1
|
Bacterial Isolates from Greek Sites and Their Efficacy in Degrading Petroleum. SUSTAINABILITY 2022. [DOI: 10.3390/su14159562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a major organic pollutant, not only because they do not self-degenerate but also because they accumulate in the food chain and give rise to serious repercussions in terms of biodiversity sustainability. Petroleum-degrading bacteria have long been used as a promising solution in the effort to biodegrade crude oil. In this study, new isolates from specific Greek environments displaying various levels of crude oil contamination, as well as isolates belonging to the ATHUBA collection, were thoroughly investigated for their capacity to degrade crude oil. Furthermore, the presence of nahH and alkJ genes in the above bacterial isolates, as well as their ability to form agglomerates or release surfactants, was investigated. Two consortia were formed, and their ability to degrade crude oil was tested, achieving similar degrading capacities as those observed with the individual strains. A Pseudomonas plecoglossicida isolate demonstrated the highest percentage (76.7%) ability to degrade crude oil. The biodegradation rate of this isolate was further evaluated by measuring the alkanes/hopanes ratio over a period of ten days, exhibiting a higher degradation rate in short-chain (C11–C21) alkanes, whereas a decrease in the ratio was observed when the number of carbons in petroleum increased. This is the first detailed report on bacterial communities in oil-polluted areas of Greece that contain a variety of bacteria with the ability to degrade PAHs in contaminated sites and may provide a novel alternative to various bioremediation processes or be used as inocula in autochthonous bioaugmentation procedures for crude oil biodegradation.
Collapse
|
2
|
Massot F, Bernard N, Alvarez LMM, Martorell MM, Mac Cormack WP, Ruberto LAM. Microbial associations for bioremediation. What does "microbial consortia" mean? Appl Microbiol Biotechnol 2022; 106:2283-2297. [PMID: 35294589 DOI: 10.1007/s00253-022-11864-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Microbial associations arise as useful tools in several biotechnological processes. Among them, bioremediation of contaminated environments usually takes advantage of these microbial associations. Despite being frequently used, these associations are indicated using a variety of expressions, showing a lack of consensus by specialists in the field. The main idea of this work is to analyze the variety of microbial associations referred to as "microbial consortia" (MC) in the context of pollutants biodegradation and bioremediation. To do that, we summarize the origin of the term pointing out the features that an MC is expected to meet, according to the opinion of several authors. An analysis of related bibliography was done seeking criteria to rationalize and classify MC in the context of bioremediation. We identify that the microbe's origin and the level of human intervention are usually considered as a category to classify them as natural microbial consortia (NMC), artificial microbial consortia (AMC), and synthetic microbial consortia (SMC). In this sense, NMC are those associations composed by microorganisms obtained from a single source while AMC members come from different sources. SMC are a class of AMC in which microbial composition is defined to accomplish a certain specific task. We propose that the effective or potential existence of the interaction among MC members in the source material should be considered as a category in the classification as well, in combination with the origin of the source and level of intervention. Cross-kingdom MC and new developments were also considered. Finally, the existence of grey zones in the limits between each proposed microbial consortia category is addressed. KEY POINTS: • Microbial consortia for bioremediation can be obtained through different methods. • The use of the term "microbial consortia" is unclear in the specialized literature. • We propose a simplified classification for microbial consortia for bioremediation.
Collapse
Affiliation(s)
- Francisco Massot
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - Nathalie Bernard
- Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - Lucas M Martinez Alvarez
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - María M Martorell
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - Walter P Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina
| | - Lucas A M Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina. .,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Kim S, Krajmalnik-Brown R, Kim JO, Chung J. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:250-259. [PMID: 25129160 DOI: 10.1016/j.scitotenv.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 06/03/2023]
Abstract
The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil.
Collapse
Affiliation(s)
- Seungjin Kim
- Environmental Engineering Department, Samsung Engineering Co., Ltd., 500 Samsung GEC, Sangil-Dong, Gangdong-Gu, Seoul 134-728, Republic of Korea
| | - Rosa Krajmalnik-Brown
- Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Republic of Korea
| | - Jinwook Chung
- R&D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do 443-823, Republic of Korea.
