1
|
Liu Y, Lau X, Munusamy P, Sanchez CMAS, Snell D, Sangrithi M. Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism. Dev Cell 2025; 60:1321-1335.e5. [PMID: 39798575 DOI: 10.1016/j.devcel.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025]
Abstract
Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F1 mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells. Establishment of germ cell sexual dimorphism and X chromosome dosage compensation states in vivo are temporally linked to XCR. Allele-specific analysis evidence that the reactivating X chromosome is minimally active in embryonic day (E)9.5 female PGCs, reactivates gradually, and reaches parity to the active X chromosome in E16.5 oogonia. While Xist is repressed from E10.5 onward, epigenetic memory of X inactivation persists from self-sustained polycomb repressive complex 2 (PRC2) activity. The reactivating X is asymmetrically enriched for histone 3-lysine-27-trimethylation (H3K27me3) at E13.5, which is later reversed, permitting germline gene expression. Our findings relate XCR with PRC2 function in promoting female meiosis.
Collapse
Affiliation(s)
- Yaqiong Liu
- King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK
| | - Xianzhong Lau
- KK Women's and Children Hospital, Division of Obstetrics and Gynaecology, Singapore, Singapore
| | - Prabhakaran Munusamy
- KK Women's and Children Hospital, Division of Obstetrics and Gynaecology, Singapore, Singapore
| | - Carlos M Abascal Sherwell Sanchez
- King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK
| | | | - Mahesh Sangrithi
- King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK.
| |
Collapse
|
2
|
Aguilar R, Rosenberg M, Levy V, Lee JT. An evolving landscape of PRC2-RNA interactions in chromatin regulation. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00850-3. [PMID: 40307460 DOI: 10.1038/s41580-025-00850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
A major unsolved problem in epigenetics is how RNA regulates Polycomb repressive complex 2 (PRC2), a complex that trimethylates histone H3 Lys27 (H3K27me3) to form repressive chromatin. Key questions include how PRC2 binds RNA in vivo and what the functional consequences of binding are. In this Perspective, we expound on the viewpoint that RNA is integral to the stepwise regulation of PRC2 activity. Using the long non-coding RNA XIST and X chromosome inactivation as a model, we discuss evidence indicating that RNA is involved in PRC2 recruitment onto chromatin, in induction of its catalytic activity and in its eviction from chromatin. Studies have also implicated RNA in controlling promoter-proximal pausing of RNA polymerase II. The cumulative data argue that the functional consequences of PRC2-RNA interactions crucially depend on RNA conformation. We recognize that alternative hypotheses exist and therefore we attempt to integrate contrary data. Thus, although an RNA-rich landscape is emerging for Polycomb complexes, additional work is required to resolve a broad range of data interpretations.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Michael Rosenberg
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Vered Levy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Malcore RM, Kalantry S. A Comparative Analysis of Mouse Imprinted and Random X-Chromosome Inactivation. EPIGENOMES 2024; 8:8. [PMID: 38390899 PMCID: PMC10885068 DOI: 10.3390/epigenomes8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation.
Collapse
Affiliation(s)
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Liu J, Fan H, Liang X, Chen Y. Polycomb repressor complex: Its function in human cancer and therapeutic target strategy. Biomed Pharmacother 2023; 169:115897. [PMID: 37981459 DOI: 10.1016/j.biopha.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The Polycomb Repressor Complex (PRC) plays a pivotal role in gene regulation during development and disease, with dysregulation contributing significantly to various human cancers. The intricate interplay between PRC and cellular signaling pathways sheds light on cancer complexity. PRC presents promising therapeutic opportunities, with inhibitors undergoing rigorous evaluation in preclinical and clinical studies. In this review, we emphasize the critical role of PRC complex in gene regulation, particularly PcG proteins mediated chromatin compaction through phase separation. We also highlight the pathological implications of PRC complex dysregulation in various tumors, elucidating underlying mechanisms driving cancer progression. The burgeoning field of therapeutic strategies targeting PRC complexes, notably EZH2 inhibitors, has advanced significantly. However, we explore the need for combination therapies to enhance PRC targeted treatments efficacy, providing a glimpse into the future of cancer therapeutics.
Collapse
Affiliation(s)
- Jingrong Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nat Cell Biol 2023; 25:1704-1715. [PMID: 37932452 PMCID: PMC10635832 DOI: 10.1038/s41556-023-01266-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.
Collapse
Affiliation(s)
- Liat Ravid Lustig
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Till Schwämmle
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gemma Noviello
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elodie Limberg
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Guido Pacini
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Afrah Ghauri
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
7
|
Dar MS, Mensah IK, He M, McGovern S, Sohal IS, Whitlock HC, Bippus NE, Ceminsky M, Emerson ML, Tan HJ, Hall MC, Gowher H. Dnmt3bas coordinates transcriptional induction and alternative exon inclusion to promote catalytically active Dnmt3b expression. Cell Rep 2023; 42:112587. [PMID: 37294637 PMCID: PMC10592478 DOI: 10.1016/j.celrep.2023.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/11/2023] Open
Abstract
Embryonic expression of DNMT3B is critical for establishing de novo DNA methylation. This study uncovers the mechanism through which the promoter-associated long non-coding RNA (lncRNA) Dnmt3bas controls the induction and alternative splicing of Dnmt3b during embryonic stem cell (ESC) differentiation. Dnmt3bas recruits the PRC2 (polycomb repressive complex 2) at cis-regulatory elements of the Dnmt3b gene expressed at a basal level. Correspondingly, Dnmt3bas knockdown enhances Dnmt3b transcriptional induction, whereas overexpression of Dnmt3bas dampens it. Dnmt3b induction coincides with exon inclusion, switching the predominant isoform from the inactive Dnmt3b6 to the active Dnmt3b1. Intriguingly, overexpressing Dnmt3bas further enhances the Dnmt3b1:Dnmt3b6 ratio, attributed to its interaction with hnRNPL (heterogeneous nuclear ribonucleoprotein L), a splicing factor that promotes exon inclusion. Our data suggest that Dnmt3bas coordinates alternative splicing and transcriptional induction of Dnmt3b by facilitating the hnRNPL and RNA polymerase II (RNA Pol II) interaction at the Dnmt3b promoter. This dual mechanism precisely regulates the expression of catalytically active DNMT3B, ensuring fidelity and specificity of de novo DNA methylation.
