1
|
Valls A, Ruiz-Roldán C, Immanuel J, Camaño P, Poza JJ, Fernández-Torrón R, López de Munain A, Sáenz A. Urinary N-terminal titin fragment ascertained as biomarker in a small cohort of limb-girdle muscular dystrophy LGMDR1-calpain 3 related. J Neuromuscul Dis 2025:22143602251323629. [PMID: 40356353 DOI: 10.1177/22143602251323629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
We aimed to investigate the validity of urinary N-terminal titin (TTN) fragment as a biomarker for limb-girdle muscular dystrophy LGMDR1-calpain 3 related. Thirteen LGMDR1 patients and eleven healthy controls were enrolled for the study. LGMDR1 patients had significantly increased urinary N-terminal titin fragment concentrations than age-matched controls. Even if urinary level of titin decreased with aging, it was still high in wheelchair bound patients. Thus, our findings indicate that urinary N-terminal titin fragment is a non-invasive measure of muscle damage in LGMDR1, which could be used in disease monitoring in clinical trials even in wheelchair-bound patients.
Collapse
Affiliation(s)
- Andrea Valls
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
| | - Cristina Ruiz-Roldán
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Jenita Immanuel
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Pilar Camaño
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Molecular Diagnostics Platform, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Juan José Poza
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organisation, Osakidetza, San Sebastian, Spain
| | - Roberto Fernández-Torrón
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organisation, Osakidetza, San Sebastian, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organisation, Osakidetza, San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastian, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Amets Sáenz
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
2
|
Assia Batzir N, Orenstein N, Yaron Y, Kuzminsky A, Nevo Y, Konen O, Bazak L, Lidzbarsky G, Basel-Salmon L, Aharoni S. A rare homozygous CAPN3 variant with distinct clinical features in unrelated families of Iraqi Jewish descent. J Neuromuscul Dis 2025; 12:279-284. [PMID: 39973406 DOI: 10.1177/22143602241301658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
CAPN3 encodes a calcium-activated skeletal muscle-specific protease. Pathogenic variants in CAPN3 are associated with autosomal recessive and dominant limb-girdle muscular dystrophy. We report on three children and one adult from four unrelated Iraqi Jewish families, who harbor the same homozygous variant in CAPN3, p.Gln123Lys. Patients shared recognizable features of toe-walking and elevated creatine phosphokinase since childhood. The variant affects a conserved protein domain common to the calpain super family and likely represents a founder mutation in individuals of Iraqi Jewish ancestry. Our findings have potential implications on screening in relevant populations, allowing for more prompt diagnoses and future therapies.
Collapse
Affiliation(s)
- Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Yaron
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alla Kuzminsky
- Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Yoram Nevo
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Osnat Konen
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Diagnostic Imaging, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah-Tikva, Israel
| | - Gabriel Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah-Tikva, Israel
| | - Lina Basel-Salmon
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Sharon Aharoni
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| |
Collapse
|
3
|
Banerjee S, Radotra BD, Luthra-Guptasarma M, Goyal MK. Identification of novel pathogenic variants of Calpain-3 gene in limb girdle muscular dystrophy R1. Orphanet J Rare Dis 2024; 19:140. [PMID: 38561828 PMCID: PMC10983654 DOI: 10.1186/s13023-024-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Limb Girdle Muscular Dystrophy R1 (LGMDR1) is an autosomal recessive neuromuscular disease caused by mutations in the calpain-3 (CAPN3) gene. As clinical and pathological features may overlap with other types of LGMD, therefore definite molecular diagnosis is required to understand the progression of this debilitating disease. This study aims to identify novel variants of CAPN3 gene in LGMDR1 patients. RESULTS Thirty-four patients with clinical and histopathological features suggestive of LGMD were studied. The muscle biopsy samples were evaluated using Enzyme histochemistry, Immunohistochemistry, followed by Western Blotting and Sanger sequencing. Out of 34 LGMD cases, 13 patients were diagnosed as LGMDR1 by immunoblot analysis, demonstrating reduced or absent calpain-3 protein as compared to controls. Variants of CAPN3 gene were also found and pathogenicity was predicted using in-silico prediction tools. The CAPN3 gene variants found in this study, included, two missense variants [CAPN3: c.1189T > C, CAPN3: c.2338G > C], one insertion-deletion [c.1688delinsTC], one splice site variant [c.2051-1G > T], and one nonsense variant [c.1939G > T; p.Glu647Ter]. CONCLUSIONS We confirmed 6 patients as LGMDR1 (with CAPN3 variants) from our cohort and calpain-3 protein expression was significantly reduced by immunoblot analysis as compared to control. Besides the previously known variants, our study found two novel variants in CAPN3 gene by Sanger sequencing-based approach indicating that genetic variants in LGMDR1 patients may help to understand the etiology of the disease and future prognostication.
Collapse
Affiliation(s)
- Sukanya Banerjee
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India.
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| | - Manoj K Goyal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| |
Collapse
|
4
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
6
|
Khadilkar SV, Halani HA, Dastur R, Gaitonde PS, Oza H, Hegd M. Genetic Appraisal of Hereditary Muscle Disorders In A Cohort From Mumbai, India. J Neuromuscul Dis 2022; 9:571-580. [PMID: 35723113 DOI: 10.3233/jnd-220801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hereditary muscle disorders are clinically and genetically heterogeneous. Limited information is available on their genetic makeup and their prevalence in India. OBJECTIVE To study the genetic basis of prevalent hereditary myopathies. MATERIAL AND METHODS This is a retrospective study conducted at a tertiary care center. The study was approved by the institutional ethics board. The point of the collection was the genetic database. The genetic data of myopathy patients for the period of two and half years (2019 to mid-2021) was evaluated. Those with genetic diagnoses of DMD, FSHD, myotonic dystrophies, mitochondriopathies, and acquired myopathies were excluded. The main outcome measures were diagnostic yield and the subtype prevalence with their gene variant spectrum. RESULTS The definitive diagnostic yield of the study was 39% (cases with two pathogenic variants in the disease-causing gene). The major contributing genes were GNE (15%), DYSF (13%), and CAPN3 (7%). Founder genes were documented in Calpainopathy and GNE myopathy. The uncommon myopathies identified were Laminopathy (0.9%), desminopathy (0.9%), and GMPPB-related myopathy (1.9%). Interestingly, a small number of patients showed pathogenic variants in more than one myopathy gene, the multigenic myopathies. CONCLUSION This cohort study gives hospital-based information on the prevalent genotypes of myopathies (GNE, Dysferlinopathy, and calpainopathy), founder mutations, and also newly documents the curious occurrence of multigenicity in a small number of myopathies.
