1
|
Heseltine SJ, Billenness GJ, Martin HL, Tiede C, Tang AAS, Foy E, Reddy G, Gibson N, Johnson M, Webb ME, McPherson MJ, Tomlinson DC. Generating and validating renewable affimer protein binding reagents targeting SH2 domains. Sci Rep 2024; 14:28322. [PMID: 39550397 PMCID: PMC11569188 DOI: 10.1038/s41598-024-79357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Despite SH2 domains, being pivotal in protein interactions linked to various diseases like cancer, we lack specific research tools for intracellular assays. Understanding SH2-mediated interactions and creating effective inhibitors requires tools which target individual protein domains. Affimer reagents exhibit promise, yet their potential against the extensive SH2 domain family remains largely unexplored. Our study aimed to bridge this gap by identifying Affimer reagents that selectively bind to 22 out of 41 SH2 domains. These reagents enabled a medium-throughput screening approach resembling siRNA studies, shedding light on their functionality. Notably, select Affimers demonstrated the ability to curtail the nuclear translocation of pERK, with Grb2 being a prominent target. Further analyses revealed that these Grb2-specific Affimer reagents displayed competitive inhibition with impressive metrics: IC50s ranging from 270.9 nM to 1.22 µM, together with low nanomolar binding affinities. Moreover, they exhibited the ability to pull down endogenous Grb2 from cell lysates, illustrating their efficacy in binding the Grb2 SH2 domain. This comprehensive assessment underscores the potential of Affimer reagents as domain-specific inhibitors. Their viability for medium/high-throughput phenotypic screening presents a promising avenue via which to identify and characterize potential drug targets within the SH2 domain family.
Collapse
Affiliation(s)
- Sophie J Heseltine
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | - Heather L Martin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Anna A S Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Eleanor Foy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Grace Reddy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Naomi Gibson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | - Michael E Webb
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Michael J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Malagrinò F, Puglisi E, Pagano L, Travaglini-Allocatelli C, Toto A. GRB2: A dynamic adaptor protein orchestrating cellular signaling in health and disease. Biochem Biophys Rep 2024; 39:101803. [PMID: 39175664 PMCID: PMC11340617 DOI: 10.1016/j.bbrep.2024.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell'ambiente, Universita' Dell’Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Coppito, 67010, Italy
| | - Elena Puglisi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| |
Collapse
|
3
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
4
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
5
|
Berger O, Gavara L, Montchamp JL. Chemistry of the Versatile (Hydroxymethyl)phosphinyl P(O)CH2OH Functional Group. Org Lett 2012; 14:3404-7. [DOI: 10.1021/ol3013793] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olivier Berger
- Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Laurent Gavara
- Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Jean-Luc Montchamp
- Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
6
|
Lipase-catalyzed kinetic resolution of 2-aminocyclopentane- and 2-aminocyclohexanecarboxamides. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents. Int J Pept Res Ther 2006; 12:33-48. [PMID: 19444322 PMCID: PMC2678932 DOI: 10.1007/s10989-006-9014-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Indexed: 11/24/2022]
Abstract
Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new approaches for the treatment of certain cancers. Growth factor receptor bound protein 2 (Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in many pathogenic processes. One of the primary functions of Grb2 is to bind to specific phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain. Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will summarize important contributions to these efforts. The presentation will be thematically arranged according to the region of peptide modified, proceeding from the N-terminus to the C-terminus, with a special section devoted to aspects of conformational constraint.
Collapse
|
8
|
Kang SU, Shi ZD, Worthy KM, Bindu LK, Dharmawardana PG, Choyke SJ, Bottaro DP, Fisher RJ, Burke TR. Examination of Phosphoryl-Mimicking Functionalities within a Macrocyclic Grb2 SH2 Domain-Binding Platform. J Med Chem 2005; 48:3945-8. [PMID: 15943469 DOI: 10.1021/jm050059m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein are the design, synthesis, and Grb2 SH2 domain-binding affinities of several phosphoryl-mimicking groups displayed within the context of a conformationally constrained macrocyclic platform. With use of surface plasmon resonance techniques, single-digit nanomolar affinities were exhibited by phosphonic acid and malonyl-containing diacidic phosphoryl mimetics (for 4h and 4g, K(D) = 1.47 and 3.62 nM, respectively). Analogues containing monoacidic phosphoryl mimetics provided affinities of K(D) = 16-67 nM. Neutral phosphoryl-mimicking groups did not show appreciable binding.