| |
Collapse
|
4
|
Bajaj A, Mayilraj S, Mudiam MKR, Patel DK, Manickam N. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). BIORESOURCE TECHNOLOGY 2014; 167:398-406. [PMID: 25000395 DOI: 10.1016/j.biortech.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
A 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degrading bacterium strain IITR03 producing trehalolipid was isolated and characterized from a pesticides contaminated soil. The strain IITR03 was identified as a member of the genus Rhodococcus based on polyphasic studies. Under aqueous culture conditions, the strain IITR03 degraded 282 μM of DDT and could also utilize 10mM concentration each of 4-chlorobenzoic acid, 3-chlorobenzoic acid and benzoic acid as sole carbon and energy source. The catechol 1,2-dioxygenase enzyme activity resulted in conversion of catechol to form cis,cis-muconic acid. Cloning and sequencing of partial nucleotide sequence of catechol 1,2-dioxygenase gene (cat) from strain IITR03 revealed its similarity to catA gene present in Rhodococcus sp. strain Lin-2 (97% identity) and Rhodococcus strain AN22 (96% identity) degrading benzoate and aniline, respectively. The results suggest that the strain IITR03 could be useful for field bioremediation studies of DDT-residues and chlorinated aromatic compounds present in contaminated sites.
Collapse
Affiliation(s)
- Abhay Bajaj
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Shanmugam Mayilraj
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Devendra Kumar Patel
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Natesan Manickam
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
5
|
Lee EH, Lee SH, Cho KS. Bacterial diversity dynamics in a long-term petroleum-contaminated soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:281-290. [PMID: 21308599 DOI: 10.1080/10934529.2011.535435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial diversity dynamics were investigated in the soil samples in different distances and depths from/at a long-term petroleum-contaminated site. Microbial activity in the soil samples showed ATP values closely correlated with organic matter content (OC) and total petroleum hydrocarbon (TPH). Bacterial community diversity (H) and evenness (J) using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR-T-RFLP (terminal restriction fragment length polymorphism) results showed positive correlation with concentration of TPH or OC, but tmoA (toluene monooxygenase gene)-based bacterial H and J using a PCR-T-RFLP result did not. No significant difference of H and J values in the bacterial and the tmoA communities was observed. The bacterial community structure characterized by PCR-DGGE and PCR-T-RFLP techniques showed similarity according to soil sampling distance rather than soil sampling depth. Canonical correspondence analysis demonstrated that OC including TPH had the most significant effect on the bacterial community diversity at the long-term petroleum-contaminated site.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | | | | |
Collapse
|
6
|
Shen FT, Young LS, Hsieh MF, Lin SY, Young CC. Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp. Syst Appl Microbiol 2010; 33:53-9. [PMID: 20047814 DOI: 10.1016/j.syapm.2009.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The alkB gene encodes for alkane 1-monooxygenase, which is a key enzyme responsible for the initial oxidation of inactivated alkanes. This functional gene can be used as a marker to assess the catabolic potential of bacteria in bioremediation. In the present study, a pair of primers was designed based on the conserved regions of the AlkB amino acid sequences of Actinobacteria, for amplifying the alkB gene from the genus Gordonia (20 Gordonia strains representing 13 species). The amplified alkB genes were then sequenced and analyzed. In the phylogenetic tree based on the translated AlkB amino acid sequences, all the Gordonia segregated clearly from other closely related genera. The sequence identity of the alkB gene in Gordonia ranged from 58.8% to 99.1%, which showed higher sequence variation at the inter-species level compared with other molecular markers, such as the 16S rRNA gene (93.1-99.8%), gyrB gene (77.5-97.3%) or catA gene (72.4-99.5%). The genetic diversity of four selected loci also showed that the alkB gene might have evolved faster than rrn operons, as well as the gyrB or catA genes, in Gordonia. All the available actinobacterial alkB gene sequences derived from the whole genome shotgun sequencing projects are phylogenetically characterized here for the first time, and they exclude the possibility of horizontal gene transfer of the alkB gene in these bacterial groups.
Collapse
Affiliation(s)
- Fo-Ting Shen
- Center for Environmental Restoration and Disaster Reduction (CERDR), National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Shen FT, Lin JL, Huang CC, Ho YN, Arun AB, Young LS, Young CC. Molecular detection and phylogenetic analysis of the catechol 1,2-dioxygenase gene from Gordonia spp. Syst Appl Microbiol 2009; 32:291-300. [PMID: 19428211 DOI: 10.1016/j.syapm.2009.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Indexed: 11/16/2022]
Abstract
The C12O gene (catA gene) encodes for catechol 1,2-dioxygenase, which is a key enzyme involved in the first step catalysis of the aromatic ring in the ortho-cleavage pathway. This functional gene can be used as a marker to assess the catabolic potential of bacteria in bioremediation. C12OF and C12OR primers were designed based on the conserved regions of the CatA amino acid sequence of Actinobacteria for amplifying the catA gene from the genus Gordonia (16 Gordonia representing 11 species). The amplified catA genes (382bp) were sequenced and analyzed. In the phylogenetic tree based on the translated catA amino acid sequences, all the Gordonia segregated clearly from other closely related genera. The sequence similarity of the catA gene in Gordonia ranged from 72.4% to 99.5%, indicating that the catA gene might have evolved faster than rrn operons or the gyrB gene at the inter-species level. A single nucleotide deletion of the catA gene was observed in Gordonia amicalis CC-MJ-2a, Gordonia rhizosphera and Gordonia sputi at nucleotide position 349. This deletion led to an encoding frame shift downstream of 11 amino acid residues, from WPSVAARAPAP to GHPWRPAHLHL, which was similar to most of the non-Gordonia Actinobacteria. Such variations might influence the catabolic activities or substrate utilization patterns of catechol 1,2-dioxygenase among Gordonia.