Collapse
Affiliation(s)
| | | | - Rashna Dastur
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND), Mumbai, India
| | - Pradnya Satish Gaitonde
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND), Mumbai, India
| | - Harsh Oza
- Department of Neurology, Bombay Hospital, Mumbai, India
| | - Madhuri Hegd
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States, PerkinElmer Genomics, Global Laboratory Services
| |
Collapse
|
7
|
Lasa-Elgarresta J, Mosqueira-Martín L, González-Imaz K, Marco-Moreno P, Gerenu G, Mamchaoui K, Mouly V, López de Munain A, Vallejo-Illarramendi A. Targeting the Ubiquitin-Proteasome System in Limb-Girdle Muscular Dystrophy With CAPN3 Mutations. Front Cell Dev Biol 2022; 10:822563. [PMID: 35309930 PMCID: PMC8924035 DOI: 10.3389/fcell.2022.822563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
LGMDR1 is caused by mutations in the CAPN3 gene that encodes calpain 3 (CAPN3), a non-lysosomal cysteine protease necessary for proper muscle function. Our previous findings show that CAPN3 deficiency leads to reduced SERCA levels through increased protein degradation. This work investigates the potential contribution of the ubiquitin-proteasome pathway to increased SERCA degradation in LGMDR1. Consistent with our previous results, we observed that CAPN3-deficient human myotubes exhibit reduced SERCA protein levels and high cytosolic calcium concentration. Treatment with the proteasome inhibitor bortezomib (Velcade) increased SERCA2 protein levels and normalized intracellular calcium levels in CAPN3-deficient myotubes. Moreover, bortezomib was able to recover mutated CAPN3 protein in a patient carrying R289W and R546L missense mutations. We found that CAPN3 knockout mice (C3KO) presented SERCA deficits in skeletal muscle in the early stages of the disease, prior to the manifestation of muscle deficits. However, treatment with bortezomib (0.8 mg/kg every 72 h) for 3 weeks did not rescue SERCA levels. No change in muscle proteasome activity was observed in bortezomib-treated animals, suggesting that higher bortezomib doses are needed to rescue SERCA levels in this model. Overall, our results lay the foundation for exploring inhibition of the ubiquitin-proteasome as a new therapeutic target to treat LGMDR1 patients. Moreover, patients carrying missense mutations in CAPN3 and presumably other genes may benefit from proteasome inhibition by rescuing mutant protein levels. Further studies in suitable models will be necessary to demonstrate the therapeutic efficacy of proteasome inhibition for different missense mutations.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Laura Mosqueira-Martín
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Klaudia González-Imaz
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Pablo Marco-Moreno
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Gorka Gerenu
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Adolfo López de Munain
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| |
Collapse
|
8
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ganaraja VH, Polavarapu K, Bardhan M, Preethish-Kumar V, Leena S, Anjanappa RM, Vengalil S, Nashi S, Arunachal G, Gunasekaran S, Mohan D, Raju S, Unnikrishnan G, Huddar A, Ravi-Kiran V, Thomas PT, Nalini A. Disease Progression and Mutation Pattern in a Large Cohort of LGMD R1/LGMD 2A Patients from India. Glob Med Genet 2021; 9:34-41. [PMID: 35169782 PMCID: PMC8837411 DOI: 10.1055/s-0041-1736567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/18/2021] [Indexed: 10/31/2022] Open
Abstract
AbstractCalpainopathy is caused by mutations in the CAPN3. There is only one clinical and genetic study of CAPN3 from India and none from South India. A total of 72 (male[M]:female [F] = 34:38) genetically confirmed probands from 72 independent families are included in this study. Consanguinity was present in 54.2%. The mean age of onset and duration of symptoms are 13.5 ± 6.4 and 6.3 ± 4.7 years, respectively. Positive family history occurred in 23.3%. The predominant initial symptoms were proximal lower limb weakness (52.1%) and toe walking (20.5%). At presentation, 97.2% had hip girdle weakness, 69.4% had scapular winging, and 58.3% had contractures. Follow-up was available in 76.4%, and 92.7% were ambulant at a mean age of 23.7 ± 7.6 years and duration of 4.5 years, remaining 7.3% became wheelchair-bound at 25.5 ± 5.7 years of age (mean duration = 13.5 ± 4.6), 4.1% were aged more than 40 years (duration range = 5–20). The majority remained ambulant 10 years after disease onset. Next-generation sequencing (NGS) detected 47 unique CAPN3 variants in 72 patients, out of which 19 are novel. Missense variants were most common occurring in 59.7% (homozygous = 29; Compound heterozygous = 14). In the remaining 29 patients (40.3%), at least one suspected loss of function variant was present. Common recurrent variants were c.2051–1G > T and c.2338G > C in 9.7%, c.1343G > A, c.802–9G > A, and c.1319G > A in 6.9% and c.1963delC in 5.5% of population. Large deletions were observed in 4.2%. Exon 10 mutations accounted for 12 patients (16.7%). Our study highlights the efficiency of NGS technology in screening and molecular diagnosis of limb-girdle muscular dystrophy with recessive form (LGMDR1) patients in India.
Collapse
Affiliation(s)
- Valakunja H. Ganaraja
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, The Ottawa Hospital, Ottawa, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Shingavi Leena
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ram M. Anjanappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, The Ottawa Hospital, Ottawa, Canada
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Swetha Gunasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhaarini Mohan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Valasani Ravi-Kiran
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Priya T. Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Khan K, Mehmood S, Liu C, Siddiqui M, Ahmad A, Faiz BY, Chioza BA, Baple EA, Ullah MI, Akram Z, Satti HS, Khan R, Harlalka GV, Jameel M, Akram T, Baig SM, Crosby AH, Hassan MJ, Zhang F, Davis EE, Khan TN. A recurrent rare intronic variant in CAPN3 alters mRNA splicing and causes autosomal recessive limb-girdle muscular dystrophy-1 in three Pakistani pedigrees. Am J Med Genet A 2021; 188:498-508. [PMID: 34697879 DOI: 10.1002/ajmg.a.62545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022]
Abstract
Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1) is an autosomal recessive disorder characterized by progressive weakness of the proximal limb and girdle muscles. Biallelic mutations in CAPN3 are reported frequently to cause LGMDR1. Here, we describe 11 individuals from three unrelated consanguineous families that present with typical features of LGMDR1 that include proximal muscle wasting, weakness of the upper and lower limbs, and elevated serum creatine kinase. Whole-exome sequencing identified a rare homozygous CAPN3 variant near the exon 2 splice donor site that segregates with disease in all three families. mRNA splicing studies showed partial retention of intronic sequence and subsequent introduction of a premature stop codon (NM_000070.3: c.379 + 3A>G; p.Asp128Glyfs*15). Furthermore, we observe reduced CAPN3 expression in primary dermal fibroblasts derived from an affected individual, suggesting instability and/or nonsense-mediated decay of mutation-bearing mRNA. Genome-wide homozygosity mapping and single-nucleotide polymorphism analysis identified a shared haplotype and supports a possible founder effect for the CAPN3 variant. Together, our data extend the mutational spectrum of LGMDR1 and have implications for improved diagnostics for individuals of Pakistani origin.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sarmad Mehmood
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Maimoona Siddiqui
- Division of Neurology, Shifa International Hospital, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Arsalan Ahmad
- Division of Neurology, Shifa International Hospital, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Belqees Yawar Faiz
- Division of Neurology, Shifa International Hospital, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Emma A Baple
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Muhammad I Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Zaineb Akram
- Stem Cell Research Laboratory, AFBMTC, CMH Medical Complex, Rawalpindi, Pakistan
| | - Humayoon S Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Gaurav V Harlalka
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Exeter, UK.,Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, Maharashtra, India
| | - Muhammad Jameel
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan
| | - Talia Akram
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.,Pakistan Science Foundation, Islamabad, Pakistan.,Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | - Muhammad J Hassan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tahir N Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
11
|
Chen L, Tang F, Gao H, Zhang X, Li X, Xiao D. CAPN3: A muscle‑specific calpain with an important role in the pathogenesis of diseases (Review). Int J Mol Med 2021; 48:203. [PMID: 34549305 PMCID: PMC8480384 DOI: 10.3892/ijmm.2021.5036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
Calpains are a family of Ca2+‑dependent cysteine proteases that participate in various cellular processes. Calpain 3 (CAPN3) is a classical calpain with unique N‑terminus and insertion sequence 1 and 2 domains that confer characteristics such as rapid autolysis, Ca2+‑independent activation and Na+ activation of the protease. CAPN3 is the only muscle‑specific calpain that has important roles in the promotion of calcium release from skeletal muscle fibers, calcium uptake of sarcoplasmic reticulum, muscle formation and muscle remodeling. Studies have indicated that recessive mutations in CAPN3 cause limb‑girdle muscular dystrophy (MD) type 2A and other types of MD; eosinophilic myositis, melanoma and epilepsy are also closely related to CAPN3. In the present review, the characteristics of CAPN3, its biological functions and roles in the pathogenesis of a number of disorders are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyan Zhang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Lee T, Tokunaga S, Taniguchi N, Misaki M, Shimomura H, Nishino I, Itoh K, Takeshima Y. Underlying diseases in sporadic presentation of high creatine kinase levels in girls. Clin Chim Acta 2021; 519:198-203. [PMID: 33965408 DOI: 10.1016/j.cca.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Persistent creatine kinase (CK) elevation can occur due to various conditions. Identifying the causes of hyperCKemia is crucial for enabling appropriate follow-up and care. Girls with elevated CK levels may be carriers of Duchenne/Becker muscular dystrophy (DMD/BMD), making diagnosis more difficult than that in boys. This study aimed to elucidate the underlying causes of high CK levels in girls. METHODS Fourteen girls (seven symptomatic, seven asymptomatic) with persistently elevated CK levels but without a family history of muscle diseases were referred to our hospital between April 2014 and August 2018. Muscle biopsy and/or genetic analysis were conducted for diagnoses. RESULTS Among the symptomatic girls, six (85.7%) had muscular dystrophy (five DMD/BMD carriers, and one sarcoglycanopathy [limb-girdle muscular dystrophy: LGMDR4]), and one had dermatomyositis. Among the asymptomatic girls, four (57.1%) had muscular dystrophy (three DMD/BMD carriers, and one calpainopathy [LGMDR1]), and three were undiagnosed. CONCLUSION Our results indicate that muscular dystrophy, including DMD/BMD carriers, must be considered in girls with highperCKemia regardless of symptoms presentation, and in symptomatic girls with dermatomyositis. Investigations in girls with hyperCKemia should be performed under proper ethical considerations. Further research is necessary to develop a diagnostic strategy for girls with hyperCKemia.
