1
|
Vijayan A, Vishnu J, A R, Shankar B, Sambhudevan S. A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds. Biomater Sci 2025; 13:913-945. [PMID: 39808066 DOI: 10.1039/d4bm00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications. The incorporation of dopants and additives during synthesis is explored for optimizing the mechanical, biological, and osteogenic characteristics of HA-based materials. Moreover, the evolution of AM technologies from conventional 3D printing to advanced 4D and 5D printing is detailed, covering material selection, process parameters, and post-processing strategies vital for fabricating intricate, patient-specific scaffolds, implants, and drug delivery systems utilizing HA. The review underscores the importance of achieving precise control over microstructure and porosity to mimic native tissue architectures accurately. Furthermore, emerging applications of HA-based constructs in tissue engineering, regenerative medicine, drug delivery, and orthopedic implants are discussed, highlighting their potential to address critical clinical needs. Despite the glimmer of hope provided by the advent and progress of such AM capabilities, several aspects need to be addressed to develop efficient HA-based bone substitutes, which are explored in detail in this review.
Collapse
Affiliation(s)
- Ananthika Vijayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Jithin Vishnu
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Revathi A
- NextGen Precision Health, University of Missouri, Columbia, USA
| | - Balakrishnan Shankar
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
2
|
Dobrzyńska‐Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024; 13:e2401674. [PMID: 39233521 PMCID: PMC11616265 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West BohemiaUniverzitní 8Pilsen30100Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering DepartmentUniversity of Missouri1030 Hill StreetColumbiaMissouri65211USA
| | - Monika Knitter
- Institute of Materials TechnologyPolymer DivisionPoznan University of TechnologyPoznanPoland
| | - Reece N. Oosterbeek
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Pablo Salinas
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Eduardo Pozo
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Ana Marina Ferreira
- School of EngineeringNewcastle UniversityNewcastle upon TyneNewcastleNE1 7RUUK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of TechnologyDepartment of ChemicalMetallurgical and Materials EngineeringPolymer Division & Institute for Nano Engineering Research (INER)Pretoria West CampusPretoriaSouth Africa
| |
Collapse
|
3
|
Morales-Cámara S, Parra-Torrejón B, Rodríguez-Diéguez A, Delgado-López JM, Ramírez-Rodríguez GB, Rojas S. ZIF-8@Hydroxyapatite Composite as a High Potential Material for Prolonged Delivery of Agrochemicals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29305-29313. [PMID: 38798175 PMCID: PMC11163398 DOI: 10.1021/acsami.4c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Although agrochemical practices can enhance agricultural productivity, their intensive application has resulted in the deterioration of ecosystems. Therefore, it is necessary to develop more efficient and less toxic methods against pests and infections while improving crop productivity. Moving toward sustainable development, in this work, we originally described the preparation of a composite (ZIF-8@HA) consisting of the coating of zeolitic-like metal-organic framework (MOF) ZIF-8 (based on Zn, an essential micronutrient in plants with antibacterial, antifungal, and antifouling properties) with hydroxyapatite (HA) nanoparticles (i.e., nanofertilizer). The interaction between the HA and ZIF-8 has been characterized through a combination of techniques, such as microscopic techniques, where the presence of a HA coating is demonstrated; or by analysis of the surface charge with a dramatic change in the Z-potential (from +18.7 ± 0.8 to -27.6 ± 0.7 mV for ZIF-8 and ZIF-8@HA, respectively). Interestingly, the interaction of HA with ZIF-8 delays the MOF degradation (from 4 h for pristine ZIF-8 to 168 h for HA-coated material), providing a slower and gradual release of zinc. After a comprehensive characterization, the potential combined fertilizer and bactericidal effect of ZIF-8@HA was investigated in wheat (Triticum aestivum) seeds and Pseudomonas syringae (Ps). ZIF-8@HA (7.3 ppm) demonstrated a great fertilizer effect, increasing shoot (9.4 %) and root length (27.1 %) of wheat seeds after 11 days at 25 °C under dark conditions, improving the results obtained with HA, ZIF-8, or ZnSO4 or even physically mixed constituents (HA + ZIF-8). It was also effective in the growth inhibition (>80 % of growth inhibition) of Ps, a vegetal pathogen causing considerable crop decline. Therefore, this work demonstrates the potential of MOF@HA composites and paves the way as a promising agrochemical with improved fertilizer and antibacterial properties.
Collapse
Affiliation(s)
- Samuel Morales-Cámara
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain
| | - José M. Delgado-López
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain
| | | | - Sara Rojas
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva, s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Kundu A, Gao X, Khandelwal N, Banerjee A, Ghoshal S. Oleic-acid functionalized mesoporous silica nanoparticles with a hydroxyapatite core enhanced growth of the hydrocarbon degrader Dietzia maris at oil-water interfaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132653. [PMID: 37820524 DOI: 10.1016/j.jhazmat.2023.132653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Rapid biodegradation of poorly water-soluble hydrocarbons as nonaqueous (oil) phases in contaminated aquatic environments is enabled by attachment of hydrocarbon-degrading bacteria to the oil-water interface. Herein, we report the synthesis of nanoparticles comprising a hydroxyapatite (Ca5(PO4)3(OH)) core encapsulated in a mesoporous silica shell and surface-modified with oleic acid (OA-nHAP@MSN) for targeted binding at the oil-water interface and to supply P to bacteria at the interface. P is an essential and often limiting nutrient for bacteria in hydrocarbon-contaminated environments. In microcosm experiments, where the hydrocarbon-degrading bacteria, Dietzia maris strain NWWC4, and OA-nHAP@MSN were inoculated in mineral media in contact with pure liquid hexadecane (sole C source), there was 419.6-fold growth at the hexadecane-water interface, compared to 31.2-fold in identical, but NP-free microcosms. The continuous release of P from the hydroxyapatite core in OA-nHAP@MSN to water was demonstrated in separate experiments in well mixed batch systems and was found to be pH-sensitive. Environmental Scanning Electron Microscopy showed significantly larger cell aggregates and dense biofilms in the OA-nHAP@MSN-amended systems, compared to NP-free systems. Our results demonstrate a strategy for enhancing oil-spill bioremediation using NPs targeting nutrient supply to hydrocarbon-degrading bacteria at oil-water interfaces.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Xiaoyu Gao
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Nitin Khandelwal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Anwesha Banerjee
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
5
|
Geng Y, Pan S, Zhang L, Qiu J, He K, Gao H, Li Z, Tian D. Phosphorus biogeochemistry regulated by carbonates in soil. ENVIRONMENTAL RESEARCH 2022; 214:113894. [PMID: 35868580 DOI: 10.1016/j.envres.2022.113894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Phosphates are the dominant phosphorus (P) source on Earth. The phosphates govern available P in soil, or even the complete ecosystem. The common deficiency of available P in carbonate-enriched soils suggests the tight correlation between P and C biogeochemistry, although the two elements have diverse abundance in soil. The influences of carbonates on P cycle were reviewed in this study, via both abiotic and biotic pathways. The abiotic processes at geochemical scale include element release, transport, sorption, desorption, weathering, precipitation, etc. The sorption of P on carbonate and buffering ability of carbonates were particularly addressed. Biotic factors are ascribed to various microorganisms in soil. As the most active P pool in soil, microorganisms prefer to consume abundant P, and then accumulate it in their biomass. Carbonates, however, are usually utilized by microorganisms after conversion to organic C. Meanwhile, extracellular precipitation of Ca-P phases significantly regulates the transportation of P in/out the cells. Moreover, they boost and complexify both carbonates and P turnover in soil via bioweathering and biomineralization, i.e., the intense interactions between biosphere and lithosphere. Based on this review, we proposed that carbonates may negatively affect P supply in soil system. This comprehensive review regarding the regulation by carbonates on P biogeochemistry would shed a light on predicting long-term P availability influenced by C biogeochemistry.
