significant differences between groups were seen for any endocrine symptoms apart from vaginal discharge, which was more pronounced with tamoxifen (P < .001). CONCLUSION The switch from tamoxifen to exemestane neither increased nor decreased endocrine symptoms present after 2 to 3 years of tamoxifen; the switch also did not initiate significant reports of new symptoms. Results indicate that the clinical benefits of exemestane over tamoxifen are achieved without significant detrimental effect on QOL.
Collapse
Affiliation(s)
- Lesley J Fallowfield
- Cancer Research UK Psychosocial Oncology Group, Brighton & Sussex Medical School, Falmer, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lewis JS, Jordan VC. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat Res 2005; 591:247-63. [PMID: 16083919 DOI: 10.1016/j.mrfmmm.2005.02.028] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 02/10/2005] [Accepted: 02/12/2005] [Indexed: 05/03/2023]
Abstract
Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17beta-estradiol (E(2)), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ERalpha or ERbeta, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.
Collapse
Affiliation(s)
- Joan S Lewis
- Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
12
|
Numazawa M, Ando M, Watari Y, Tominaga T, Hayata Y, Yoshimura A. Structure-activity relationships of 2-, 4-, or 6-substituted estrogens as aromatase inhibitors. J Steroid Biochem Mol Biol 2005; 96:51-8. [PMID: 16039845 DOI: 10.1016/j.jsbmb.2005.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Aromatase, which is responsible for the conversion of androgens to estrogens, is a potential therapeutic target for the selective lowering of estrogen levels in patients with estrogen-dependent breast cancer. To develop a novel class of aromatase inhibitors, we tested series of 2- and 4-substituted (halogeno, methyl, formyl, methoxy, nitro, and amino) estrones (7 and 9), as well as series of 6alpha- and 6beta-substituted (alkyl, phenalkyl, and alkoxy) estrones (13 and 14), and their estradiol analogs (8, 10, 11, and 12) as aromatase inhibitors. All of the inhibitors examined blocked the androstenedione aromatization in a competitive manner. Introduction of halogeno and methyl functions at C-2 of estrone as well as that of a phenalkyl or methyl function at the C-6alpha or C-6beta position markedly increased affinity to aromatase (apparent K(i) value=0.10-0.66 microM for the inhibitors versus 2.5 microM for estrone). 6alpha-Phenylestrone (13c) was the most powerful inhibitor among the estrogens studied, and its affinity was comparable to that of the androgen substrate androstenedione. Estradiol analogs were much weaker inhibitors than the corresponding estrone compounds in each series, indicating that the 17-carbonyl group plays a critical role in the formation of a thermodynamically stable enzyme-inhibitor complex.
Collapse
Affiliation(s)
- Mitsuteru Numazawa
- Tohoku Pharmaceutical University, 4-1 Komatsushima-4-chome, Aobaku, Sendai 981-8558, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Numazawa M, Handa W, Yamada K. Synthesis and Biochemical Properties of 6-Bromoandrostenedione Derivatives with a 2,2-Dimethyl or 2-Methyl Group as Aromatase Inhibitors. Biol Pharm Bull 2004; 27:1878-82. [PMID: 15516742 DOI: 10.1248/bpb.27.1878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To gain insight into the mechanism for irreversible inactivation of aromatase by 6beta-bromoandrostenedione (1), one of the earliest discovered suicide substrates, in relation to the catalytic function of the enzyme, the 2,2-dimethyl derivative of compound 1, steroid 4, and its 6alpha-isomer 5, as well as 2-methyl-1,4-diene steroid 8 and its 6alpha-bromide 10, were synthesized. All of the steroids inhibited aromatase activity in human placental microsomes with apparent K(i)'s ranging between 10 and 81 nM. The 2,2-dimethyl-6beta- and 6alpha-bromo steroids 4 and 5 were extremely powerful inhibitors (K(i): 14 and 10 nM, respectively), but these two did not cause a time-dependent inactivation of aromatase in the presence of NADPH; in contrast, the 2-methyl-1,4-diene steroids 8 and 10 caused time-dependent inactivation with apparent k(inact) of 0.035 and 0.071 min(-1), respectively, in a suicide manner. These results indicate that the 2,2-dimethyl function of the 6beta-bromide 4 would prevent the inactivation of aromatase caused by inhibitor 1 in a suicide manner, probably through steric activity, whereas the 2-methyl group of steroid 8 did not significantly affect the suicidal inactivation by the parent 1,4-diene steroid, a typical suicide substrate.
Collapse
|