Collapse
Affiliation(s)
- Fo-Ting Shen
- Center for Environmental Restoration and Disaster Reduction (CERDR), National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
9
|
Bioremediation of soil heavily contaminated with crude oil and its products: Composition of the microbial consortium. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2009. [DOI: 10.2298/jsc0904455m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pancevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH) had been reduced from 29.80 to 3.29 g/kg (89 %). In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g). On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.
Collapse
|
10
|
A refinery sludge deposition site: presence of nahH and alkJ genes and crude oil biodegradation ability of bacterial isolates. Biotechnol Lett 2008; 30:2105-10. [PMID: 18688575 DOI: 10.1007/s10529-008-9816-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/11/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
204 bacterial isolates from four Greek refinery sludge deposition sites were investigated for the presence of nahH and alkJ genes encoding key enzymes of both aromatic and aliphatic hydrocarbon degradation pathways by PCR and DNA hybridisation. Members of Pseudomonas, Acinetobacter, Bacillus, Rhodococcus and Arthrobacter play important role in bioremediation processes in sandy/loam soil contaminated with oil and nahH and alkJ genes were present in the 73% of the isolates. Consortia of bacterial isolates that were used for biodegradation of aliphatic and aromatic hydrocarbons in crude oil using liquid cultures exhibited rates from 35% to 48% within 10 days of incubation.
Collapse
|
11
|
Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. ENVIRONMENT INTERNATIONAL 2008; 34:265-276. [PMID: 18083233 DOI: 10.1016/j.envint.2007.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/16/2007] [Accepted: 09/02/2007] [Indexed: 05/25/2023]
Abstract
Traditionally, the identification and characterization of microbial communities in contaminated soil and water has previously been limited to those microorganisms that are culturable. The application of molecular techniques to study microbial populations at contaminated sites without the need for culturing has led to the discovery of unique and previously unrecognized microorganisms as well as complex microbial diversity in contaminated soil and water which shows an exciting opportunity for bioremediation strategies. Nucleic acid extraction from contaminated sites and their subsequent amplification by polymerase chain reaction (PCR) has proved extremely useful in assessing the changes in microbial community structure by several microbial community profiling techniques. This review examines the current application of molecular techniques for the characterization of microbial communities in contaminated soil and water. Techniques that identify and quantify microbial population and catabolic genes involved in biodegradation are examined. In addition, methods that directly link microbial phylogeny to its ecological function at contaminated sites as well as high throughput methods for complex microbial community studies are discussed.
Collapse
Affiliation(s)
- Seidu Malik
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
12
|
Sipilä TP, Riisiö H, Yrjälä K. Novel upper meta-pathway extradiol dioxygenase gene diversity in polluted soil. FEMS Microbiol Ecol 2006; 58:134-44. [PMID: 16958914 DOI: 10.1111/j.1574-6941.2006.00140.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For the determination of the catabolic community diversity that is related to biodegradation potential, we developed a protocol for the assessment of catabolic marker genes in polluted soils. Primers specific to upper pathway extradiol dioxygenase genes were designed which amplified a 469-bp product from Sphingomonas sp. HV3. The constructed primers were used in PCR amplification of upper pathway ring cleavage genes from DNA directly isolated from a mineral oil polluted landfill site, a mineral oil landfarming site and a birch rhizosphere-associated soil that was either artificially polluted with a PAH mixture or not polluted. Amplicons were cloned and subjected to restriction fragment length polymorphism analysis dividing the HhaI-digested products into operational taxonomic units. Altogether 26 different operational taxonomic units were detected with the sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Phylogenetic analysis divided the operational taxonomic units from the polluted soils into seven clusters. Two contained exclusively sequences with no close homologues in the database, therefore representing novel catabolic genes. This large proportion of novel extradiol sequences shows that there is an extensive unknown catabolic diversity in polluted environments.