Collapse
Affiliation(s)
- Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Sachi Tokunaga
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoko Taniguchi
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Maiko Misaki
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hideki Shimomura
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | | |
Collapse
|
13
|
Pathak P, Sharma MC, Jha P, Sarkar C, Faruq M, Jha P, Suri V, Bhatia R, Singh S, Gulati S, Husain M. Mutational Spectrum of CAPN3 with Genotype-Phenotype Correlations in Limb Girdle Muscular Dystrophy Type 2A/R1 (LGMD2A/LGMDR1) Patients in India. J Neuromuscul Dis 2021; 8:125-136. [PMID: 33337384 DOI: 10.3233/jnd-200547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Limb girdle muscular dystrophy recessive type 1 (LGMDR1, Previously LGMD2A) is characterized by inactivating mutations in CAPN3. Despite the significant burden of muscular dystrophy in India, and particularly of LGMDR1, its genetic characterization and possible phenotypic manifestations are yet unidentified. MATERIAL AND METHODS We performed bidirectional CAPN3 sequencing in 95 LGMDR1 patient samples characterized by calpain-3 protein analysis, and these findings were correlated with clinical, biochemical and histopathological features. RESULTS We identified 84 (88.4%) cases of LGMDR1 harboring 103 CAPN3 mutations (71 novel and 32 known). At least two mutant alleles were identified in 79 (94.2%) of patients. Notably, 76% exonic variations were enriched in nine CAPN3 exons and overall, 41 variations (40%) correspond to only eight exonic and intronic mutations. Patients with two nonsense/out of frame/splice-site mutations showed significant loss of calpain-3 protein as compared to those with two missense/inframe mutations (P = 0.04). We observed a slow progression of disease and less severity in our patients compared to European population. Rarely, presenting clinical features were atypical, and mimicked other muscle diseases like FSHMD, distal myopathy and metabolic myopathies. CONCLUSION This is first systematic study to characterize the genetic framework of LGMDR1 in the Indian population. Preliminary calpain-3 immunoblot screening serves well to direct genetic testing. Our findings prioritized nine CAPN3 exons for LGMDR1 diagnosis in our population; therefore, a targeted-sequencing panel of nine exons could serve well for genetic diagnosis, carrier testing, counseling and clinical trial feasibility study in LGMDR1 patients in India.
Collapse
Affiliation(s)
- Pankaj Pathak
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.,Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Jha
- CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed Faruq
- CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Prerana Jha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Sumit Singh
- Department of Neurology, Medanta, Gurgaon, Haryana, India
| | - Sheffali Gulati
- Department of Paediatric Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
14
|
|
15
|
El-Khoury R, Traboulsi S, Hamad T, Lamaa M, Sawaya R, Ahdab-Barmada M. Divergent Features of Mitochondrial Deficiencies in LGMD2A Associated With Novel Calpain-3 Mutations. J Neuropathol Exp Neurol 2019; 78:88-98. [PMID: 30500922 DOI: 10.1093/jnen/nly113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by progressive muscle weakness and wasting. LGMD2A is caused by mutations in the calpain-3 gene (CAPN3) that encodes a Ca2+-dependent cysteine protease predominantly expressed in the skeletal muscle. Underlying pathological mechanisms have not yet been fully elucidated. Mitochondrial abnormalities have been variably reported in human subjects with LGMD2A and were more systematically evaluated in CAPN3-knocked out mouse models. We have combined histochemical, immunohistochemical, molecular, biochemical, and ultrastructural analyses in our study in order to better outline mitochondrial features in 2 LGMD2A patients with novel CAPN3-associated mutations. Both patients underwent detailed clinical evaluations, followed by muscle biopsies from the quadriceps muscles. The diagnosis of LGMD2A in both patients was first suspected on the basis of a typical clinical localization of the muscle weakness, and confirmed by molecular investigations. Two novel homozygous mutations, c.2242C>G (p.Arg748Gly) and c.291C>A (p.Phe97Leu) were identified: c.2242C>G (p.Arg748Gly) mutation was associated with a significant mitochondrial mass depletion and myofibrillar disruption in the first patient, while c.291C>A (p.Phe97Leu) mutation was accompanied by reactive mitochondrial proliferation with ragged-red fibers in the second patient. Our results delineate CAPN3 mutation-specific patterns of mitochondrial dysfunction and their ultrastructural characteristics in LGMD2A.
Collapse
Affiliation(s)
- Riyad El-Khoury
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sahar Traboulsi
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Hamad
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maher Lamaa
- Department of Pediatrics, Al Bahman Hospital, Beirut, Lebanon
| | - Raja Sawaya
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mamdouha Ahdab-Barmada
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
16
|
Hamaguchi M, Fujita H, Suzuki K, Nakamura T, Nishino I, Hirata K. [A male patient with adult-onset sporadic calpainopathy presenting with hypertrophy of the upper extremities]. Rinsho Shinkeigaku 2019; 59:740-745. [PMID: 31656265 DOI: 10.5692/clinicalneurol.cn-001330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 33-year-old man presented with slowly progressive weakness in the lower extremities over 8 years. At the age of 16 years, the elevation of serum creatine kinase level was detected. Physical examination revealed scapular winging, exaggerated lumbar lordosis and tendoachilles contracture. Gowers sign was positive and proximal dominant limb weakness was noted. Hypertrophy was observed in the upper limbs such as the biceps brachii and forearm flexor muscles. Muscle biopsy showed distinct differences in size of muscle fibers and regenerating and necrotic muscle fibers. A histological study revealed decreased calpain3 expression. Gene analysis of CAPN3 revealed two known gene mutations, leading to a diagnosis of calpainopathy (limb girdle muscular dystrophy 2A; LGMD2A). We here report our patient to discuss findings of upper limb hypertrophy, which are frequently missed compared to the lower limb, but important clinical findings.
Collapse
Affiliation(s)
| | | | | | | | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neurology, National Center of Neurology and Psychiatry.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry
| | | |
Collapse
|
17
|
Lasa-Elgarresta J, Mosqueira-Martín L, Naldaiz-Gastesi N, Sáenz A, López de Munain A, Vallejo-Illarramendi A. Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations. Int J Mol Sci 2019; 20:E4548. [PMID: 31540302 PMCID: PMC6770289 DOI: 10.3390/ijms20184548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of Ca2+ homeostasis in the skeletal muscle is a significant underlying event in this muscular dystrophy. We also review and discuss specific clinical features of LGMDR1, CAPN3 functions, novel putative targets for therapeutic strategies, and current approaches aiming to treat LGMDR1. These novel approaches may be clinically relevant not only for LGMDR1 but also for other muscular dystrophies with secondary calpainopathy or with abnormal Ca2+ homeostasis, such as LGMD2B/LGMDR2 or sporadic inclusion body myositis.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Laura Mosqueira-Martín
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Neia Naldaiz-Gastesi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Amets Sáenz
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Adolfo López de Munain
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain.
- Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain.
| | - Ainara Vallejo-Illarramendi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain.
| |
Collapse
|
18
|
Rekik S, Sakka S, Ben Romdhan S, Farhat N, Baba Amer Y, Lehkim L, Authier FJ, Mhiri C. Novel Missense CAPN3 Mutation Responsible for Adult-Onset Limb Girdle Muscular Dystrophy with Calves Hypertrophy. J Mol Neurosci 2019; 69:563-569. [PMID: 31410652 DOI: 10.1007/s12031-019-01383-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023]
Abstract
CAPN3 gene encodes for calpain-3; this protein is a calcium-dependent intracellular protease. Deficiency of this enzyme leads to weakness of the proximal limb muscles and pelvic and shoulder girdles, the so-called limb-girdle muscular dystrophy type 2A (LGMD2A). Here, we reported the case of a Tunisian patient with LGMD2A associated with a novel missense mutation (c.T1681C/p.Y561H). A 61-year-old man, with consanguineous parents, was referred for gait difficulties and slowly progressive proximal weakness of the four limbs associated with moderate hypertrophy of the calves but his facial muscles were unaffected. Electromyography showed that the profile was myopathic pattern and creatine kinase (CK) level was high. Muscle biopsy processing included routine histological, immunohistochemical, and Western Blot reactions, using a panel of antibodies directed against dystrophin, dysferlin, calpain-3, sarcoglycan α, β, γ, and δ. For mutation analysis, we designed an NGS-based screening. Immunological analyses demonstrated a total deficiency in calpain-3 and δ-sarcoglycan, and a reduced expression of dysferlin. The genetic study yielded a homozygous missense mutation (c.T1681C) of the 13th exon of the CAPN3 gene. The mutation found in our patient (c.T1681C/p.Y561H) has not been previously reported. It is responsible for complete calpain-3 and δ-sarcoglycan deficiency and reduced dysferlin expression. The genetic study is mandatory in such cases with multiple-protein deficiency and ambiguous results of immune-histology and Western Blot studies.