Collapse
Affiliation(s)
- Yuanyuan Geng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Kun He
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083, China; State Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation, Beijing, 100083, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Sakhno Y, Miletto I, Paul G, Jaisi DP. A novel route to enhance the dissolution of apatite: Structural incorporation of hydrogen phosphate. NANOIMPACT 2022; 28:100422. [PMID: 36041682 DOI: 10.1016/j.impact.2022.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Potential use of hydroxyapatite nanoparticles (HANPs) [Ca10(PO4)6(OH)2] as slow P-release fertilizer (SRF) has recently attracted wider attention. However, commercially available HANP (with Ca/P ratio = 1.667) is the least soluble calcium phosphate and thus limits its full potential as an SRF in agronomic applications. In this research, we sought to enhance the dissolution rate of HANPs by enriching hydrogen phosphate (HPO42-) species in the phosphate (PO43-) structural sites. Seven different types of pure crystalline HANPs were synthesized at a range of Ca/P ratio from 1.46 (at pH 6.0) to 2.10 (at pH 12.0). Complementary results from FTIR and solid-state 31P MAS NMR spectroscopies showed that HPO42- species is most abundant in HANPs crystallized at pH 6.0 and gradually depleted at higher pH products. The rate of depletion of HPO42- species is proportional to the increase in carbonate incorporation into the HANP lattice, which preferentially forms B-type carbonated HANPs. The enhanced dissolution rate of HANPs due to hydrogen phosphate incorporation was tested using a flow-through macro-dialysis system that limits the partial transition of HANPs to other solid phases, which otherwise interfere with dissolution. The results show that the dissolution rate of HANPs increased with decreasing pH of synthesis and was highest in HANPs at pH 6.0. The dissolution rate differed by ten times between HANPs synthesized at pH 7.0 and 10.0. Overall, the atom-efficient synthetic route developed and the ability to tune the dissolution rate of HANPs are significant steps forward in improving the P-release efficiency of a potent SRF and is expected to contribute to efforts toward enhancing agricultural sustainability.
Collapse
Affiliation(s)
- Yuriy Sakhno
- Interdisciplinary Science and Engineering Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| | - Geo Paul
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Deb P Jaisi
- Interdisciplinary Science and Engineering Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
Qi K, Zhu W, Zhang X, Liu M, Ao H, Wu X, Zhu Y. Enamel-like Layer of Nanohydroxyapatite Stabilizes Zn Metal Anodes by Ion Exchange Adsorption and Electrolyte pH Regulation. ACS NANO 2022; 16:9461-9471. [PMID: 35588279 DOI: 10.1021/acsnano.2c02448] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The instability of Zn anode caused by severe dendrite growth and side reactions has restricted the practical applications of aqueous zinc-ion batteries (AZIBs). Herein, an enamel-like layer of nanohydroxyapatite (Ca5(PO4)3(OH), nano-HAP) is constructed on Zn anode to enhance its stability. Benefiting from the ion exchange between Zn2+ and Ca2+, the adsorption for Zn2+ in enamel-like nano-HAP (E-nHAP) layer can effectively guide Zn deposition, ensuring homogeneous Zn2+ flux and even nucleation sites to suppress Zn dendrites. Meanwhile, the low pH of acidic electrolyte can be regulated by slightly soluble nano-HAP, restraining electrolyte corrosion and hydrogen evolution. Moreover, the E-nHAP layer features high mechanical flexibility due to its enamel-like organic-inorganic composite nanostructure. Hence, symmetric cells assembled by E-nHAP@Zn show superior stability of long-term cycling at different current densities (0.1, 0.5, 1, 5, and 10 mA cm-2). The E-nHAP@Zn∥E-nHAP@Cu cell exhibits an outstanding cycling life with high Coulombic efficiency of 99.8% over 1000 cycles. Notably, the reversibility of full cell based on CNT/MnO2 cathode can be effectively enhanced. This work shows the potential of drawing inspiration from biological nanostructure in nature to develop stable metal electrodes.
Collapse
Affiliation(s)
- Kaiwen Qi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Weiduo Zhu
- School of Physics, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaotan Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Mengke Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Huaisheng Ao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yongchun Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
8
|
Fabrication of a biodegradable and cytocompatible magnesium/nanohydroxyapatite/fluorapatite composite by upward friction stir processing for biomedical applications. J Mech Behav Biomed Mater 2022; 129:105137. [DOI: 10.1016/j.jmbbm.2022.105137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023]
|
9
|
Maharana R, Dhal NK. Solubilization of rock phosphate by phosphate solubilizing bacteria isolated from effluent treatment plant sludge of a fertilizer plant. Folia Microbiol (Praha) 2022; 67:605-615. [DOI: 10.1007/s12223-022-00953-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023]
|
10
|
Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. COATINGS 2022. [DOI: 10.3390/coatings12010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current research aim is to biofunctionalize pure titanium (Ti, grade IV) substrate with titania nanotubes and Zn doped hydroxyapatite-based coatings by applying a duplex electrochemical treatment, and to evaluate the influence of Zn content on the physico-chemical properties of hydroxyapatite (HAp). The obtained nanostructured surfaces were covered with HAp-based coatings doped with Zn in different concentrations by electrochemical deposition in pulsed galvanostatic mode. The obtained surfaces were characterized in terms of morphology, elemental and phasic composition, chemical bonds, roughness, and adhesion. The nanostructured surface consisted of titania nanotubes (NT), aligned, vertically oriented, and hollow, with an inner diameter of ~70 nm. X-ray Diffraction (XRD) analysis showed that the nanostructured surface consists of an anatase phase and some rutile peaks as a secondary phase. The morphology of all coatings consisted of ribbon like-crystals, and by increasing the Zn content the coating became denser due to the decrement of the crystals’ dimensions. The elemental and phase compositions evidenced that HAp was successfully doped with Zn through the pulsed galvanostatic method on the Ti nanostructured surfaces. Fourier Transform Infrared spectroscopy (FTIR) and XRD analysis confirmed the presence of HAp in all coatings, while the adhesion test showed that the addition of a high quantity leads to some delamination. Based on the obtained results, it can be said that the addition of Zn enhances the properties of HAp, and through proper experimental design, the concentration of Zn can be modulated to achieve coatings with tunable features.
Collapse
|
11
|
Kovrlija I, Locs J, Loca D. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomater 2021; 135:27-47. [PMID: 34450339 DOI: 10.1016/j.actbio.2021.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Disadvantages of conventional drug delivery systems (DDS), such as systemic circulation, interaction with physiochemical factors, reduced bioavailability, and insufficient drug concentration at bone defect site, have underlined the importance of developing efficacious local drug delivery systems. Octacalcium phosphate (OCP) is presumed to be the precursor of biologically formed apatite, owing to its similarity to hydroxyapatite (HAp) and readiness to convert to it. Specific crystal structure of OCP is constructed of compiled apatite layers and water layers, which make possible the incorporation of various ions in its structure, making it feasible to alter the overall effect OCP has in the system. Next to that intrinsic property, characteristics as high solubility, biodegradability and osteoconductivity have made it indispensable to tailor OCP as a carrier material. In this review, we present the main characteristics and progress done on utilizing OCP as an innovative vehicle and provide suggestions for possible research pathways and advantages for local drug delivery in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP), being a precursor to biologically formed apatite, has many assets when compared to other calcium phosphates. Owing to its highly pertinent structure, it is being used as a vehicle for biologically active substances or ions for bone regeneration. However, orchestrating drug delivery systems with OCP, in order to achieve the best possible outcome, is still a pioneering concept, and the all-encompassing data is still scarce. Although several articles have been published on this matter, to this date there is no systematic overview pointing out the benefits that OCP can bring in the field of drug delivery. Here we offer a comprehensive overview, starting from the OCP synthesis to its structure, morphology, and the biological significance OCP has.