Collapse
Affiliation(s)
- Timo P Sipilä
- Department of Biological and Environmental Sciences, General Microbiology, 00014 University of Helsinki, Finland
| | | | | |
Collapse
|
13
|
Meintanis C, Chalkou KI, Kormas KA, Karagouni AD. Biodegradation of Crude Oil by Thermophilic Bacteria Isolated from a Volcano Island. Biodegradation 2006; 17:105-11. [PMID: 16456612 DOI: 10.1007/s10532-005-6495-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
One-hundred and fifty different thermophilic bacteria isolated from a volcanic island were screened for detection of an alkane hydroxylase gene using degenerated primers developed to amplify genes related to the Pseudomonas putida and Pseudomonas oleovorans alkane hydroxylases. Ten isolates carrying the alkJ gene were further characterized by 16s rDNA gene sequencing. Nine out of ten isolates were phylogenetically affiliated with Geobacillus species and one isolate with Bacillus species. These isolates were able to grow in liquid cultures with crude oil as the sole carbon source and were found to degrade long chain crude oil alkanes in a range between 46.64% and 87.68%. Results indicated that indigenous thermophilic hydrocarbon degraders of Bacillus and Geobacillus species are of special significance as they could be efficiently used for bioremediation of oil-polluted soil and composting processes.
Collapse
Affiliation(s)
- Christos Meintanis
- Department of Botany, Faculty of Biology, Microbiology Group, University of Athens, 15781 Athens, Greece
| | | | | | | |
Collapse
|
14
|
Spiegelman D, Whissell G, Greer CW. A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 2005; 51:355-86. [PMID: 16088332 DOI: 10.1139/w05-003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A survey of the available literature on methods most frequently used for the identification and characterization of microbial strains, communities, or consortia is presented. The advantages and disadvantages of the various methodologies were examined from several perspectives including technical, economic (time and cost), and regulatory. The methods fall into 3 broad categories: molecular biological, biochemical, and microbiological. Molecular biological methods comprise a broad range of techniques that are based on the analysis and differentiation of microbial DNA. This class of methods possesses several distinct advantages. Unlike most other commonly used methods, which require the production of secondary materials via the manipulation of microbial growth, molecular biological methods recover and test their source materials (DNA) directly from the microbial cells themselves, without the requirement for culturing. This eliminates both the time required for growth and the biases associated with cultured growth, which is unavoidably and artificially selective. The recovered nucleic acid can be cloned and sequenced directly or subpopulations can be specifically amplified using polymerase chain reaction (PCR), and subsequently cloned and sequenced. PCR technology, used extensively in forensic science, provides researchers with the unique ability to detect nucleic acids (DNA and RNA) in minute amounts, by amplifying a single target molecule by more than a million-fold. Molecular methods are highly sensitive and allow for a high degree of specificity, which, coupled with the ability to separate similar but distinct DNA molecules, means that a great deal of information can be gleaned from even very complex microbial communities. Biochemical methods are composed of a more varied set of methodologies. These techniques share a reliance on gas chromatography and mass spectrometry to separate and precisely identify a range of biomolecules, or else investigate biochemical properties of key cellular biomolecules. Like the molecular biological methods, some biochemical methods such as lipid analyses are also independent of cultured growth. However, many of these techniques are only capable of producing a profile that is characteristic of the microbial community as a whole, providing no information about individual members of the community. A subset of these methodologies are used to derive taxonomic information from a community sample; these rely on the identification of key subspecies of biomolecules that differ slightly but characteristically between species, genera, and higher biological groupings. However, when the consortium is already growing in chemically defined media (as is often the case with commercial products), the rapidity and relatively low costs of these procedures can mitigate concerns related to culturing biases. Microbiological methods are the most varied and the least useful for characterizing microbial consortia. These methods rely on traditional tools (cell counting, selective growth, and microscopic examination) to provide more general characteristics of the community as a whole, or else to narrow down and identify only a small subset of the members of that community. As with many of the biochemical methods, some of the microbiological methods can fairly rapidly and inexpensively create a community profile, which can be used to compare 2 or more entire consortia. However, for taxonomic identification of individual members, microbiological methods are useful only to screen for the presence of a few key predetermined species, whose preferred growth conditions and morphological characteristics are well defined and reproducible.Key words: microbial communities, microbial consortia, characterization methods, taxonomic identification.
Collapse
Affiliation(s)
- Dan Spiegelman
- Biotechnology Research Institute, National Research Council Canada, Montreal, QC
| | | | | |
Collapse
|