Collapse
Affiliation(s)
- Sabrine Rekik
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia. .,Clinical Investigation Center (CIC), CHU Habib Bourguiba, Sfax, Tunisia.
| | - Salma Sakka
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Sawssan Ben Romdhan
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia.,Clinical Investigation Center (CIC), CHU Habib Bourguiba, Sfax, Tunisia
| | - Nouha Farhat
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Yasmine Baba Amer
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, Créteil, France
| | - Leila Lehkim
- Anatomopathology Laboratory, CHU Habib Bourguiba, Sfax, Tunisia
| | | | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), University Hospital Habib Bourguiba, Sfax, Tunisia.,Clinical Investigation Center (CIC), CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
19
|
Strafella C, Campoli G, Galota RM, Caputo V, Pagliaroli G, Carboni S, Zampatti S, Peconi C, Mela J, Sancricca C, Primiano G, Minozzi G, Servidei S, Cascella R, Giardina E. Limb-Girdle Muscular Dystrophies (LGMDs): The Clinical Application of NGS Analysis, a Family Case Report. Front Neurol 2019; 10:619. [PMID: 31263448 PMCID: PMC6585112 DOI: 10.3389/fneur.2019.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of LGMD2A (calpainopathy) can be challenging due to genetic heterogeneity and to high similarity with other LGMDs or neuromuscular disorders. In this setting, NGS panels are highly recommended to perform differential diagnosis, identify new causative mutations and enable genotype-phenotype correlations. In this manuscript, the case of a patient affected by LGMD2A is reported, for which the application of a defined custom designed NGS panel allowed to confirm the diagnosis of calpainopathy linked with two heterozygous variants in CAPN3, namely c.550delA and c.1813G>C. The first variant has been extensively described in relation to calpainopathy. The second variant c.1813G>C, instead, is novel and has been predicted to be probably damaging. In addition, NGS analysis on the proband revealed a heterozygous variant (c.550C>T) in the LMNA gene, which is associated with dilated cardiomyopathy. The variant is novel and has been predicted to be deleterious by subsequent bioinformatic analysis. Successively, segregation analysis was performed on family members. Interestingly, none of them showed neuromuscular symptoms but the mother was diagnosed with bradycardia and syncopal episodes and showed a positive family history for cardiomyopathy. The segregation analysis reported that the proband inherited the c.1813G>C (CAPN3) from the father who was a healthy carrier. The mother was positive for c.550delA (CAPN3) and c.550C>T (LMNA), suggesting thereby a possible genetic explanation for her cardiovascular problems. Segregation analysis, therefore, confirmed the inheritance pattern of the variants carried by the proband and highlighted a familiarity for cardiomyopathy which should not be neglected. The NGS analysis was further performed on the partner of the proband, to estimate the reproductive risk of the couple. The partner was negative to NGS screening, suggesting thereby a low risk to have an affected child with calpainopathy and 50% probability to inherit the LMNA variant. This case report showed the clinical utility of the NGS panel in providing accurate LGMD2A diagnosis and identifying complex phenotypes originating from mutations in multiple genes. However, NGS results should always be accomplished by a dedicated genetic counseling, not only to evaluate the recurrence and reproductive risks but also to uncover unexpected findings which can be clinically significant.
Collapse
Affiliation(s)
- Claudia Strafella
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Giulia Campoli
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Rosaria Maria Galota
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Giulia Pagliaroli
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Stefania Carboni
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Stefania Zampatti
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Cristina Peconi
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Julia Mela
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy
| | - Cristina Sancricca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, Rome, Italy.,Unione Italiana Lotta Distrofia Muscolare (UILDM), Sezione Laziale, Rome, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, Rome, Italy
| | - Giulietta Minozzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurofisiopatologia, Rome, Italy
| | - Raffaella Cascella
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Molecular Genetics Laboratory Unione Italiana Lotta Distrofia Muscolare (UILDM), Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
20
|
Wang L, Zhang VW, Li S, Li H, Sun Y, Li J, Zhu Y, He R, Lin J, Zhang C. The clinical spectrum and genetic variability of limb-girdle muscular dystrophy in a cohort of Chinese patients. Orphanet J Rare Dis 2018; 13:133. [PMID: 30107846 PMCID: PMC6092860 DOI: 10.1186/s13023-018-0859-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background Limb-girdle muscular dystrophy (LGMD) is a commonly diagnosed hereditary muscular disorder, characterized by the progressive weakness of the limb-girdle muscles. Although the condition has been well-characterized, clinical and genetic heterogeneity can be observed in patients with LGMD. Here, we aimed to describe the clinical manifestations and genetic variability among a cohort of patients with LGMD in South China. Results We analyzed the clinical information, muscle magnetic resonance imaging (MRI) findings, and genetic results obtained from 30 patients (24 families) with clinically suspected LGMD. In 24 probands, 38 variants were found in total, of which 18 were shown to be novel. Among the 30 patients, the most common subtypes were dysferlinopathy in eight (26.67%), sarcoglycanopathies in eight [26.67%; LGMD 2C in three (10.00%), LGMD 2D in three (10.00%), and LGMD 2F in two (6.67%)], LGMD 2A in seven (23.33%), followed by LGMD 1B in three (10.00%), LGMD 2I in three (10.00%), and early onset recessive Emery-Dreifuss-like phenotype without cardiomyopathy in one (3.33%). Furthermore, we also observed novel clinical presentations for LGMD 1B, 2F, and 2I patients with hypermobility of the joints in the upper limbs, a LGMD 2F patient with delayed language development, and other manifestations. Moreover, distinct distributions of fatty infiltration in patients with LGMD 2A, dysferlinopathy, and the early onset recessive Emery-Dreifuss-like phenotype without cardiomyopathy were also observed based on muscle MRI results. Conclusions In this study, we expanded the clinical spectrum and genetic variability found in patients with LGMD, which provided additional insights into genotype and phenotype correlations in this disease. Electronic supplementary material The online version of this article (10.1186/s13023-018-0859-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,AmCare Genomics Lab, Guangzhou, 510300, GD, China
| | - Shaoyuan Li
- AmCare Genomics Lab, Guangzhou, 510300, GD, China
| | - Huan Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Yiming Sun
- Department of Health Care, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, GD, China
| | - Jing Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Yuling Zhu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Ruojie He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Jinfu Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Cheng Zhang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China.
| |
Collapse
|
21
|
Making sense of the clinical spectrum of limb girdle muscular dystrophies. Pract Neurol 2018; 18:201-210. [DOI: 10.1136/practneurol-2017-001799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2018] [Indexed: 11/03/2022]
Abstract
The expansion of the spectrum of limb girdle muscular dystrophies (LGMDs) in recent years means that neurologists need to be familiar with the clinical clues that can help with their diagnosis. The LGMDs comprise a group of genetic myopathies that manifest as chronic progressive weakness of hip and shoulder girdles. Their inheritance is either autosomal dominant (LGMD1) or autosomal recessive (LGMD2). Their prevalence varies in different regions of the world; certain ethnic groups have documented founder mutations and this knowledge can facilitate the diagnosis. The clinical approach to LGMDs uses the age at onset, genetic transmission and clinical patterns of muscular weakness. Helpful clinical features that help to differentiate the various subtypes include: predominant upper girdle weakness, disproportionate respiratory muscle involvement, distal weakness, hip adductor weakness, ‘biceps lump’ and ‘diamond on quadriceps’ sign, calf hypertrophy, contractures and cardiac involvement. Almost half of patients with LGMD have such clinical clues. Investigations such as serum creatine kinase, electrophysiology, muscle biopsy and genetic studies can complement the clinical examination. In this review, we discuss diagnostic clinical pointers and comment on the differential diagnosis and relevant investigations, using illustrative case studies.
Collapse
|
22
|
Yalvac ME, Amornvit J, Braganza C, Chen L, Hussain SRA, Shontz KM, Montgomery CL, Flanigan KM, Lewis S, Sahenk Z. Impaired regeneration in calpain-3 null muscle is associated with perturbations in mTORC1 signaling and defective mitochondrial biogenesis. Skelet Muscle 2017; 7:27. [PMID: 29241457 PMCID: PMC5731057 DOI: 10.1186/s13395-017-0146-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022] Open
Abstract
Background Previous studies in patients with limb-girdle muscular dystrophy type 2A (LGMD2A) have suggested that calpain-3 (CAPN3) mutations result in aberrant regeneration in muscle. Methods To gain insight into pathogenesis of aberrant muscle regeneration in LGMD2A, we used a paradigm of cardiotoxin (CTX)-induced cycles of muscle necrosis and regeneration in the CAPN3-KO mice to simulate the early features of the dystrophic process in LGMD2A. The temporal evolution of the regeneration process was followed by assessing the oxidative state, size, and the number of metabolic fiber types at 4 and 12 weeks after last CTX injection. Muscles isolated at these time points were further investigated for the key regulators of the pathways involved in various cellular processes such as protein synthesis, cellular energy status, metabolism, and cell stress to include Akt/mTORC1 signaling, mitochondrial biogenesis, and AMPK signaling. TGF-β and microRNA (miR-1, miR-206, miR-133a) regulation were also assessed. Additional studies included in vitro assays for quantifying fusion index of myoblasts from CAPN3-KO mice and development of an in vivo gene therapy paradigm for restoration of impaired regeneration using the adeno-associated virus vector carrying CAPN3 gene in the muscle. Results At 4 and 12 weeks after last CTX injection, we found impaired regeneration in CAPN3-KO muscle characterized by excessive numbers of small lobulated fibers belonging to oxidative metabolic type (slow twitch) and increased connective tissue. TGF-β transcription levels in the regenerating CAPN3-KO muscles were significantly increased along with microRNA dysregulation compared to wild type (WT), and the attenuated radial growth of muscle fibers was accompanied by perturbed Akt/mTORC1 signaling, uncoupled from protein synthesis, through activation of AMPK pathway, thought to be triggered by energy shortage in the CAPN3-KO muscle. This was associated with failure to increase mitochondria content, PGC-1α, and ATP5D transcripts in the regenerating CAPN3-KO muscles compared to WT. In vitro studies showed defective myotube fusion in CAPN3-KO myoblast cultures. Replacement of CAPN3 by gene therapy in vivo increased the fiber size and decreased the number of small oxidative fibers. Conclusion Our findings provide insights into understanding of the impaired radial growth phase of regeneration in calpainopathy. Electronic supplementary material The online version of this article (10.1186/s13395-017-0146-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehmet E Yalvac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jakkrit Amornvit
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Current Address: King Chulalongkorn Memorial Hospital and Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cilwyn Braganza
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lei Chen
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Syed-Rehan A Hussain
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kimberly M Shontz
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chrystal L Montgomery
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, USA
| | - Sarah Lewis
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Zarife Sahenk
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, USA. .,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA. .,Neuromuscular Pathology, Nationwide Children's Hospital, 700 Children's Drive Rm WA 3024, Columbus, USA.
