1
|
Tang Q, Tillmann M, Cohen JD. Analytical methods for stable isotope labeling to elucidate rapid auxin kinetics in Arabidopsis thaliana. PLoS One 2024; 19:e0303992. [PMID: 38776314 PMCID: PMC11111016 DOI: 10.1371/journal.pone.0303992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
The phytohormone auxin plays a critical role in plant growth and development. Despite significant progress in elucidating metabolic pathways of the primary bioactive auxin, indole-3-acetic acid (IAA), over the past few decades, key components such as intermediates and enzymes have not been fully characterized, and the dynamic regulation of IAA metabolism in response to environmental signals has not been completely revealed. In this study, we established a protocol employing a highly sensitive liquid chromatography-mass spectrometry (LC-MS) instrumentation and a rapid stable isotope labeling approach. We treated Arabidopsis seedlings with two stable isotope labeled precursors ([13C6]anthranilate and [13C8, 15N1]indole) and monitored the label incorporation into proposed indolic compounds involved in IAA biosynthetic pathways. This Stable Isotope Labeled Kinetics (SILK) method allowed us to trace the turnover rates of IAA pathway precursors and product concurrently with a time scale of seconds to minutes. By measuring the entire pathways over time and using different isotopic tracer techniques, we demonstrated that these methods offer more detailed information about this complex interacting network of IAA biosynthesis, and should prove to be useful for studying auxin metabolic network in vivo in a variety of plant tissues and under different environmental conditions.
Collapse
Affiliation(s)
- Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Martins NF, Viana MJA, Maigret B. Fungi Tryptophan Synthases: What Is the Role of the Linker Connecting the α and β Structural Domains in Hemileia vastatrix TRPS? A Molecular Dynamics Investigation. Molecules 2024; 29:756. [PMID: 38398508 PMCID: PMC10893352 DOI: 10.3390/molecules29040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αββα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and β entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the β one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αβ dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.
Collapse
Affiliation(s)
- Natália F Martins
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Marcos J A Viana
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Bernard Maigret
- LORIA, UMR 7504 CNRS, Université de Lorraine, 54000 Vandoeuvre les Nancy, France
| |
Collapse
|
3
|
Tillmann M, Tang Q, Cohen JD. Protocol: analytical methods for visualizing the indolic precursor network leading to auxin biosynthesis. PLANT METHODS 2021; 17:63. [PMID: 34158074 PMCID: PMC8220744 DOI: 10.1186/s13007-021-00763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The plant hormone auxin plays a central role in regulation of plant growth and response to environmental stimuli. Multiple pathways have been proposed for biosynthesis of indole-3-acetic acid (IAA), the primary auxin in a number of plant species. However, utilization of these different pathways under various environmental conditions and developmental time points remains largely unknown. RESULTS Monitoring incorporation of stable isotopes from labeled precursors into proposed intermediates provides a method to trace pathway utilization and characterize new biosynthetic routes to auxin. These techniques can be aided by addition of chemical inhibitors to target specific steps or entire pathways of auxin synthesis. CONCLUSIONS Here we describe techniques for pathway analysis in Arabidopsis thaliana seedlings using multiple stable isotope-labeled precursors and chemical inhibitors coupled with highly sensitive liquid chromatography-mass spectrometry (LC-MS) methods. These methods should prove to be useful to researchers studying routes of IAA biosynthesis in vivo in a variety of plant tissues.
Collapse
Affiliation(s)
- Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA.
| | - Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
4
|
Zhang S, Guo X, Zhou Y, Yang Y, Peng H, He H. Design, synthesis and herbicidal activity of novel cyclic phosphonates with diaryl ethers containing pyrimidine. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1633319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shasha Zhang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, China
| | - Xinjuan Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, China
| | - Yuan Zhou
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, China
| | - Yalan Yang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, China
| | - Hao Peng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, China
| | - Hongwu He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Wang T, Peng H, He H. Synthesis and Biological Activity ofO-Methyl Methyl 1-(Substituted Phenoxyacetoxy)-1-(thien-2-yl)methylphosphinates. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| | - Hao Peng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| |
Collapse
|
6
|
Wang T, Wang W, Peng H, He H. Synthesis and Biological Activity of 1-(Substituted phenoxyacetoxy)-1-(pyridin-2-yl or thien-2-yl)methylphosphonates. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tao Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| | - Wei Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| | - Hao Peng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and College of Chemistry; Central China Normal University; Wuhan People's Republic of China
| |
Collapse
|
7
|
Peng H, Long Q, Deng X, He H. Synthesis and Herbicidal Activities of Lithium or Potassium Hydrogen 1-(Substituted Phenoxyacetoxy)Alkylphosphonates. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2013.797415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hao Peng
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and College of Chemistry, Central China Normal University , Wuhan , 430079 , P.R. China
| | - Qingwu Long
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and College of Chemistry, Central China Normal University , Wuhan , 430079 , P.R. China
| | - Xiaoyan Deng
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and College of Chemistry, Central China Normal University , Wuhan , 430079 , P.R. China
| | - Hongwu He
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and College of Chemistry, Central China Normal University , Wuhan , 430079 , P.R. China
| |
Collapse
|
8
|
Long Q, Deng X, Gao Y, Xie H, Peng H, He H. Synthesis and Herbicidal Activities of Sodium Hydrogen 1-(Substituted Phenoxyacetoxy)Alkylphosphonates. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.717147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qingwu Long
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan , P. R. China
| | - Xiaoyan Deng
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan , P. R. China
| | - Yujiao Gao
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan , P. R. China
| | - Huayong Xie
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan , P. R. China
| | - Hao Peng
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan , P. R. China
| | - Hongwu He
- a The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan , P. R. China
| |
Collapse
|
9
|
Raboni S, Bettati S, Mozzarelli A. Tryptophan synthase: a mine for enzymologists. Cell Mol Life Sci 2009; 66:2391-403. [PMID: 19387555 PMCID: PMC11115766 DOI: 10.1007/s00018-009-0028-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 01/12/2023]
Abstract
Tryptophan synthase is a pyridoxal 5'-phosphate-dependent alpha(2)beta(2) complex catalyzing the last two steps of tryptophan biosynthesis in bacteria, plants and fungi. Structural, dynamic and functional studies, carried out over more than 40 years, have unveiled that: (1) alpha- and beta-active sites are separated by about 20 A and communicate via the selective stabilization of distinct conformational states, triggered by the chemical nature of individual catalytic intermediates and by allosteric ligands; (2) indole, formed at alpha-active site, is intramolecularly channeled to the beta-active site; and (3) naturally occurring as well as genetically generated mutants have allowed to pinpoint functional and regulatory roles for several individual amino acids. These key features have made tryptophan synthase a text-book case for the understanding of the interplay between chemistry and conformational energy landscapes.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP Usberti 23/A, 43100 Parma, Italy
- Present Address: CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Stefano Bettati
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP Usberti 23/A, 43100 Parma, Italy
- Italian National Institute of Biostructures and Biosystems, Parma, Italy
| | - Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP Usberti 23/A, 43100 Parma, Italy
- Italian National Institute of Biostructures and Biosystems, Parma, Italy
| |
Collapse
|
10
|
Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I. Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem Sci 2008; 33:254-64. [DOI: 10.1016/j.tibs.2008.04.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 01/25/2023]
|
11
|
Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes. J Mol Biol 2005; 352:608-20. [PMID: 16120446 DOI: 10.1016/j.jmb.2005.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/03/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Indole is a reaction intermediate in at least two biosynthetic pathways in maize seedlings. In the primary metabolism, the alpha-subunit (TSA) of the bifunctional tryptophan synthase (TRPS) catalyzes the cleavage of indole 3-glycerol phosphate (IGP) to indole and d-glyceraldehyde 3-phosphate (G3P). Subsequently, indole diffuses through the connecting tunnel to the beta-active site where it is condensed with serine to form tryptophan and water. The maize enzyme, BX1, a homolog of TSA, also cleaves IGP to G3P and indole, and the indole is further converted to 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a secondary plant metabolite. BX1 cleaves IGP significantly faster to G3P and indole than does TSA. In line with their different biological functions, these two evolutionary related enzymes differ significantly in their regulatory aspects while catalyzing the same chemistry. Here, the mechanism of IGP cleavage by TSA was analyzed using a novel transition state analogue generated in situ by reaction of 2-aminophenol and G3P. The crystal structure of the complex shows an sp3-hybridized atom corresponding to the C3 position of IGP. The catalytic alphaGlu49 rotates to interact with the sp3-hybridized atom and the 3' hydroxyl group suggesting that it serves both as proton donor and acceptor in the alpha-reaction. The second catalytic residue, alphaAsp60 interacts with the atom corresponding to the indolyl nitrogen, and the catalytically important loop alphaL6 is in the closed, high activity conformation. Comparison of the TSA and TSA-transition state analogue structures with the crystal structure of BX1 suggests that the faster catalytic rate of BX1 may be due to a stabilization of the active conformation: loop alphaL6 is closed and the catalytic glutamate is in the active conformation. The latter is caused by a substitution of the residues that stabilize the inactive conformation in TRPS.