Collapse
|
12
|
Phosphate ore particles dissolution kinetics in hydrochloric acid based on a structure-related segmented model. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Kovrlija I, Locs J, Loca D. Incorporation of Barium Ions into Biomaterials: Dangerous Liaison or Potential Revolution? MATERIALS (BASEL, SWITZERLAND) 2021; 14:5772. [PMID: 34640168 PMCID: PMC8510018 DOI: 10.3390/ma14195772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
In the present manuscript, a brief overview on barium, its possible utilization, and the aftermath of its behavior in organisms has been presented. As a bivalent cation, barium has the potential to be used in a myriad of biochemical reactions. A number of studies have exhibited both the unwanted outcome barium displayed and the advantages of barium laden compounds, tested in in vitro and in vivo settings. The plethora of prospective manipulations covered the area of hydrogels and calcium phosphates, with an end goal of examining barium's future in the tissue engineering. However, majority of data revert to the research conducted in the 20th century, without investigating the mechanisms of action using current state-of-the-art technology. Having this in mind, set of questions that are needed for possible future research arose. Can barium be used as a substitute for other biologically relevant divalent cations? Will the incorporation of barium ions hamper the execution of the essential processes in the organism? Most importantly, can the benefits outweigh the harm?
Collapse
Affiliation(s)
- Ilijana Kovrlija
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia; (I.K.); (J.L.)
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia; (I.K.); (J.L.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kaļķu Street 1, LV-1658 Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia; (I.K.); (J.L.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kaļķu Street 1, LV-1658 Riga, Latvia
| |
Collapse
|
14
|
Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro. BIOLOGY 2021; 10:biology10070675. [PMID: 34356530 PMCID: PMC8301486 DOI: 10.3390/biology10070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 µg/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 µg/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 µg/mL aCaP compared to 5 µg/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs.
Collapse
|
15
|
Sharkeev YP, Komarova EG, Chebodaeva VV, Sedelnikova MB, Zakharenko AM, Golokhvast KS, Litvinova LS, Khaziakhmatova OG, Malashchenko VV, Yurova KA, Gazatova ND, Kozlov IG, Khlusova MY, Zaitsev KV, Khlusov IA. Amorphous-Crystalline Calcium Phosphate Coating Promotes In Vitro Growth of Tumor-Derived Jurkat T Cells Activated by Anti-CD2/CD3/CD28 Antibodies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3693. [PMID: 34279263 PMCID: PMC8269898 DOI: 10.3390/ma14133693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous-crystalline structure that exhibits excellent biocopatibility. The structure and physico-chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7 were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from -456 to -535 mV, while the zeta potential (ZP) decreased from -53 to -40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200-250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous-crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous-crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.
Collapse
Affiliation(s)
- Yurii P Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Ekaterina G Komarova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Valentina V Chebodaeva
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Mariya B Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | | | - Kirill S Golokhvast
- School of Engineering, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Larisa S Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Olga G Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Vladimir V Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Kristina A Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Natalia D Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Ivan G Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Marina Y Khlusova
- Department of Pathophysiology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Konstantin V Zaitsev
- Siberian Federal Scientific and Clinical Center of the Federal Medical-Biological Agency, 636070 Seversk, Russia
| | - Igor A Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
16
|
Interaction between fine particles of fluorapatite and phosphoric acid unraveled by surface spectroscopies. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Piard C, Luthcke R, Kamalitdinov T, Fisher J. Sustained delivery of vascular endothelial growth factor from mesoporous calcium-deficient hydroxyapatite microparticles promotes in vitro angiogenesis and osteogenesis. J Biomed Mater Res A 2020; 109:1080-1087. [PMID: 32918524 DOI: 10.1002/jbm.a.37100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023]
Abstract
Promoting the growth of blood vessels within engineered tissues remains one of the main challenge in bone tissue engineering. One way to improve angiogenesis is the use of vascular endothelial growth factor (VEGF) as it holds the ability to increase the formation of a vascular network. In the present study, collagen scaffolds with VEGF-releasing hydroxyapatite particles were fabricated, in order to engineer a material both capable of presenting an osteoconductive surface and delivering an angiogenic growth factor in a localized and sustained manner, in order to enhance osteogenesis as well as angiogenesis. To this end, we developed microparticles and characterize their size, chemical properties and Ca/P ratio to validate the formation of hydroxyapatite. We then evaluated the osteogenic potential of HAp when cultured with mesenchymal stem cells and compare it to commercially available hydroxyapatite (SBp). Finally, we characterized the encapsulation and release of VEGF in the HAp and assess the angiogenic potential of the VEGF-HAp when cultured with endothelial cells. We demonstrated the successful fabrication of calcium deficient hydroxyapatite microparticles (CDHAp), with biological properties closer to the bone than stoichiometric, commercially available hydroxyapatite. This CDHAp exhibited a well-defined 3D network of crystalline nanoplates forming mesoporous and hollow structures. The high specific area created by those structures enabled the loading of VEGF with high efficiency when compared to the loading efficiency of SBp. Furthermore, their biological performances were evaluated in vitro. Our results indicate that VEGF-CDHAp can be used to improve both osteogenesis and angiogenesis in vitro.
Collapse
Affiliation(s)
- Charlotte Piard
- Fischell Department of Bioengineering, University of Maryland, Maryland, USA
| | - Rachel Luthcke
- Fischell Department of Bioengineering, University of Maryland, Maryland, USA
| | - Timur Kamalitdinov
- Fischell Department of Bioengineering, University of Maryland, Maryland, USA
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, Maryland, USA.,Center for Engineering Complex Tissues, University of Maryland, Maryland, USA
| |
Collapse
|
18
|
Effect of the Porosity, Roughness, Wettability, and Charge of Micro-Arc Coatings on the Efficiency of Doxorubicin Delivery and Suppression of Cancer Cells. COATINGS 2020. [DOI: 10.3390/coatings10070664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porous calcium phosphate coatings were formed by the micro-arc oxidation method on the surface of titanium for the loading and controlled release of the anticancer drug doxorubicin. The coatings’ morphology and microstructure were examined by scanning electron microscopy. The phase composition was determined with the help of X-ray diffraction analysis. Studies of the hydrophilic properties of the coatings and their zeta potential were carried out. Data on the kinetics of doxorubicin adsorption-desorption were obtained. In addition, the effect of calcium phosphate coatings impregnated with doxorubicin on the viability of the Neuro-2a cell line was revealed. The coating formed at low voltages of 200–250 V contained a greater number of branched communicating pores, and therefore they were able to adsorb a greater amount of doxorubicin. The surface charge also contributes to the process of the adsorption-desorption of doxorubicin, but this effect is not fully understood and further studies are required to identify it.
Collapse
|
19
|
Vandeginste V, Cowan C, Gomes RL, Hassan T, Titman J. Natural fluorapatite dissolution kinetics and Mn 2+ and Cr 3+ metal removal from sulfate fluids at 35 °C. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122150. [PMID: 32004846 DOI: 10.1016/j.jhazmat.2020.122150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
In light of the consequences of global warming and population growth, access to safe drinking water becomes an ever greater challenge, in particular in low to middle income countries in arid regions. Moreover, mining which may cause acid mine drainage and heavy metal contamination puts further pressure on management of limited water resources. Hence, the development of cost effective water treatment methods is critical. Here, using batch reactor experiments we investigate the kinetics and mechanisms behind divalent Mn and trivalent Cr removal from sulfate fluids using natural fluorapatite at 35 °C. The results show that the fluorapatite dissolution rate depends on fluid pH, and that dissolution is the dominant mechanism in fluids with pH below 4. Apatite can thus serve as remediation to neutralize acidic fluids. Fluid pH of 4-6 triggers a dissolution-precipitation mechanism, in some cases following upon a dissolution-only period, with the formation of a metal phosphate. In these experiments, Cr removal is two to ten times faster than Mn removal given similar solution pH. The results demonstrate that natural apatite represents a promising, cost effective material for use in passive remediation of mining-induced contamination of soils and groundwater in arid regions.