| |
Collapse
|
23
|
Khadilkar SV, Faldu HD, Patil SB, Singh R. Limb-girdle Muscular Dystrophies in India: A Review. Ann Indian Acad Neurol 2017; 20:87-95. [PMID: 28615891 PMCID: PMC5470147 DOI: 10.4103/aian.aian_81_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are common in India. Information on LGMDs has been gradually evolving in the recent years. This information is scattered in case series and case studies. The aim of this study is to collate available Indian information on LGMDs and put it in perspective. PubMed search using keywords such as limb-girdle muscular dystrophies in India, sarcoglycanopathies, dysferlinopathy, calpainopathy, and GNE myopathy was carried out. The published information on LGMDs in Indian context suggests that dysferlinopathy, calpainopathy, sarcoglycanopathies, and other myopathies such as GNE myopathy are frequently seen in India. Besides these, anecdotal reports of many other forms are available, some with genetic support and others showing immunocytochemical defects. The genotypic information on LGMDs is gradually evolving and founder mutations have been detected in selected populations. Further multicenter studies are necessary to document the incidence and prevalence of these common conditions in India.
Collapse
Affiliation(s)
| | - Hinaben Dayalal Faldu
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Sarika Bapuso Patil
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Rakesh Singh
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Magri F, Nigro V, Angelini C, Mongini T, Mora M, Moroni I, Toscano A, D'angelo MG, Tomelleri G, Siciliano G, Ricci G, Bruno C, Corti S, Musumeci O, Tasca G, Ricci E, Monforte M, Sciacco M, Fiorillo C, Gandossini S, Minetti C, Morandi L, Savarese M, Fruscio GD, Semplicini C, Pegoraro E, Govoni A, Brusa R, Del Bo R, Ronchi D, Moggio M, Bresolin N, Comi GP. The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle Nerve 2016; 55:55-68. [PMID: 27184587 DOI: 10.1002/mus.25192] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Limb girdle muscular dystrophies (LGMDs) are characterized by high molecular heterogeneity, clinical overlap, and a paucity of specific biomarkers. Their molecular definition is fundamental for prognostic and therapeutic purposes. METHODS We created an Italian LGMD registry that included 370 molecularly defined patients. We reviewed detailed retrospective and prospective data and compared each LGMD subtype for differential diagnosis purposes. RESULTS LGMD types 2A and 2B are the most frequent forms in Italy. The ages at disease onset, clinical progression, and cardiac and respiratory involvement can vary greatly between each LGMD subtype. In a set of extensively studied patients, targeted next-generation sequencing (NGS) identified mutations in 36.5% of cases. CONCLUSION Detailed clinical characterization combined with muscle tissue analysis is fundamental to guide differential diagnosis and to address molecular tests. NGS is useful for diagnosing forms without specific biomarkers, although, at least in our study cohort, several LGMD disease mechanisms remain to be identified. Muscle Nerve 55: 55-68, 2017.
Collapse
Affiliation(s)
- Francesca Magri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Vincenzo Nigro
- Department of General Pathology, University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Tiziana Mongini
- Department of Neurosciences Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, IRCCS Foundation Istituto Neurologico C. Besta, Milan, Italy
| | - Antonio Toscano
- Department of Clinically and Experimental Medicine, University of Messina, Italy
| | | | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Bruno
- Center of Myology and Neurodegenerative Diseases, Istituto Giannina Gaslini, Genova
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Olimpia Musumeci
- Department of Clinically and Experimental Medicine, University of Messina, Italy
| | | | - Enzo Ricci
- Department of Neurology, Policlinico Universitario A. Gemelli, University Cattolica del Sacro Cuore of Rome, Rome, Italy
| | - Mauro Monforte
- Department of Neurology, Policlinico Universitario A. Gemelli, University Cattolica del Sacro Cuore of Rome, Rome, Italy
| | - Monica Sciacco
- Dino Ferrari Centre, Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Sandra Gandossini
- Neuromuscular Unit-IRCCS E. Medea Bosisio Parini, Bosisio Parini, Italy
| | - Carlo Minetti
- Center of Myology and Neurodegenerative Diseases, Istituto Giannina Gaslini, Genova
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marco Savarese
- Department of General Pathology, University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Giuseppina Di Fruscio
- Department of General Pathology, University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Alessandra Govoni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Maurizio Moggio
- Dino Ferrari Centre, Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
25
|
Kramerova I, Ermolova N, Eskin A, Hevener A, Quehenberger O, Armando AM, Haller R, Romain N, Nelson SF, Spencer MJ. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy). Hum Mol Genet 2016; 25:2194-2207. [PMID: 27005420 DOI: 10.1093/hmg/ddw086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
Limb girdle muscular dystrophy 2A is due to loss-of-function mutations in the Calpain 3 (CAPN3) gene. Our previous data suggest that CAPN3 helps to maintain the integrity of the triad complex in skeletal muscle. In Capn3 knock-out mice (C3KO), Ca2+ release and Ca2+/calmodulin kinase II (CaMKII) signaling are attenuated. We hypothesized that calpainopathy may result from a failure to transmit loading-induced Ca2+-mediated signals, necessary to up-regulate expression of muscle adaptation genes. To test this hypothesis, we compared transcriptomes of muscles from wild type (WT) and C3KO mice subjected to endurance exercise. In WT mice, exercise induces a gene signature that includes myofibrillar, mitochondrial and oxidative lipid metabolism genes, necessary for muscle adaptation. C3KO muscles fail to activate the same gene signature. Furthermore, in agreement with the aberrant transcriptional profile, we observe a commensurate functional defect in lipid metabolism whereby C3KO muscles fail to release fatty acids from stored triacylglycerol. In conjunction with the defects in oxidative metabolism, C3KO mice demonstrate reduced exercise endurance. Failure to up-regulate genes in C3KO muscles is due, in part, to decreased levels of PGC1α, a transcriptional co-regulator that orchestrates the muscle adaptation response. Destabilization of PGC1α is attributable to decreased p38 MAPK activation via diminished CaMKII signaling. Thus, we elucidate a pathway downstream of Ca2+-mediated CaMKII activation that is dysfunctional in C3KO mice, leading to reduced transcription of genes involved in muscle adaptation. These studies identify a novel mechanism of muscular dystrophy: a blunted transcriptional response to muscle loading resulting in chronic failure to adapt and remodel.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine Center for Duchenne Muscular Dystrophy
| | - Natalia Ermolova
- Department of Neurology, David Geffen School of Medicine Center for Duchenne Muscular Dystrophy
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy Department of Human Genetics, David Geffen School of Medicine
| | - Andrea Hevener
- Center for Duchenne Muscular Dystrophy Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Oswald Quehenberger
- Department of Medicine Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Aaron M Armando
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Ronald Haller
- Department Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Nadine Romain
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy Department of Human Genetics, David Geffen School of Medicine
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine Center for Duchenne Muscular Dystrophy
| |
Collapse
|
26
|
An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122:169-87. [DOI: 10.1016/j.biochi.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023]
|
27
|
Park HJ, Jang H, Lee JH, Shin HY, Cho SR, Park KD, Bang D, Lee MG, Kim SM, Lee JH, Choi YC. Clinical and Pathological Heterogeneity of Korean Patients with CAPN3 Mutations. Yonsei Med J 2016; 57:173-9. [PMID: 26632398 PMCID: PMC4696950 DOI: 10.3349/ymj.2016.57.1.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 12/30/2022] Open
Abstract
PURPOSE This study was designed to investigate the characteristics of Korean patients with calpainopathy. MATERIALS AND METHODS Thirteen patients from ten unrelated families were diagnosed with calpainopathy via direct or targeted sequencing of the CAPN3 gene. Clinical, mutational, and pathological spectra were then analyzed. RESULTS Nine different mutations, including four novel mutations (NM_000070: c.1524+1G>T, c.1789_1790inA, c.2184+1G>T, and c.2384C>T) were identified. The median age at symptom onset was 22 (interquartile range: 15-28). Common clinical findings were joint contracture in nine patients, winged scapula in four, and lordosis in one. However, we also found highly variable clinical features including early onset joint contractures, asymptomatic hyperCKemia, and heterogeneous clinical severity in three members of the same family. Four of nine muscle specimens revealed lobulated fibers, but three showed normal skeletal muscle histology. CONCLUSION We identified four novel CAPN3 mutations and demonstrated clinical and pathological heterogeneity in Korean patients with calpainopathy.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon Jang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Jung Hwan Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Kee Duk Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Min Goo Lee
- Department of Pharmacology, Pharmacogenomic Research Center for Membrane Transporters, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea.