Collapse
Affiliation(s)
- Sang-Uk Kang
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu WQ, Vidal M, Olszowy C, Million E, Lenoir C, Dhôtel H, Garbay C. Structure-activity relationships of small phosphopeptides, inhibitors of Grb2 SH2 domain, and their prodrugs. J Med Chem 2004; 47:1223-33. [PMID: 14971902 DOI: 10.1021/jm031005k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop potential antitumor agents directed toward HER2/ErbB2 overexpression in cancer, we have designed inhibitors of the recognition between the phosphotyrosine of the receptor and the SH2 domain of the adaptor protein Grb2. In the first part of the paper, we report the synthesis of mimetics of the constrained (alpha-Me)phosphotyrosine residue such as (alpha-Me)-4-phosphonomethylphenylalanine (-CH2PO3H2), (alpha-Me) 4-phosphonodifluoromethylphenylalanine (-CF2PO3H2), and (alpha-Me)-4-phosphonophenylalanine (-PO3H2). The incorporation of these residues in the mAZ-pTyr-Xaa-Asn-NH2 series provided compounds with very high affinity for the Grb2 SH2 domain, in the 10(-8)-10(-9) range of Kd values. These compounds behave as potent antagonists of the Grb2-Shc interaction. Our results highlight the importance of the doubly negative charge borne by the pY + 1 amino acid in accordance with the interactions observed in the complex crystallized between mAZ-pTyr-(alphaMe)pTyr-Asn-NH2 and the Grb2 SH2 domain. mAZ-pTyr-(alphaMe)pTyr-Asn-NH2 was derivatized as the S-acetyl thioester (SATE) of the phosphotyrosine residues, and its surrogates provided prodrugs with very potent antiproliferative activity on cells overexpressing HER2/ErbB2, with ED50 values amounting to 0.1 microM. Finally a new prodrug is put forth under the form of a monobenzyl ester of phosphate group that is as active as and much easier to synthesize than SATE prodrugs. These compounds show promising activity for further testing on in vivo models.
Collapse
Affiliation(s)
- Wang-Qing Liu
- Département de Pharmacochimie Moléculaire & Structurale, INSERM U266, CNRS FRE 2463, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris 06, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
11
|
de Mol NJ, Gillies MB, Fischer MJE. Experimental and calculated shift in pK(a) upon binding of phosphotyrosine peptide to the SH2 domain of p56(lck). Bioorg Med Chem 2002; 10:1477-82. [PMID: 11886810 DOI: 10.1016/s0968-0896(01)00407-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pH dependence of the affinity of a 11-mer phosphotyrosine (pY) peptide (EPQpYEEIPIYL-NH2) for the SH2 domain of the tyrosine kinase p56(lck) was investigated with surface plasmon resonance (SPR). From SPR competition experiments the affinity in solution was obtained. The pH dependence of the affinity in solution can be well described by a proton linkage model with a single pK(a) shift upon binding, from 6.1 to 4.7. This shift is ascribed to the transition from the -2 to the -1 ionisation state of the tyrosine phosphate group. Based on the X-ray structure for the complex with Lck SH2, a pK(a) value of 5.3 for the bound pY peptide was computed, modelling the solvated protein as a system of point charges in a continuum. With the phosphate in the -2 state the binding energy is 1.8 kcal/mol more favourable than for the -1 state, corresponding to a 20-fold higher affinity. A proper charge is relevant in the design of potential therapeutic Lck SH2 ligands with mimics for the metabolically unstable tyrosine phosphate group.
Collapse
Affiliation(s)
- Nico J de Mol
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmacy, Utrecht University, PO Box 80082, 3508TB, Utrecht, The Netherlands.
| | | | | |
Collapse
|
12
|
Vidal M, Gigoux V, Garbay C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 2001; 40:175-86. [PMID: 11682324 DOI: 10.1016/s1040-8428(01)00142-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Src homology domains SH2 and SH3 are small modular protein motifs about 100 and 60 amino acids long, respectively. SH2 domains interact with phosphotyrosine residues, whereas SH3 domains recognize proline-rich motifs of their interacting partners. SH2 and SH3 domains are frequently found in signaling proteins such as small adaptors and in enzymes such as kinases, lipases and phosphatases, in which they differ from the catalytic motif and constitute recognition modules. SH2 and SH3 domains are also found in oncoproteins and in proteins overexpressed in deregulated signaling pathways in tumor cells. The highly folded structures of these domains have been characterized alone and complexed with the essential fragments of their targets. Therefore, based on molecular data, inhibitors of interactions with SH2 and SH3 domains are considered to be potential antitumor agents. Current results are very promising, as inhibitors with very efficient anti-proliferative activity in tumor cells have been reported. This paper describes SH2 and/or SH3 domain-containing proteins that may constitute targets for anticancer therapeutics. It also deals with the essential structural data concerning SH2 and SH3 domains, and the rational design of inhibitors. Some of the more recent pharmacological results obtained with these compounds are also discussed.