Collapse
Affiliation(s)
- Veerle Vandeginste
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom; GeoEnergy Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Charlotte Cowan
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Tharwat Hassan
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jeremy Titman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Comparative Study of the Structure, Properties, and Corrosion Behavior of Sr-Containing Biocoatings on Mg0.8Ca. MATERIALS 2020; 13:ma13081942. [PMID: 32326091 PMCID: PMC7215743 DOI: 10.3390/ma13081942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
A comparative analysis of the structure, properties and the corrosion behavior of the micro-arc coatings based on Sr-substituted hydroxyapatite (Sr-HA) and Sr-substituted tricalcium phosphate (Sr-TCP) deposited on Mg0.8Ca alloy substrates was performed. The current density during the formation of the Sr-HA coatings was higher than that for the Sr-TCP coatings. As a result, the Sr-HA coatings were thicker and had a greater surface roughness Ra than the Sr-TCP coatings. In addition, pore sizes of the Sr-HA were almost two times larger. The ratio (Ca + Sr + Mg)/P were equal 1.64 and 1.47 for Sr-HA and Sr-TCP coatings, respectively. Thus, it can be assumed that the composition of Sr-HA and Sr-TCP coatings was predominantly presented by (Sr,Mg)-substituted hydroxyapatite and (Sr,Mg)-substituted tricalcium phosphate. However, the average content of Sr was approximately the same for both types of the coatings and was equal to 1.8 at.%. The Sr-HA coatings were less soluble and had higher corrosion resistance than the Sr-TCP coatings. Cytotoxic tests in vitro demonstrated a higher cell viability after cultivation with extracts of the Sr-HA coatings.
Collapse
|
21
|
Kim M, Kim HG, Kim S, Yoon JH, Sung JY, Jin JS, Lee MH, Kim CW, Heo J, Hong KS. Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121296. [PMID: 31574387 DOI: 10.1016/j.jhazmat.2019.121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/03/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Leaching behaviors and mechanisms of commercialized glass wasteforms to sequester low-level solid-wastes were investigated: SG glass for resin waste and DG-2 glass for dry active waste. After ANS 16.1 leaching test, leachabilities of the nuclides, Co, Cs, and Sr, were all lager than 14, which met the requirement of the US-Nuclear Regulatory Commission. Holes of diameters 5-10 μm remained on the surface of the SG and crevices of lengths 10-50 μm were observed on the surface of the DG-2. We analyzed elemental compositions of the SG and the DG-2 with depths. For the SG, Si, Al, Ca, and Mg were accumulated and Na was depleted up to nearly 1.5 μm compared to an internal glass. For the DG-2, concentrations of B, Na, Al, Ca and Sr started to decrease from 2.5 μm even though other minor elements are still remained their concentrations. We suggested leaching mechanisms: alkali elements including H would diffuse through the holes on the SG, while most of the elements including Si and Al would diffuse through the crevices on the DG-2.
Collapse
Affiliation(s)
- Miae Kim
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea.
| | - Hyun Gyu Kim
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Shin Kim
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Ji Yeong Sung
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Jong Sung Jin
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Mi-Hyun Lee
- Central Research Institute, Korea Hydro & Nuclear Power, Daejeon, 34101, Republic of Korea
| | - Cheon-Woo Kim
- Central Research Institute, Korea Hydro & Nuclear Power, Daejeon, 34101, Republic of Korea
| | - Jong Heo
- Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kyong-Soo Hong
- Busan Center, Korea Basic Science Institute, Busan, 46742, Republic of Korea.
| |
Collapse
|
22
|
Ramírez-Rodríguez GB, Dal Sasso G, Carmona FJ, Miguel-Rojas C, Pérez-de-Luque A, Masciocchi N, Guagliardi A, Delgado-López JM. Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers. ACS APPLIED BIO MATERIALS 2020; 3:1344-1353. [DOI: 10.1021/acsabm.9b00937] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gloria B. Ramírez-Rodríguez
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab. Consiglio Nazionale delle Ricerche (IC−CNR), Via Valleggio 11, I-22100 Como, Italy
| | - Francisco J. Carmona
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Cristina Miguel-Rojas
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
- IFAPA Alameda del Obispo, Area of Genomic and Biotechnology, Avenida Menéndez Pidal, S/N, 14004 Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- IFAPA Alameda del Obispo, Area of Genomic and Biotechnology, Avenida Menéndez Pidal, S/N, 14004 Córdoba, Spain
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab. Consiglio Nazionale delle Ricerche (IC−CNR), Via Valleggio 11, I-22100 Como, Italy
| | - José M. Delgado-López
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain
| |
Collapse
|
23
|
Tang L, Zhang L, Yue M, Tian D, Su M, Li Z. New Insights into the Ultrastructure of Bioapatite After Partial Dissolution: Based on Whale Rostrum, the Densest Bone. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1323-1330. [PMID: 31599216 DOI: 10.1017/s1431927619015022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mineral particles in bone are interlaced with collagen fibrils, hindering the investigation of bioapatite crystallites (BAp). This study utilized a special whale rostrum (the most highly mineralized bone ever recorded) to measure the crystallites of bone BAp via long-term dissolution in water. The BAp in the rostrum has a low solubility (6.7 ppm Ca and 3.8 ppm P after 150 days dissolution) as well as in normal bones, which leads to its Ksp value of ~10-53. Atomic force microscopy results show tightly compacted mineral crystallites and confirm the low amount of collagen in the rostrum. Additionally, the mineral crystallites demonstrate irregular plate-like shapes with variable sizes. The small crystallites (~11 × 24 nm) are easily detached from BAp prisms, compared with the large crystallites (~50 nm). Moreover, various orientations of crystallites are observed on the edge of the prisms, which suggest a random direction of mineral growth. Furthermore, these plate-like crystallites prefer to be stacked layer by layer under weak regulation from collagen. The morphology of rostrum after dissolution provides new insights into the actual morphology of BAp crystallites.
Collapse
Affiliation(s)
- Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Michael Yue
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
24
|
In Vitro Activity Assays of Sputtered HAp Coatings with SiC Addition in Various Simulated Biological Fluids. COATINGS 2019. [DOI: 10.3390/coatings9060389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Considering the requirements of medical implantable devices, it is pointed out that biomaterials should play a more sophisticated, longer-term role in the customization and optimization of the material–tissue interface in order to ensure the best long-term clinical outcomes. The aim of this contribution was to assess the performance of silicon carbide–hydroxyapatite in various simulated biological fluids (Dulbecco’s modified Eagle’s medium (DMEM), simulated body fluid (SBF), and phosphate buffer solution (PBS)) through immersion assays for 21 days at 37 ± 0.5 °C and to evaluate the electrochemical behavior. The coatings were prepared on Ti6Al4V alloy substrates by magnetron sputtering method using two cathodes made of hydroxyapatite and silicon carbide (SiC). After immersion assays the coating’s surface was analyzed in terms of morphology, chemical and phase composition, and chemical bonds. According to the electrochemical behavior in the media investigated at 37 ± 0.5 °C, SiC addition inhibits the dissolution of the hydroxyapatite in DMEM acellular media. Furthermore, after adding SiC, the slow degradation of hydroxyapatite in PBS and SBF media as well as biomineralization in DMEM were observed.
Collapse
|
25
|
Hakobyan S, Roohpour N, Gautrot JE. Modes of adsorption of polyelectrolytes to model substrates of hydroxyapatite. J Colloid Interface Sci 2019; 543:237-246. [DOI: 10.1016/j.jcis.2019.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
|
26
|
Beaufils S, Rouillon T, Millet P, Le Bideau J, Weiss P, Chopart JP, Daltin AL. Synthesis of calcium-deficient hydroxyapatite nanowires and nanotubes performed by template-assisted electrodeposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:333-346. [PMID: 30813035 DOI: 10.1016/j.msec.2018.12.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/09/2018] [Accepted: 12/22/2018] [Indexed: 11/24/2022]
Abstract
Hydroxyapatite (HA) has received much interest for being used as bone substitutes because of its similarity with bioapatites. In form of nanowires or nanotubes, HA would offer more advantages such as better biological and mechanical properties than conventional particles (spherical). To date, no study had allowed the isolated nanowires production with simultaneously well-controlled morphology and size, narrow size distribution and high aspect ratio (length on diameter ratio). So, it is impossible to determine exactly the real impact of particles' size and aspect ratio on healing responses of bone substitutes and characteristics of these ones; their biological and mechanical effects can never be reproducible. By the template-assisted pulsed electrodeposition method, we have for the first time succeeded to obtain such calcium-deficient hydroxyapatite (CDHA) particles in aqueous baths with hydrogen peroxide by both applying pulsed current density and pulsed potential in cathodic electrodeposition. After determining the best conditions for CDHA synthesis on gold substrate in thin films by X-ray diffraction (XRD) and Energy dispersive X-ray spectroscopy (EDX), we have transferred those conditions to the nanowires and nanotubes synthesis with high aspect ratio going until 71 and 25 respectively. Polycrystalline CDHA nanowires and nanotubes were characterized by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). At the same time, this study enabled to understand the mechanism of nanopores filling in gold covered polycarbonate membrane: here a preferential nucleation on gold in membranes with 100 and 200 nm nanopores diameters forming nanowires whereas a preferential and randomly nucleation on nanopores walls in membranes with 400 nm nanopores diameter forming nanotubes.