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
Differential Diagnosis between Duchenne Muscular Dystrophy and Limb Girdle Muscular Dystrophy 2a. CURRENT HEALTH SCIENCES JOURNAL 2015; 41:385-389. [PMID: 30538847 PMCID: PMC6243516 DOI: 10.12865/chsj.41.04.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
Abstract
Limb Girdle Muscular Dystrophy 2A (LGMD 2A) is the most common form of limb girdle muscular dystrophies caused by mutations in the calpain-3 gene (CAPN-3). The pattern of LGMD 2A can be clinically indistinguishable from that of Duchenne Muscular Dystrophy (DMD). We report a case of a 14-year-old boy which has the initial diagnosed as DMD at 6 years old, based on clinical features and very elevated serum creatine kinase levels. A muscle biopsy at the age of 10 showed atypical features which suggested a histiocytosis or neural damage. An MRI conducted 2 years later revealed fatty degeneration predominantly in the posterior region of the thigh and led the diagnosis to LGMD 2A, as well as the necessity to repeat the biopsy. Immunohistochemical analysis was normal for dystrophin, but the Western Blott showed a normal/borderline amount of calpain-3 in the muscle. We also performed a molecular analysis that identified a compound heterozygous mutation of the calpain 3 gene (CAPN 3). LGMD 2A was often misdiagnosed as DMD due to the similarities in clinical manifestations and technique limitations; the immunohistochemical examination, the magnetic resonance imaging examination and the molecular analysis are an essential tool for establishing a right diagnosis.
Collapse
|
29
|
Seong MW, Cho A, Park HW, Seo SH, Lim BC, Seol D, Cho SI, Park SS, Chae JH. Clinical applications of next-generation sequencing-based gene panel in patients with muscular dystrophy: Korean experience. Clin Genet 2015; 89:484-488. [PMID: 26060040 DOI: 10.1111/cge.12621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 11/30/2022]
Abstract
Muscular dystrophy (MD) is a genetically and clinically heterogeneous group of disorders. Here, we performed targeted sequencing of 18 limb-girdle MD (LGMD)-related genes in 35 patients who were highly suspected of having MD. We identified one or more pathogenic variants in 23 of 35 patients (65.7%), and a genetic diagnosis was performed in 20 patients (57.1%). LGMD2B was the most common LGMD type, followed by LGMD1B, LGMD2A, and LGMD2G. Among the three major LGMD types in this group, LGMD1B was correlated with the lowest creatine kinase (CK) levels and the earliest onset, whereas LGMD2B was correlated with the highest CK levels and the latest onset. Thus, next-generation sequencing-based gene panels can be a helpful tool for the diagnosis of MDs, particularly in young children and those displaying atypical symptoms.
Collapse
Affiliation(s)
- M-W Seong
- Departments of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - A Cho
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - H W Park
- Departments of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - S H Seo
- Departments of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - B C Lim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - D Seol
- Departments of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - S I Cho
- Departments of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - S S Park
- Departments of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - J H Chae
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Fanin M, Angelini C. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls. Muscle Nerve 2015; 52:163-73. [PMID: 25900067 DOI: 10.1002/mus.24682] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, Biomedical Campus "Pietro d'Abano," via Giuseppe Orus 2B, 35129, Padova, Italy
| | | |
Collapse
|
31
|
Ojima K, Ono Y, Hata S, Noguchi S, Nishino I, Sorimachi H. Muscle-specific calpain-3 is phosphorylated in its unique insertion region for enrichment in a myofibril fraction. Genes Cells 2014; 19:830-41. [DOI: 10.1111/gtc.12181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Koichi Ojima
- Animal Products Research Division; NARO Institute of Livestock and Grassland Science; 2 Ikenodai Tsukuba Ibaraki 305-0901 Japan
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Yasuko Ono
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Shoji Hata
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; 4-1-1 Ogawa-Higashi Kodaira Tokyo 187-8502 Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; 4-1-1 Ogawa-Higashi Kodaira Tokyo 187-8502 Japan
| | - Hiroyuki Sorimachi
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| |
Collapse
|
32
|
Jaka O, Azpitarte M, Paisán-Ruiz C, Zulaika M, Casas-Fraile L, Sanz R, Trevisiol N, Levy N, Bartoli M, Krahn M, López de Munain A, Sáenz A. Entire CAPN3
gene deletion in a patient with limb-girdle muscular dystrophy type 2A. Muscle Nerve 2014; 50:448-53. [DOI: 10.1002/mus.24263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Oihane Jaka
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Margarita Azpitarte
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Coro Paisán-Ruiz
- Department of Neurology, Psychiatry, Genetics and Genomic Sciences; Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Miren Zulaika
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Leire Casas-Fraile
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Raúl Sanz
- Molecular Diagnostic Unit; Secugen Madrid Spain
| | - Nathalie Trevisiol
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Nicolas Levy
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Marc Bartoli
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Martin Krahn
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | | | - Amets Sáenz
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| |
Collapse
|
33
|
Redox state and mitochondrial respiratory chain function in skeletal muscle of LGMD2A patients. PLoS One 2014; 9:e102549. [PMID: 25079074 PMCID: PMC4117472 DOI: 10.1371/journal.pone.0102549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 11/30/2022] Open
Abstract
Background Calpain-3 deficiency causes oxidative and nitrosative stress-induced damage in skeletal muscle of LGMD2A patients, but mitochondrial respiratory chain function and anti-oxidant levels have not been systematically assessed in this clinical population previously. Methods We identified 14 patients with phenotypes consistent with LGMD2A and performed CAPN3 gene sequencing, CAPN3 expression/autolysis measurements, and insilico predictions of pathogenicity. Oxidative damage, anti-oxidant capacity, and mitochondrial enzyme activities were determined in a subset of muscle biopsies. Results Twenty-one disease-causing variants were detected along the entire CAPN3 gene, five of which were novel (c.338 T>C, c.500 T>C, c.1525-1 G>T, c.2115+4 T>G, c.2366 T>A). Protein- and mRNA-based tests confirmed insilico predictions and the clinical diagnosis in 75% of patients. Reductions in antioxidant defense mechanisms (SOD-1 and NRF-2, but not SOD-2), coupled with increased lipid peroxidation and protein ubiquitination, were observed in calpain-3 deficient muscle, indicating a redox imbalance primarily affecting non-mitochondrial compartments. Although ATP synthase levels were significantly lower in LGMD2A patients, citrate synthase, cytochrome c oxidase, and complex I+III activities were not different from controls. Conclusions Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients.
Collapse
|
34
|
Liewluck T, Milone M, Mauermann ML, Castro-Couch M, Cerhan JH, Murthy NS. A novel VCP
mutation underlies scapuloperoneal muscular dystrophy and dropped head syndrome featuring lobulated fibers. Muscle Nerve 2014; 50:295-9. [DOI: 10.1002/mus.24290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Teerin Liewluck
- Department of Neurology; University of Colorado School of Medicine, Anschutz Medical Campus; 12631 East 17th Avenue Aurora Colorado USA
| | - Margherita Milone
- Department of Neurology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| | | | - Melissa Castro-Couch
- Department of Psychiatry and Psychology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| | - Jane H. Cerhan
- Department of Psychiatry and Psychology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| | - Naveen S. Murthy
- Division of Musculoskeletal Radiology; Department of Radiology; Mayo Clinic College of Medicine; Rochester Minnesota USA
| |
Collapse
|
35
|
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 2014; 9:1515-32. [PMID: 24626787 PMCID: PMC4020495 DOI: 10.3892/mmr.2014.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse-protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
Collapse
Affiliation(s)
- Omar A Mahmood
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Mei Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
36
|
Abstract
BACKGROUND AND PURPOSE At present, more than 20 different forms of limb-girdle muscular dystrophies (LGMDs) are known (at least 7 autosomal dominant and 14 autosomal recessive). Although these different forms show some typical phenotypic characteristics, the existing clinical overlap makes their differential diagnosis difficult. Limb-girdle muscular dystrophy type 2 (LGMD2A) is the most prevalent LGMD in many European as well as Brazilian communities and is caused by mutations in the gene CAPN3. Laboratory testing, such as calpain immunohistochemistry and Western-blot analysis, is not totally reliable, since up to 20% of molecularly confirmed LGMD2A show normal content of calpain 3 and a third of LGMD2A biopsies have normal calpain 3 proteo-lytic activity in the muscle. Thus, genetic testing is considered as the only reliable diagnostic criterion in LGMD2A. MATERIAL AND METHODS In an attempt to find a correlation between genotype and muscle pathology in limb-girdle muscular dystrophy 2A we performed histopathological investigation of a group of 31 patients subdivided according to the type of pathologic CAPN3 gene mutation. RESULTS In all biopsies typical features of muscular dystrophy such as fiber necrosis and regeneration, variation in fiber size and fibrosis were noted. Lobulated fibers were often encountered in the muscle biopsies of LGMD2A patients. Such fibers were more frequent in patients with 550delA mutation. CONCLUSIONS These findings may be helpful in establishing diagnostic strategies in LGMD.