Collapse
Affiliation(s)
- Victor Kulik
- Max Planck Institut fur medizinische Forschung, Abteilung fur Biomolekulare Mechanismen, Jahnstr. 29, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water. J Med Chem 2002; 45:2469-83. [PMID: 12036355 DOI: 10.1021/jm0200299] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of the binding affinity between a protein and ligands is one of the most challenging issues for computational biochemistry and drug discovery. While the enthalpic contribution to binding is routinely available with molecular mechanics methods, the entropic contribution is more difficult to estimate. We describe and apply a relatively simple and intuitive calculation procedure for estimating the free energy of binding for 53 protein-ligand complexes formed by 17 proteins of known three-dimensional structure and characterized by different active site polarity. HINT, a software model based on experimental LogP(o/w) values for small organic molecules, was used to evaluate and score all atom-atom hydropathic interactions between the protein and the ligands. These total scores (H(TOTAL)), which have been previously shown to correlate with DeltaG(interaction) for protein-protein interactions, correlate with DeltaG(binding) for protein-ligand complexes in the present study with a standard error of +/-2.6 kcal mol(-1) from the equation DeltaG(binding) = -0.001 95 H(TOTAL) - 5.543. A more sophisticated model, utilizing categorized (by interaction class) HINT scores, produces a superior standard error of +/-1.8 kcal mol(-1). It is shown that within families of ligands for the same protein binding site, better models can be obtained with standard errors approaching +/-1.0 kcal mol(-1). Standardized methods for preparing crystallographic models for hydropathic analysis are also described. Particular attention is paid to the relationship between the ionization state of the ligands and the pH conditions under which the binding measurements are made. Sources and potential remedies of experimental and modeling errors affecting prediction of DeltaG(binding) are discussed.
Collapse
Affiliation(s)
- Pietro Cozzini
- Department of General and Inorganic Chemistry, Department of Biochemistry and Molecular Biology, National Institute for the Physics of Matter, University of Parma, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Weyand M, Schlichting I, Marabotti A, Mozzarelli A. Crystal structures of a new class of allosteric effectors complexed to tryptophan synthase. J Biol Chem 2002; 277:10647-52. [PMID: 11756456 DOI: 10.1074/jbc.m111285200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan synthase is a bifunctional alpha(2)beta(2) complex catalyzing the last two steps of l-tryptophan biosynthesis. The natural substrates of the alpha-subunit indole- 3-glycerolphosphate and glyceraldehyde-3-phosphate, and the substrate analogs indole-3-propanolphosphate and dl-alpha-glycerol-3-phosphate are allosteric effectors of the beta-subunit activity. It has been shown recently, that the indole-3-acetyl amino acids indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid are both alpha-subunit inhibitors and beta-subunit allosteric effectors, whereas indole-3-acetyl-l-valine is only an alpha-subunit inhibitor (Marabotti, A., Cozzini, P., and Mozzarelli, A. (2000) Biochim. Biophys. Acta 1476, 287-299). The crystal structures of tryptophan synthase complexed with indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid show that both ligands bind to the active site such that the carboxylate moiety is positioned similarly as the phosphate group of the natural substrates. As a consequence, the residues of the alpha-active site that interact with the ligands are the same as observed in the indole 3-glycerolphosphate-enzyme complex. Ligand binding leads to closure of loop alphaL6 of the alpha-subunit, a key structural element of intersubunit communication. This is in keeping with the allosteric role played by these compounds. The structure of the enzyme complex with indole-3-acetyl-l-valine is quite different. Due to the hydrophobic lateral chain, this molecule adopts a new orientation in the alpha-active site. In this case, closure of loop alphaL6 is no longer observed, in agreement with its functioning only as an inhibitor of the alpha-subunit reaction.
Collapse
Affiliation(s)
- Michael Weyand
- Max-Planck-Institut für Molekulare Physiologie, Abteilung für Physikalische Biochemie, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
14
|
Sachpatzidis A, Dealwis C, Lubetsky JB, Liang PH, Anderson KS, Lolis E. Crystallographic studies of phosphonate-based alpha-reaction transition-state analogues complexed to tryptophan synthase. Biochemistry 1999; 38:12665-74. [PMID: 10504236 DOI: 10.1021/bi9907734] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to use a structure-based approach for the design of new herbicides, the crystal structures of complexes of tryptophan synthase with a series of phosphonate enzyme inhibitors were determined at 2.3 A or higher resolution. These inhibitors were designed to mimic the transition state formed during the alpha-reaction of the enzyme and, as expected, have affinities much greater than that of the natural substrate indole-3-glycerol phosphate or its nonhydrolyzable analogue indole propanol phosphate (IPP). These inhibitors are ortho-substituted arylthioalkylphosphonate derivatives that have an sp(3)-hybridized sulfur atom, designed to mimic the putative tetrahedral transition state at the C3 atom of the indole, and lack the C2 atom to allow for higher conformational flexibility. Overall, the inhibitors bind in a fashion similar to that of IPP. Glu-49 and Phe-212 are the two active site residues whose conformation changes upon inhibitor binding. A very short hydrogen bond between a phosphonate oxygen and the Ser-235 hydroxyl oxygen may be responsible for stabilization of the enzyme-inhibitor complexes. Implications for the mechanism of catalysis as well as directions for more potent inhibitors are discussed.
Collapse
Affiliation(s)
- A Sachpatzidis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|