Collapse
Affiliation(s)
- Sylvie Beaufils
- LISM, URCA, B.P. 1039, 51687 Reims Cedex 2, France; Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Reims-Champagne Ardennes, UFR Odontologie, Reims 51100, France.
| | - Thierry Rouillon
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France
| | - Pierre Millet
- LISM, URCA, B.P. 1039, 51687 Reims Cedex 2, France; Université de Reims-Champagne Ardennes, UFR Odontologie, Reims 51100, France; CHU Pôle de Médecine Bucco-Dentaire, Reims 51100, France
| | - Jean Le Bideau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3, France
| | - Pierre Weiss
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes F-44093, France
| | - Jean-Paul Chopart
- LISM, URCA, B.P. 1039, 51687 Reims Cedex 2, France; Université de Reims-Champagne Ardennes, UFR Odontologie, Reims 51100, France
| | - Anne-Lise Daltin
- LISM, URCA, B.P. 1039, 51687 Reims Cedex 2, France; Université de Reims-Champagne Ardennes, UFR Odontologie, Reims 51100, France
| |
Collapse
|
27
|
Dissolution and Solubility Product of Cd-Fluorapatite [Cd5(PO4)3F] at pH of 2–9 and 25–45°C. J CHEM-NY 2018. [DOI: 10.1155/2018/3109047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dissolution of the synthetic cadmium fluorapatite [Cd5(PO4)3F] at 25°C, 35°C, and 45°C was experimentally examined in HNO3 solution, pure water, and NaOH solution. The characterization results confirmed that the cadmium fluorapatite nanorods used in the experiments showed no obvious variation after dissolution. During the dissolution of Cd5(PO4)3F in HNO3 solution (pH = 2) at 25°C, the fluoride, phosphate, and cadmium ions were rapidly released from solid to solution, and their aqueous concentrations had reached the highest values after dissolution for <1 h, 1440 h, and 2880 h, respectively. After that, the total dissolution rates declined slowly though the solution Cd/P molar ratios increased incessantly from 1.55∼1.67 to 3.18∼3.22. The solubility product for Cd5(PO4)3F (Ksp) was determined to be 10−60.03 (10−59.74∼10−60.46) at 25°C, 10−60.38 (10−60.32∼10−60.48) at 35°C, and 10−60.45 (10−60.33∼10−60.63) at 45°C. Based on the log Ksp values obtained at an initial pH of 2 and 25°C, the Gibbs free energy of formation for Cd5(PO4)3F (ΔGf0) was calculated to be −4065.76 kJ/mol (−4064.11∼−4068.23 kJ/mol). The thermodynamic parameters for the dissolution process were computed to be 342515.78 J/K·mol, −85088.80 J/mol, −1434.91 J/K·mol, and 2339.50 J/K·mol for ΔG0, ΔH0, ΔS0, and ΔCp0, correspondingly.
Collapse
|
28
|
Sasikumar Y, Kumar AM, Babu RS, Rahman MM, Samyn LM, de Barros ALF. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:123. [PMID: 30032462 DOI: 10.1007/s10856-018-6131-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Dicalcium phosphate dihydrate (DCPD) brushite coating with flake like crystal structure for the protection of AZX310 and AM50 magnesium (Mg) alloys was prepared through chemical deposition treatment. Chemical deposition treatment was employed using Ca(NO3)2·4H2O and KH2PO4 along with subsequent heat treatment. The morphological results revealed that the brushite coating with dense and uniform structures was successfully deposited on the surface of AZX310 and AM50 alloys. The X-ray diffraction (XRD) patterns and Attenuated total reflectance infrared (ATR-IR) spectrum also revealed the confirmation of DCPD layer formation. Hydrophilic nature of the DCPD coatings was confirmed by Contact angle (CA) measurements. Moreover, electrochemical immersion and in vitro studies were evaluated to measure the corrosion performance and biocompatibility performance. The deposition of DCPD coating for HTI AM50 enables a tenfold increase in the corrosion resistance compared with AZX310. Hence the ability to offer such significant improvement in corrosion resistance for HTI AM50 was coupled with more bioactive nature of the DCPD coating is a viable approach for the development of Mg-based degradable implant materials.
Collapse
Affiliation(s)
- Y Sasikumar
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã Campus 229, Rio de Janeiro, 20271-110, Brazil.
| | - A Madhan Kumar
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - R Suresh Babu
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã Campus 229, Rio de Janeiro, 20271-110, Brazil
| | - Mohammad Mizanur Rahman
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Leandro M Samyn
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã Campus 229, Rio de Janeiro, 20271-110, Brazil
| | - A L F de Barros
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã Campus 229, Rio de Janeiro, 20271-110, Brazil
| |
Collapse
|
29
|
Transition from Endothermic to Exothermic Dissolution of Hydroxyapatite Ca5(PO4)3OH–Johnbaumite Ca5(AsO4)3OH Solid Solution Series at Temperatures Ranging from 5 to 65 °C. MINERALS 2018. [DOI: 10.3390/min8070281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Li Z, Su M, Tian D, Tang L, Zhang L, Zheng Y, Hu S. Effects of elevated atmospheric CO 2 on dissolution of geological fluorapatite in water and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1382-1387. [PMID: 28531916 DOI: 10.1016/j.scitotenv.2017.05.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO2 rise. This study sheds the light on understanding the geological cycle of phosphorus.
Collapse
Affiliation(s)
- Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, Jiangsu 210046, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yangfan Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
31
|
About the Genetic Mechanisms of Apatites: A Survey on the Methodological Approaches. MINERALS 2017. [DOI: 10.3390/min7080139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apatites are properly considered as a strategic material owing to the broad range of their practical uses, primarily biomedical but chemical, pharmaceutical, environmental and geological as well. The apatite group of minerals has been the subject of a huge number of papers, mainly devoted to the mass crystallization of nanosized hydroxyapatite (or carboapatite) as a scaffold for osteoinduction purposes. Many wet and dry methods of synthesis have been proposed. The products have been characterized using various techniques, from the transmission electron microscopy to many spectroscopic methods like IR and Raman. The experimental approach usually found in literature allows getting tailor made micro- and nano- crystals ready to be used in a wide variety of fields. Despite the wide interest in synthesis and characterization, little attention has been paid to the relationships between bulk structure and corresponding surfaces and to the role plaid by surfaces on the mechanisms involved during the early stages of growth of apatites. In order to improve the understanding of their structure and chemical variability, close attention will be focused on the structural complexity of hydroxyapatite (HAp), on the richness of its surfaces and their role in the interaction with the precursor phases, and in growth kinetics and morphology.
Collapse
|
32
|
Sariñana-Ruiz YA, Vazquez-Arenas J, Sosa-Rodríguez FS, Labastida I, Armienta MA, Aragón-Piña A, Escobedo-Bretado MA, González-Valdez LS, Ponce-Peña P, Ramírez-Aldaba H, Lara RH. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico. CHEMOSPHERE 2017; 178:391-401. [PMID: 28340462 DOI: 10.1016/j.chemosphere.2017.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 μm) including mimetite-vanadite (Pb5(AsO4)3Cl, Pb5(AsO4, VO4)3Cl)-like, lead arseniate (Pb3(AsO4)2)-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF2) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg-1, respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg-1), and trigger level criterion for arsenic soil remediation (20 mg kg-1); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L-1 and 0.12-0.650 mg L-1, respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data.