Collapse
|
37
|
Matsuura T, Kurosaki T, Omote Y, Minami N, Hayashi YK, Nishino I, Abe K. Exome sequencing as a diagnostic tool to identify a causal mutation in genetically highly heterogeneous limb-girdle muscular dystrophy. J Hum Genet 2013; 58:564-5. [DOI: 10.1038/jhg.2013.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Paim JF, Cotta A, Vargas AP, Navarro MM, Valicek J, Carvalho E, da-Cunha AL, Plentz E, Braz SV, Takata RI, Almeida CF, Vainzof M. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G. J Mol Neurosci 2013; 50:339-44. [PMID: 23479141 DOI: 10.1007/s12031-013-9987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/22/2013] [Indexed: 11/26/2022]
Abstract
Limb girdle muscular dystrophy type 2 G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46 years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8 years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41 years old, and now, at 54 years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy.
Collapse
Affiliation(s)
- Julia F Paim
- Surgical Pathology Department, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Infancy- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, cardiac and respiratory functions, while those of late onset may be mild and associated with slight weakness or fatigability induced by effort. In addition to the distribution of muscle weakness, symptoms, and course of the disease, the diagnosis of muscular dystrophy is usually ascertained by histological findings. There is connective tissue proliferation in the perimysium and endomysium, variation in muscle fiber size, cytoarchitectural alterations of myofibers such as internal nuclei, myofibrillar whorls, and fiber splitting and lobulation, but, most of all, degeneration and regeneration of myofibers. Causes of muscular dystrophies characterized by muscle weakness and wasting are heterogeneous and include dysfunction of diverse genetic pathways and genes encoding proteins of the plasma membrane, extracellular matrix, sarcomere, and nuclear membrane components. Duchenne and Becker muscular dystrophies are prototypes illustrating advances in the field of myology. Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous, some with autosomal dominant (LGMD1) and others with autosomal recessive (LGMD2) inheritance. Neither clinical and genetic grounds nor biopsy patterns are specific enough to distinguish them, but two common denominators are: (1) weakness and wasting predominating in pelvic and shoulder girdle muscles, with occasional involvement of the myocardium; and (2) necrosis and regeneration of myofibers. While identification of genetic causes and molecular diagnosis are increasingly improved, especially with the advent of new generation sequencing technologies, optimized care, information for the family, and prevention, including genetic counseling and prenatal diagnosis, require multidisciplinary follow-up with genetic, pediatric, and psychological involvement.
Collapse
Affiliation(s)
- Jamel Chelly
- Cochin Institute - Cochin Hospital, INSERM U1016 and Université Paris Descartes, Paris, France
| | | |
Collapse
|
40
|
Luo SS, Xi JY, Zhu WH, Zhao CB, Lu JH, Lin J, Wang Y, Lu J, Qiao K. Genetic variability and clinical spectrum of Chinese patients with limb-girdle muscular dystrophy type 2A. Muscle Nerve 2012; 46:723-9. [DOI: 10.1002/mus.23381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2012] [Indexed: 11/10/2022]
|
41
|
C3KO mouse expression analysis: downregulation of the muscular dystrophy Ky protein and alterations in muscle aging. Neurogenetics 2012; 13:347-57. [PMID: 22820870 DOI: 10.1007/s10048-012-0336-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Mutations in CAPN3 gene cause limb-girdle muscular dystrophy type 2A (LGMD2A) characterized by muscle wasting and progressive degeneration of scapular and pelvic musculature. Since CAPN3 knockout mice (C3KO) display features of muscle pathology similar to those features observed in the earliest-stage or preclinical LGMD2A patients, gene expression profiling analysis in C3KO mice was performed to gain insight into mechanisms of disease. Two different comparisons were carried out in order to determine, first, the differential gene expression between wild-type (WT) and C3KO soleus and, second, to identify the transcripts differentially expressed in aging muscles of WT and C3KO mice. The up/downregulation of two genes, important for normal muscle function, was identified in C3KO mice: the Ky gene, encoding a protease implicated in muscle development, and Park2 gene encoding an E3 ubiquitin ligase (parkin). The Ky gene was downregulated in C3KO muscles suggesting that Ky protease may play a complementary role in regulating muscle cytoskeleton homeostasis in response to changes in muscle activity. Park2 was upregulated in the aged WT muscles but not in C3KO muscles. Taking into account the known functions of parkin E3 ligase, it is possible that it plays a role in ubiquitination and degradation of atrophy-specific and damaged proteins that are necessary to avoid cellular toxicity and a cellular stress response in aging muscles.
Collapse
|
42
|
Liewluck T, Goodman BP. Late-onset axial myopathy and camptocormia in a calpainopathy carrier. J Clin Neuromuscul Dis 2012; 13:209-213. [PMID: 22622166 DOI: 10.1097/cnd.0b013e3182461a9c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Camptocormia is a debilitating gait disorder characterized by the hyperflexion of the thoracolumbar spine during the upright position. Its etiologies are heterogenous, including parkinsonism and various neuromuscular disorders. Here, we report a camptocormia patient due to a late-onset axial myopathy with numerous lobulated fibers. The patient's father reportedly had similar symptoms. Myriad lobulated fibers are common among patients with an autosomal recessive muscular dystrophy due to calpain-3 gene (CAPN3) mutations or calpainopathy. CAPN3 sequencing revealed a single c.759-761delGAA mutation. Calpainopathy carriers are generally asymptomatic. The presence of lobulated fibers in this patient suggests that camptocormia could be a manifestation of calpainopathy carrier, although the possibility of a coexisting undiagnosed myopathy cannot be excluded. The current patient should spur the evaluation of camptocormia among calpainopathy carriers.
Collapse
|
43
|
Kramerova I, Kudryashova E, Ermolova N, Saenz A, Jaka O, López de Munain A, Spencer MJ. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3. Hum Mol Genet 2012; 21:3193-204. [PMID: 22505582 DOI: 10.1093/hmg/dds144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.
Collapse
Affiliation(s)
- I Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Salem IH, Hsairi I, Mezghani N, Kenoun H, Triki C, Fakhfakh F. CAPN3 mRNA processing alteration caused by splicing mutation associated with novel genomic rearrangement of Alu elements. J Hum Genet 2011; 57:92-100. [PMID: 22158424 DOI: 10.1038/jhg.2011.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recessive mutations of CAPN3 gene are reported to be responsible for limb girdle muscular dystrophy type 2A (LGMD2A). In all, 15-25% of intronic nucleotide changes identified in this gene were investigated by in silico analysis, but occasionally supported by experimental data or reported in some cases as a polymorphism. We report here genetic and transcriptional analyses in three Tunisian patients belonging to the same consanguineous family sharing the same mutation c.1194-9 A>G and Alu repeats insertion in intron 7 of CAPN3 gene. Reverse transcriptase-PCR experiments performed on total RNA from the patient's muscle biopsy showed retention of the eight last nucleotides of intron 9 in the CAPN3 transcript lacking the first seven exons. Our results provide evidence regarding the potential involvement of Alu elements in aberrant processing of pre-mRNA owing to the disruption of pre-existing intronic splicing regulatory elements. We also demonstrated variable mRNA alternative splicing among tissues and between LGMD2A patients. A deep intronic variation and rearrangement have been reported in the literature as causing genetic diseases in humans. However, this is the first report on a potential pathogenic CAPN3 gene mutation resulting from an Alu insertion.