Collapse
Affiliation(s)
- M Vidal
- Dèpartement de Pharmacochimie Molèculaire et cellulaire, UMR 8638 CNRS UFR des Sciences Pharmaceutiques et Biologiques, Avenue de l'Observatoire, 75270 Cedex 06, Paris, France
| | | | | |
Collapse
|
13
|
Burke TR, Yao ZJ, Gao Y, Wu JX, Zhu X, Luo JH, Guo R, Yang D. N-terminal carboxyl and tetrazole-containing amides as adjuvants to Grb2 SH2 domain ligand binding. Bioorg Med Chem 2001; 9:1439-45. [PMID: 11408162 DOI: 10.1016/s0968-0896(01)00014-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High affinity binding of peptides to Src homology 2 (SH2) domains, often requires the presence of phosphotyrosyl (pTyr) or pTyr-mimicking moieties in the N-terminal position of the binding ligand. Several reports have shown that N(alpha)-acylation of the critical pTyr residue can result in increased SH2 domain binding potency. For Grb2 SH2 domains which recognize pTyr-Xxx-Asn-NH(2) motifs, significant potency enhancement can be incurred by N(alpha)-(3-amino)Z derivatization of tripeptides such as pTyr-Ile-Asn-NH(2). Using ligands based on the high affinity pY-Ac(6)c-Asn-(naphthylpropylamide) motif, (where Ac(6)c=1-aminocyclohexanecarboxylic acid), additional reports have shown moderate potentiating effects of N(alpha)-oxalyl derivatization. The current study examined variations of the N(alpha)-oxalyl theme in the context of a Xxx-Ac(6)c-Asn-(naphthylpropylamide) platform, where Xxx=the hydrolytically stable pTyr mimetics phosphonomethyl phenylalanine (Pmp) or carboxymethyl phenylalanine (Cmf). The effects of N(alpha)-(3-amino)Z derivatization were also investigated for this platform, to ascertain whether the large binding enhancement reported for tripeptides such as pTyr-Ile-Asn-NH(2) could be observed. In ELISA-based extracellular Grb2 SH2 domain binding assays, it was found for the Pmp-based series, that extending the oxalyl carboxyl out by one methylene unit or replacing carboxyl functionality with a tetrazole isostere, resulted in binding potency greater than the parent N(alpha)-acetyl-containing compound, with enhancement approximating that observed for the N(alpha)-oxalyl derivative. When Cmf was used as the pTyr mimetic, only modest differences in IC(50) values were observed for the series. Examination of the N(alpha)-(3-amino)Z derivatized Pmp-Ac(6)c-Asn-(naphthylpropylamide), showed that binding affinity was reduced relative to the parent N(alpha)-acetyl analogue, in contrast to the reported significant enhancement of affinity observed with other peptide ligands. Treatment of MDA-453 tumor cells, which are mitogenically driven through erbB-2 tyrosine kinase-dependent pathways, with Pmp-containing inhibitors resulted in growth inhibition, with the N(alpha)-oxalyl and N(alpha)-malonyl-containing compounds exhibiting IC(50) values (4.3 and 4.6 microM, respectively) approximately five-fold lower than the parent N(alpha)-acetyl-containing compound. Tetrazole and N(alpha)-(3-amino)Z-containing inhibitors were from two- to four-fold less potent than these latter analogues in the growth inhibition assays.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 376, FCRDC, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Westwell A. Novel antitumour molecules. Drug Discov Today 2001; 6:215-216. [PMID: 11173270 DOI: 10.1016/s1359-6446(00)01619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitor provides an insight into the latest developments in drug discovery through brief synopses of recent presentations and publications together with expert commentaries on the latest technologies. There are two sections: Molecules summarizes the chemistry and the pharmacological significance and biological relevance of new molecules reported in the literature and on the conference scene; Profiles offers commentary on promising lines of research, emerging molecular targets, novel technology, advances in synthetic and separation techniques and legislative issues.
Collapse
Affiliation(s)
- A Westwell
- Cancer Research Laboratories, University of Nottingham, NG7 2RD., Nottingham, UK
| |
Collapse
|