Collapse
Affiliation(s)
- Yareli A Sariñana-Ruiz
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Jorge Vazquez-Arenas
- Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico
| | - Fabiola S Sosa-Rodríguez
- Universidad Autónoma Metropolitana, Azcapotzalco, Área de Crecimiento Económico y Medio Ambiente, Av. San Pablo 180, Ciudad de México, 02200, Mexico
| | - Israel Labastida
- Universidad Autónoma Metropolitana, Azcapotzalco, Departamento de Energía, Av. San Pablo 180, Ciudad de México, 02200, Mexico
| | - Ma Aurora Armienta
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, Ciudad de México, 04510, Mexico
| | - Antonio Aragón-Piña
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No. 550, Lomas 2(da) sección, 78210, San Luis Potosí, SLP, Mexico
| | - Miguel A Escobedo-Bretado
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Laura S González-Valdez
- Instituto Politécnico Nacional, CIIDIR, Unidad Durango, Sigma S/N 20 de Noviembre II, Durango, DGO, Mexico
| | - Patricia Ponce-Peña
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - Hugo Ramírez-Aldaba
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico
| | - René H Lara
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico.
| |
Collapse
|
33
|
Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy. Bioact Mater 2017; 2:63-70. [PMID: 29744413 PMCID: PMC5935054 DOI: 10.1016/j.bioactmat.2017.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg–Zn–Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF2). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF2) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF2, the corrosion current density of Mg alloy coated with PRC-HA/MgF2 coatings decreases from 5.72 × 10−5 A/cm2 to 4.32 × 10−7 A/cm2, and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF2 coating is worth of further investigation. PRC-HA/MgF2 coating on Mg–Zn–Ca alloy presented nano-rod-like structure. Schematic drawing of growth model of HA coating on Mg-Zn-Ca alloy coated with fluoride coating was shown in the paper. The PRC-HA/MgF2 composite coating provided higher corrosion resistance and better bioactive properties compared to TED-HA/MgF2. This study first discovered the decomposition of fluoride coating in electrodeposition process and discussed the effect of fluoride coating on nucleation and growth of outer coating (HA).
Collapse
|
34
|
Winning L, Robinson L, Boyd AR, El Karim IA, Lundy FT, Meenan BJ. Osteoblastic differentiation of periodontal ligament stem cells on non-stoichiometric calcium phosphate and titanium surfaces. J Biomed Mater Res A 2017; 105:1692-1702. [DOI: 10.1002/jbm.a.36044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Lewis Winning
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast; 97 Lisburn Road Belfast Northern Ireland BT9 7BL United Kingdom
| | - Leanne Robinson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering; Ulster University; Shore Road, Newtownabbey, Co. Antrim Northern Ireland BT37 0QB United Kingdom
| | - Adrian R. Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering; Ulster University; Shore Road, Newtownabbey, Co. Antrim Northern Ireland BT37 0QB United Kingdom
| | - Ikhlas A. El Karim
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast; 97 Lisburn Road Belfast Northern Ireland BT9 7BL United Kingdom
| | - Fionnuala T. Lundy
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast; 97 Lisburn Road Belfast Northern Ireland BT9 7BL United Kingdom
| | - Brian J. Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering; Ulster University; Shore Road, Newtownabbey, Co. Antrim Northern Ireland BT37 0QB United Kingdom
| |
Collapse
|
35
|
Characterization, Dissolution, and Solubility of Zn-Substituted Hydroxylapatites [(Zn xCa 1−x) 5(PO 4) 3OH] at 25°C. J CHEM-NY 2017. [DOI: 10.1155/2017/4619159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of Zn-substituted hydroxylapatites [(ZnxCa1−x)5(PO4)3OH, Zn-Ca-HA] with the Zn/(Zn + Ca) molar ratio (XZn) of 0~0.16 was prepared and characterized, and then the dissolution of the synthesized solids in aqueous solution was investigated by batch experiment. The results indicated that the aqueous zinc, calcium, and phosphate concentrations greatly depended on the Zn/(Zn + Ca) molar ratio of the Zn-Ca-HA solids (XZn). For the Zn-Ca-HA dissolution at 25°C with an initial pH of 2.00, the final solution pH increased, while the final solution calcium and phosphate concentrations decreased with the increasing XZn. The final solution zinc concentrations increased with the increasing XZn when XZn≤0.08 and decreased with the increasing XZn when XZn = 0.08~0.16. The mean Ksp values for (ZnxCa1−x)5(PO4)3OH at 25°C decreased from 10−57.75 to 10−58.59 with the increasing XZn from 0.00 to 0.08 and then increased from 10–58.59 to 10–56.63 with the increasing XZn from 0.08 to 0.16. This tendency was consistent with the dependency of the lattice parameter a on XZn. The corresponding free energies of formation (ΔGfo) increased lineally from −6310.45 kJ/mol to −5979.39 kJ/mol with the increasing XZn from 0.00 to 0.16.
Collapse
|
36
|
Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.4137/btri.s36138] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hydroxyapatite (HA) is an essential element required for bone regeneration. Different forms of HA have been used for a long time. The essence of bone regeneration always revolves around the healthy underlying bone or it may be the surroundings that give enough strength. HA is well known for bone regeneration through conduction or by acting as a scaffold for filling of defects from ancient times, but emerging trends of osteoinductive property of HA are much promising for new bone regeneration. Emerging technology has made the dreams of clinicians to realize the use of HA in different forms for various regenerative purposes both in vivo and in vitro. The nanostructured calcium apatite plays an important role in the construction of calcified tissues. The nanostructured material has the ability to attach biological molecules such as proteins, which can be used as functional materials in many aspects, and the capability of synthesizing controlled structures of apatite to simulate the basic structure of bone and other calcified tissues. The process of regeneration requires a biomimetic and biocompatible nanostructured novel material. The nanostructured bioceramic particles are of interest in synthetic bone grafts and bone cements both injectable and controlled setting, so that such composites will reinforce the strength of bioceramics. Extensive research is being carried out for bone regeneration using nanotechnology. Artificial bone formation is not far from now. Nanotechnology has made many dreams come true. This paper gives comprehensive insights into the history and evolution with changing trends in the use of HA for various regenerative purposes.
Collapse
Affiliation(s)
| | - Sudheer Kondaka
- Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, Andhra Pradesh, India
| | - Krishna Prasad Lingamaneni
- Department of Oral and Maxillofacial Surgery, SIBAR Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| |
Collapse
|
37
|
Parker AS, Al Botros R, Kinnear SL, Snowden ME, McKelvey K, Ashcroft AT, Carvell M, Joiner A, Peruffo M, Philpotts C, Unwin PR. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments. J Colloid Interface Sci 2016; 476:94-102. [PMID: 27209395 DOI: 10.1016/j.jcis.2016.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient.
Collapse
Affiliation(s)
- Alexander S Parker
- Electrochemistry and Interfaces Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Rehab Al Botros
- Electrochemistry and Interfaces Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Sophie L Kinnear
- Electrochemistry and Interfaces Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Michael E Snowden
- Electrochemistry and Interfaces Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Kim McKelvey
- Electrochemistry and Interfaces Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Mel Carvell
- Unilever Oral Care, Quarry Road East, Bebington, Wirral CH63 3JW, UK
| | - Andrew Joiner
- Unilever Oral Care, Quarry Road East, Bebington, Wirral CH63 3JW, UK
| | - Massimo Peruffo
- Unilever Oral Care, Quarry Road East, Bebington, Wirral CH63 3JW, UK
| | - Carol Philpotts
- Unilever Oral Care, Quarry Road East, Bebington, Wirral CH63 3JW, UK
| | - Patrick R Unwin
- Electrochemistry and Interfaces Group, Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
38
|
Zhu Y, Huang B, Zhu Z, Liu H, Huang Y, Zhao X, Liang M. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2-9. GEOCHEMICAL TRANSACTIONS 2016; 17:2. [PMID: 27158243 PMCID: PMC4858909 DOI: 10.1186/s12932-016-0034-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/25/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND The interaction between Ca-HAP and Pb(2+) solution can result in the formation of a hydroxyapatite-hydroxypyromorphite solid solution [(PbxCa1-x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it's necessary to know the physicochemical properties of (PbxCa1-x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported. RESULTS Dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb(2+) concentrations increased rapidly with time and reached a peak value after 240-720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00-0.80), the aqueous Pb(2+) concentrations increased quickly with time and reached a peak value after 1-12 h dissolution, and then decreased gradually and attained a stable state after 720-2160 h dissolution. CONCLUSIONS The dissolution process of the solids with high XPb (0.89-1.00) was different from that of the solids with low XPb (0.00-0.80). The average K sp values were estimated to be 10(-80.77±0.20) (10(-80.57)-10(-80.96)) for hydroxypyromorphite [Pb5(PO4)3OH] and 10(-58.38±0.07) (10(-58.31)-10(-58.46)) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f (o) ) were determined to be -3796.71 and -6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1‒x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1-x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1-x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution. Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 ˚C and an initial pH of 2.00.