Collapse
Affiliation(s)
- Ikhlass Hadj Salem
- Laboratoire de Génétique Moléculaire Humaine, Université de Sfax, Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
45
|
Sáenz A, Ono Y, Sorimachi H, Goicoechea M, Leturcq F, Blázquez L, García-Bragado F, Marina A, Poza JJ, Azpitarte M, Doi N, Urtasun M, Kaplan JC, De Munain AL. Does the severity of the LGMD2A phenotype in compound heterozygotes depend on the combination of mutations? Muscle Nerve 2011; 44:710-4. [DOI: 10.1002/mus.22194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Gallardo E, Saenz A, Illa I. Limb-girdle muscular dystrophy 2A. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:97-110. [PMID: 21496626 DOI: 10.1016/b978-0-08-045031-5.00006-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the gene CAPN3 located in the chromosome region 15q15.1-q21.1. To date more than 300 mutations have been described. This gene encodes for a 94-kDa nonlysosomal calcium-dependent cysteine protease and its function in skeletal muscle is not fully understood. It seems that calpain-3 has an unusual zymogenic activation that involves, among other substrates, cytoskeletal proteins. Calpain-3 is thought to interact with titin and dysferlin. Calpain-3 deficiency produces abnormal sarcomeres that lead eventually to muscle fiber death. Hip adductors and gluteus maximus are the earliest clinically affected muscles. No clinical differences have been reported depending on the type of mutation in the CAPN3 gene. The muscle biopsy shows variability of fiber size, interstitial fibrosis, internal nuclei, lobulated fibers, and, in some cases, presence of eosinophils. Recent gene expression profiling studies have shown upregulation of interleukin-32 and immunoglobulin genes, which may explain the eosinophilic infiltration. Two mouse knockout models of CAPN3 have been characterized. There are no curative treatments for this disease. However, experimental therapeutics using mouse models conclude that adeno-associated virus (AAV) vectors seem to be one of the best approaches because of their efficiency and persistency of gene transfer.
Collapse
Affiliation(s)
- Eduard Gallardo
- Department of Neurology and Laboratory of Experimental Neurology, Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | |
Collapse
|
47
|
Luo SS, Xi JY, Lu JH, Zhao CB, Zhu WH, Lin J, Wang Y, Ren HM, Yin B, Andoni UJ. Clinical and pathological features in 15 Chinese patients with calpainopathy. Muscle Nerve 2010; 43:402-9. [PMID: 21321956 DOI: 10.1002/mus.21908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2010] [Indexed: 11/07/2022]
Abstract
BACKGROUND Calpainopathy is comprised of a group of myopathies caused by deficiency in calcium-activated, neutral protease (calpain-3). In this study we identify calpainopathy in a cohort of Chinese patients with unclassified myopathy and analyze its clinical and pathological features. METHODS Sixty-six muscle biopsies were selected for combined Western blotting of dysferlin and calpain-3 after immunohistochemical staining. Clinical and pathological parameters of 15 confirmed calpainopathy cases were determined. RESULTS The diagnosis of calpainopathy in 15 Chinese patients was confirmed by Western blot analysis. Fourteen subjects had progressive proximal muscle weakness; 1 presented with bilateral distal muscle atrophy of the lower extremities. Scapular winging was observed in 12 patients (80%), and joint contractures were found in 10 others (66.7%). Histopathological studies showed a high prevalence of lobulated fibers (66.7%). CONCLUSIONS Chinese patients with calpainopathy share some common clinical and pathological features with the reported characteristics of non-Chinese patients.
Collapse
Affiliation(s)
- Su-Shan Luo
- Department of Neurology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stuelsatz P, Pouzoulet F, Lamarre Y, Dargelos E, Poussard S, Leibovitch S, Cottin P, Veschambre P. Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. J Biol Chem 2010; 285:12670-83. [PMID: 20139084 PMCID: PMC2857084 DOI: 10.1074/jbc.m109.063966] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/25/2010] [Indexed: 01/24/2023] Open
Abstract
Calpain 3 is a calcium-dependent cysteine protease that is primarily expressed in skeletal muscle and is implicated in limb girdle muscular dystrophy type 2A. To date, its best characterized function is located within the sarcomere, but this protease is found in other cellular compartments, which suggests that it exerts multiple roles. Here, we present evidence that calpain 3 is involved in the myogenic differentiation process. In the course of in vitro culture of myoblasts to fully differentiated myotubes, a population of quiescent undifferentiated "reserve cells" are maintained. These reserve cells are closely related to satellite cells responsible for adult muscle regeneration. In the present work, we observe that reserve cells express higher levels of endogenous Capn3 mRNA than proliferating myoblasts. We show that calpain 3 participates in the establishment of the pool of reserve cells by decreasing the transcriptional activity of the key myogenic regulator MyoD via proteolysis independently of the ubiquitin-proteasome degradation pathway. Our results identify calpain 3 as a potential new player in the muscular regeneration process by promoting renewal of the satellite cell compartment.
Collapse
Affiliation(s)
- Pascal Stuelsatz
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Frédéric Pouzoulet
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Yann Lamarre
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Elise Dargelos
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Sylvie Poussard
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Serge Leibovitch
- the
Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, F-34060 Montpellier, France
| | - Patrick Cottin
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Philippe Veschambre
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| |
Collapse
|
49
|
Lue Y, Lin R, Chen S, Lu Y. Measurement of the functional status of patients with different types of muscular dystrophy. Kaohsiung J Med Sci 2009; 25:325-33. [PMID: 19560997 PMCID: PMC11917556 DOI: 10.1016/s1607-551x(09)70523-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 03/27/2009] [Indexed: 10/20/2022] Open
Abstract
Muscular dystrophy (MD) comprises a group of diseases characterized by progressive muscle weakness that induces functional deterioration. Clinical management requires the use of a well-designed scale to measure patients' functional status. This study aimed to investigate the quality of the functional scales used to assess patients with different types of MD. The Brooke scale and the Vignos scale were used to grade arm and leg function, respectively. The Barthel Index was used to evaluate the function of daily living activity. We performed tests to assess the acceptability of these scales. The characteristics of the different types of MD are discussed. This was a multicenter study and included patients diagnosed with Duchenne muscular dystrophy (DMD) (classified as severely progressive MD), Becker muscular dystrophy (BMD), limb girdle muscular dystrophy (LGMD) and facioscapulohumeral muscular dystrophy (FSHD). BMD, LGMD, and FSHD were classified as slowly progressive MD. The results demonstrated that the Brooke scale was acceptable for grading arm function in DMD, but was unable to discriminate between differing levels of severity in slowly progressive MD. The floor effect was large for all types of slowly progressive MD (range, 20.0-61.9), and was especially high for BMD. The floor effect was also large for BMD (23.8%) and FSHD (50.0%) using the Vignos scale. Grades 6-8 of the Vignos scale were inapplicable because they included items involving the use of long leg braces for walking or standing, and some patients did not use long leg braces. In the Barthel Index, a ceiling effect was prominent for slowly progressive MD (58.9%), while a floor effect existed for DMD (17.9%). Among the slowly progressive MDs, FSHD patients had the best level of functioning; they had better leg function and their daily living activities were less affected than patients with other forms of slowly progressive MD. The results of this study demonstrate the acceptability of the different applications used for measuring functional status in patients with different types of MD. Some of the limitations of these measures as applied to MD should be carefully considered, especially in patients with slowly progressive MD. We suggest that these applications be used in combination with other measures, or that a complicated instrument capable of evaluating the various levels of functional status be used.
Collapse
Affiliation(s)
- Yi‐Jing Lue
- Department of Physical Therapy, College of Health Science, Kaohsiung Medical University, Pingtung, Taiwan
- Department of Rehabilitations, Kaohsiung Medical University Hospital, Kaohsiung, Pingtung, Taiwan
| | | | - Shun‐Sheng Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Pingtung, Taiwan
| | - Yen‐Mou Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, Pingtung, Taiwan
| |
Collapse
|
50
|
Kramerova I, Kudryashova E, Wu B, Germain S, Vandenborne K, Romain N, Haller RG, Verity MA, Spencer MJ. Mitochondrial abnormalities, energy deficit and oxidative stress are features of calpain 3 deficiency in skeletal muscle. Hum Mol Genet 2009; 18:3194-205. [PMID: 19483197 DOI: 10.1093/hmg/ddp257] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the non-lysosomal cysteine protease calpain-3 cause autosomal recessive limb girdle muscular dystrophy. Pathological mechanisms occurring in this disease have not yet been elucidated. Here, we report both morphological and biochemical evidence of mitochondrial abnormalities in calpain-3 knockout (C3KO) muscles, including irregular ultrastructure and distribution of mitochondria. The morphological abnormalities in C3KO muscles are associated with reduced in vivo mitochondrial ATP production as measured by (31)P magnetic resonance spectroscopy. Mitochondrial abnormalities in C3KO muscles also correlate with the presence of oxidative stress; increased protein modification by oxygen free radicals and an elevated concentration of the anti-oxidative enzyme Mn-superoxide dismutase were observed in C3KO muscles. Previously we identified a number of mitochondrial proteins involved in beta-oxidation of fatty acids as potential substrates for calpain-3. In order to determine if the mitochondrial abnormalities resulted from the loss of direct regulation of mitochondrial proteins by calpain-3, we validated the potential substrates that were identified in previous proteomic studies. This analysis showed that the beta-oxidation enzyme, VLCAD, is cleaved by calpain-3 in vitro, but we were not able to confirm that VLCAD is an in vivo substrate for calpain-3. However, the activity of VLCAD was decreased in C3KO mitochondrial fractions compared with wild type, a finding that likely reflects a general mitochondrial dysfunction. Taken together, these data suggest that mitochondrial abnormalities leading to oxidative stress and energy deficit are important pathological features of calpainopathy and possibly represent secondary effects of the absence of calpain-3.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|