Collapse
Affiliation(s)
- Yinian Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Bin Huang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Zongqiang Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Huili Liu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Yanhua Huang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Xin Zhao
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 People’s Republic of China
| | - Meina Liang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| |
Collapse
|
39
|
Wang SH, Yang CW, Lee TM. Evaluation of Microstructural Features and in Vitro Biocompatibility of Hydrothermally Coated Fluorohydroxyapatite on AZ80 Mg Alloy. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Si-Han Wang
- Department
of Materials Science and Engineering, National Formosa University, No.
64, Wunhua Road, Huwei, Yunlin 63201, Taiwan, ROC
| | - Chung-Wei Yang
- Department
of Materials Science and Engineering, National Formosa University, No.
64, Wunhua Road, Huwei, Yunlin 63201, Taiwan, ROC
| | - Tzer-Min Lee
- Institute
of Oral Medicine, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC
| |
Collapse
|
40
|
Wang K, Lin Z, Zhang R. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:347-356. [PMID: 26595402 DOI: 10.1016/j.scitotenv.2015.11.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to investigate the influence of large-scale phosphate mining (PM) on hydrology and water quality in the Huangbai River basin, China. Rainfall and runoff data were used to analyze hydrological changes of the basin before (from 1978 to 2002) and during (from 2003 to 2014) the PM period. From 2009 to 2014, flow rate and concentrations of ammonia nitrogen (NH4(+)), nitrate (NO3(-)), fluoride (F(-)), suspended solids (SS), total nitrogen (TN), soluble phosphorus (SP), and total phosphorus (TP) were measured at the outfalls of PM as well as at outlets of sub-basins with and without PM practices. Results showed that the PM activities generally reduced runoff (i.e., the runoff coefficient and runoff peak). The sequential Mann Kendall test revealed a decrease trend of runoff during wet seasons after 2008 in the PM regions. For a mining scale of one unit of PM productivity (i.e., 10(8)kg phosphate ore per year or 2.74×10(5) kg d(-1)), TN, SS, and TP of 0.633, 1.46 to 5.22, and 0.218 to 0.554 kg d(-1) were generated, respectively. The NH4(+) and TN loads in the sub-basins with PM were significantly higher than these in the sub-basins without PM; however, the NH4(+) and TN loads that discharged into rivers from the background non-point sources discharged were less in the sub-basins with PM than those without PM. The result was attributed to the reduction of runoff volume by PM. The annual mean concentrations of TN in reservoir water increased with the scales of PM, whereas the mean concentrations of SP were low. Nevertheless, the SP concentrations in the reservoirs greatly increased after 2012, mainly related to the dissolution of apatite in the sediment. The information from this study should improve the understanding of changes in hydrology and water quality in regions with large-scale PM.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Renduo Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
41
|
Shi C, Gao J, Wang M, Shao Y, Wang L, Wang D, Zhu Y. Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability. Biomater Sci 2016; 4:699-710. [DOI: 10.1039/c6bm00009f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteogenic Ag/HAp bioceramics possess significant bacteria-killing abilities under ultra-low Ag+concentrations and the stern-interface induced antibacterial mechanism was explicitly proposed.
Collapse
Affiliation(s)
- Chao Shi
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jianyong Gao
- Department of Stomatology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Ming Wang
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yiran Shao
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Liping Wang
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Dalin Wang
- Department of Stomatology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Yingchun Zhu
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
42
|
Chappard D, Mabilleau G, Moukoko D, Henric N, Steiger V, Le Nay P, Frin JM, De Bodman C. Aluminum and iron can be deposited in the calcified matrix of bone exostoses. J Inorg Biochem 2015; 152:174-9. [DOI: 10.1016/j.jinorgbio.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
43
|
Xia Y, Zhang H, Phoungthong K, Shi DX, Shen WH, Shao LM, He PJ. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 42:93-100. [PMID: 25934218 DOI: 10.1016/j.wasman.2015.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pH<12. CaSO4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO3>Ca3(PO4)2>CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pH<7 and pH<12, resulting from CaCO3 and Ca3(PO4)2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills.
Collapse
Affiliation(s)
- Yi Xia
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China.
| | - Khamphe Phoungthong
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Dong-Xiao Shi
- Changzhou Domestic Waste Treatment Center, Changzhou 213000, PR China
| | - Wen-Hui Shen
- Changzhou Domestic Waste Treatment Center, Changzhou 213000, PR China
| | - Li-Ming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), Shanghai 200092, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), Shanghai 200092, PR China.
| |
Collapse
|
44
|
Zhu Y, Zhu Z, Zhao X, Liang Y, Dai L, Huang Y. Characterization, dissolution and solubility of synthetic cadmium hydroxylapatite [Cd5(PO4)3OH] at 25-45°C. GEOCHEMICAL TRANSACTIONS 2015; 16:9. [PMID: 26190941 PMCID: PMC4506425 DOI: 10.1186/s12932-015-0025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The substitution of Ca(2+) in Ca-hydroxylapatite by toxic Cd(2+) can cause the forming of Cd-hydroxylapatite and is a significant issue in a great variety of research areas, which hence needs an understanding of the essential physicochemical characteristics. Unfortunately, the solubility product and thermodynamic data for Cd-hydroxylapatite in water under a variety of conditions now are lacking. Little information has been reported by previous researchers. Additionally, the dissolution mechanism of Cd-hydroxylapatite has never been studied. RESULTS Dissolution of the synthetic cadmium hydroxylapatite [Cd-HAP, Cd5(PO4)3OH] in HNO3 solution (pH = 2), ultrapure water (pH = 5.6) and NaOH solution (pH = 9) was experimentally studied at 25, 35 and 45°C. Characterization by XRD, FT-IR and FE-SEM proved that Cd-HAP solids showed no recognizable change during dissolution. For the Cd-HAP dissolution in aqueous acidic media at initial pH 2 and 25°C, the solution cadmium and phosphate concentrations increased rapidly and reached the peak values after 20-30 days and 10 days reaction, respectively. Thereafter, the Cd-HAP dissolution rate decreased slowly, whereas the solution Cd/P molar ratio increased constantly from 1.65-1.69 to 6.61-6.76. The mean K sp values for Cd5(PO4)3OH were determined to be 10(-64.62) (10(-64.53)-10(-64.71)) at 25°C, 10(-65.58) (10(-65.31)-10(-65.80)) at 35°C and 10(-66.57) (10(-66.24)-10(-66.90)) at 45°C. Based on the obtained solubility data from the dissolution at initial pH 2 and 25°C, the Gibbs free energy of Cd5(PO4)3OH forming [Formula: see text] was determined to be -3,970.47 kJ/mol (-3,969.92 to -3,970.96 kJ/mol). Thermodynamic parameters, ΔG (0), ΔH (0), ΔS (0), and [Formula: see text] for the dissolution process of Cd-HAP in aqueous acidic media at initial pH 2 and 25°C were calculated 368,710.12 J/K mol, -158,809.54 J/mol, -1,770.20 and -869.53 J/K mol, respectively. CONCLUSIONS Based on the experimental results of the present work and some previous researches, the cadmium hydroxylapatite (Cd-HAP) dissolution in aqueous media is considered to have the following coincident processes: the stoichiometric dissolution coupled with protonation and complexation reactions, the non-stoichiometric dissolution with Cd(2+) release and PO4 (3-) sorption and the sorption of Cd(2+) and PO4 (3-) species from solution backwards onto Cd-HAP surface. The obtained solubility products (K sp) 10(-64.62) (10(-64.53)-10(-64.71)) for Cd-HAP was approximately 7.62-5.62 log units lower than 10(-57)-10(-59) for calcium hydroxylapatite (Ca-HAP).Graphical abstractDissolution of cadmium hydroxylapatite [Cd5(PO4)3OH].
Collapse
Affiliation(s)
- Yinian Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Zongqiang Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Xin Zhao
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 People’s Republic of China
| | - Yanpeng Liang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Liuqin Dai
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Yanhua Huang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| |
Collapse
|
45
|
Shirdar MR, Izman S, Taheri MM, Assadian M, Abdul Kadir MR. Effect of Electrophoretic Deposition Parameters on the Corrosion Behavior of Hydroxyapatite-Coated Cobalt–Chromium Using Response Surface Methodology. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1700-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Ito T, Sasaki M, Taguchi T. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH. ACTA ACUST UNITED AC 2015; 10:015025. [PMID: 25730608 DOI: 10.1088/1748-6041/10/1/015025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to obtain a hydroxyapatite (HAp)-poly(ethylene glycol) (PEG) composite, tetra amine-terminated PEG was crosslinked using disuccinimidyl tartrate to obtain a PEG hydrogel. Using two kinds of chelators with different stability constants for Ca ion (N-(2-hydroxyethyl) ethylenediamine-N,N',N'-triacetic acid (EDTA-OH, 8.14), and ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA, 10.96)), calcium phosphate was deposited within PEG hydrogels by heating the chelator-containing calcium phosphate solution at 90 °C. X-ray diffraction analysis showed that the deposited calcium phosphate was HAp. The crystallinity of the HAp deposited using EDTA-OH was low compared with that obtained using EDTA, but the amount of HAp deposited within the PEG hydrogel using EDTA-OH was higher than that deposited using EDTA. Significantly more human osteoblast-like MG-63 cells adhered on the HAp-PEG composite prepared using EDTA-OH than on the HAp-PEG composites prepared using EDTA. Furthermore, the alkaline phosphatase activity of MG-63 cultured on the HAp-PEG composite prepared using EDTA-OH was four times higher than that on the HAp-PEG composite prepared using EDTA. Therefore, the HAp-PEG composite prepared using EDTA-OH has potential as a bone substitute material.
Collapse
Affiliation(s)
- Temmei Ito
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
47
|
Shirdar MR, Izman S, Taheri MM, Assadian M, Kadir MRA. Effect of Post-Treatment Techniques on Corrosion and Wettability of Hydroxyapatite-Coated Co–Cr–Mo Alloy. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1611-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Characterization, Dissolution, and Solubility of Lead Hydroxypyromorphite [Pb5(PO4)3OH] at 25–45°C. J CHEM-NY 2015. [DOI: 10.1155/2015/269387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dissolution of the hydroxypyromorphite [lead hydroxyapatite, Pb5(PO4)3OH] in HNO3solution (pH = 2.00), ultrapure water (pH = 5.60), and NaOH solution (pH = 9.00) was experimentally studied at 25°C, 35°C, and 45°C. The XRD, FT-IR, and FE-SEM analyses indicated that the hydroxypyromorphite solids were observed to have indistinguishable change during dissolution. For the hydroxypyromorphite dissolution in aqueous acidic media at initial pH 2.00 and 25°C, the aqueous phosphate concentrations rose quickly and reached the peak values after 1 h dissolution, while the aqueous lead concentrations rose slowly and reached the peak values after 1440 h. The solution Pb/P molar ratio increased constantly from 1.10 to 1.65 near the stoichiometric ratio of 1.67 to 209.85~597.72 and then decreased to 74.76~237.26 for the dissolution at initial pH 2.00 and 25°C~45°C. The averageKspvalues for Pb5(PO4)3OH were determined to be 10−80.77(10−80.57−10−80.96) at 25°C, 10−80.65(10−80.38−10−80.99) at 35°C, and 10−79.96(10−79.38−10−80.71) at 45°C. From the obtained solubility data for the dissolution at initial pH 2.00 and 25°C, the Gibbs free energy of formation [ΔGfo] for Pb5(PO4)3OH was calculated to be −3796.71 kJ/mol (−3795.55~−3797.78 kJ/mol).
Collapse
|
49
|
Zamudio-Ortega CM, Contreras-Bulnes R, Scougall-Vilchis RJ, Morales-Luckie RA, Olea-Mejía OF, Rodríguez-Vilchis LE, García-Fabila MM. Morphological and Chemical Changes of Deciduous Enamel Produced by Er:YAG Laser, Fluoride, and Combined Treatment. Photomed Laser Surg 2014; 32:252-9. [DOI: 10.1089/pho.2013.3622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Carmen M. Zamudio-Ortega
- Universidad Autónoma del Estado de México, Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Toluca, Estado de México, México
| | - Rosalía Contreras-Bulnes
- Universidad Autónoma del Estado de México, Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Toluca, Estado de México, México
| | - Rogelio J. Scougall-Vilchis
- Universidad Autónoma del Estado de México, Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Toluca, Estado de México, México
| | - Raúl A. Morales-Luckie
- Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Centro Conjunto de Investigación en Química Sustentable (CCIQS), San Cayetano de Morelos, Toluca, Estado de México, México
| | - Oscar F. Olea-Mejía
- Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Centro Conjunto de Investigación en Química Sustentable (CCIQS), San Cayetano de Morelos, Toluca, Estado de México, México
| | - Laura E. Rodríguez-Vilchis
- Universidad Autónoma del Estado de México, Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Toluca, Estado de México, México
| | - María M. García-Fabila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca, Estado de México, México
| |
Collapse
|
50
|
Boyd AR, O'Kane C, O'Hare P, Burke GA, Meenan BJ. The influence of target stoichiometry on early cell adhesion of co-sputtered calcium-phosphate surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2845-2861. [PMID: 23918527 DOI: 10.1007/s10856-013-5021-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
The nature of the initial interaction between calcium phosphate (Ca-P) thin films and osteoblasts can be influenced by a number of different properties including the phase, crystallinity, stoichiometry and composition of the surface. There is still a strong interest in developing and studying Ca-P surfaces that have the ability to accurately control the osteoblast response. Radio frequency (RF) magnetron sputtering is a technique that allows for accurate control of the properties of deposited Ca-P coatings and has been studied extensively because of this fact. In this work, Ca-P coatings were co-deposited using RF magnetron sputtering in order to study the effect of changing the target stoichiometry on the initial in vitro behavior of MG63 osteoblast-like cells. The samples produced were analysed both as-deposited and after thermal annealing to 500 °C. After annealing XPS analyses of the samples co-deposited using tricalcium phosphate (TCP) materials gave a Ca/P ratio of 1.71 ± 0.01, as compared to those co-deposited from hydroxyapatite (HA) materials, with a Ca/P of 1.82 ± 0.06. In addition to this, the curve fitted XPS data indicated the presence of low levels of carbonate in the coatings. Despite this the XRD results for all of the annealed coatings were shown to be characteristic of pure HA with a preferred 002 orientation. The atomic force microscopy results also highlighted that both types of coatings had surface features of a similar size (200-220 nm). Both surfaces exhibited a degree of surface degradation, even after 1 h of cell culture. However, the TCP derived surfaces showed an enhanced osteoblastic cell response in terms of cell adhesion and cell proliferation in the earlier stages of cell culture than the surfaces deposited from HA. An improvement in the initial cell attachment and a potential for increased cell proliferation rates is viewed as a highly advantageous result in relation to controlling the osteoblast response on these surfaces.
Collapse
Affiliation(s)
- A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK,
| | | | | | | | | |
Collapse
|