Collapse
Affiliation(s)
- Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ikjot Singh Sohal
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Nina Elise Bippus
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Madison Ceminsky
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Martin L Emerson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Hern J Tan
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nat Commun 2022; 13:1658. [PMID: 35351876 PMCID: PMC8964718 DOI: 10.1038/s41467-022-29333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly. Female embryonic stem cells (ESCs) are the ideal model to study X chromosome inactivation (XCI) establishment; however, these cells are challenging to keep in culture. Here the authors create fluorescent ‘Xmas’ reporter mice as a renewable source of ESCs and show nucleosome remodelers Smarcc1 and Smarca4 create a nucleosome-free promoter region prior to the establishment of silencing.
Collapse
|
9
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
10
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
12
|
Abstract
Polycomb repressive complex 2 (PRC2) and its methylation of histone 3 at lysine 27 (H3K27me3) play a crucial role in epigenetic regulation of normal development and malignancy. Several factors regulate the recruitment of PRC2 and affects its chromatin modification function. Over the past years, emerging discoveries have portrayed the association of RNA (protein-coding and non-coding) with PRC2 as a critical factor in understanding PRC2 function. With PRC2 being a macromolecular complex of interest in development and diseases, further studies are needed to relate the rapidly evolving PRC2:RNA biology in that scenario. In this review, we summarize the current understanding of different modes of RNA binding by PRC2, and further discuss perspectives, key questions and therapeutic applications of PRC2 binding to RNAs.
Collapse
Affiliation(s)
- Junli Yan
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore
| | - Bibek Dutta
- b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Yan Ting Hee
- c Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore , Singapore
| | - Wee-Joo Chng
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore.,b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,d Department of Hematology-Oncology , National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS) , Singapore , Singapore
| |
Collapse
|
13
|
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019; 10:30. [PMID: 30604745 PMCID: PMC6318279 DOI: 10.1038/s41467-018-07907-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi. The inactive X chromosome (Xi) has an atypical structure, with global loss of TADs, A/B compartments and formation of mega-domains. Here the authors show that the non-canonical SMC family protein, SmcHD1, important for developmental gene silencing on Xi, antagonises TAD formation and compartmentalization on the Xi in a transcription independent way.
Collapse
|
14
|
Kirk JM, Kim SO, Inoue K, Smola MJ, Lee DM, Schertzer MD, Wooten JS, Baker AR, Sprague D, Collins DW, Horning CR, Wang S, Chen Q, Weeks KM, Mucha PJ, Calabrese JM. Functional classification of long non-coding RNAs by k-mer content. Nat Genet 2018; 50:1474-1482. [PMID: 30224646 PMCID: PMC6262761 DOI: 10.1038/s41588-018-0207-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/24/2018] [Indexed: 12/30/2022]
Abstract
The functions of most long non-coding RNAs (lncRNAs) are unknown. In contrast to proteins, lncRNAs with similar functions often lack linear sequence homology; thus, the identification of function in one lncRNA rarely informs the identification of function in others. We developed a sequence comparison method to deconstruct linear sequence relationships in lncRNAs and evaluate similarity based on the abundance of short motifs called kmers. We found that lncRNAs of related function often had similar kmer profiles despite lacking linear homology, and that kmer profiles correlated with protein binding to lncRNAs and with their subcellular localization. Using a novel assay to quantify Xist-like regulatory potential, we directly demonstrated that evolutionarily unrelated lncRNAs can encode similar function through different spatial arrangements of related sequence motifs. Kmer-based classification is a powerful approach to detect recurrent relationships between sequence and function in lncRNAs.
Collapse
Affiliation(s)
- Jessime M Kirk
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan O Kim
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kaoru Inoue
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew J Smola
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Ribometrix, Durham, NC, USA
| | - David M Lee
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan D Schertzer
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua S Wooten
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Baker
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Harvard Medical School, Ph.D. Program in Biological and Biomedical Sciences, Boston, MA, USA
| | - Daniel Sprague
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David W Collins
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher R Horning
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuo Wang
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qidi Chen
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter J Mucha
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Brockdorff N. Polycomb complexes in X chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2017.0021. [PMID: 28947664 PMCID: PMC5627167 DOI: 10.1098/rstb.2017.0021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Identifying the critical RNA binding proteins (RBPs) that elicit Xist mediated silencing has been a key goal in X inactivation research. Early studies implicated the Polycomb proteins, a family of factors linked to one of two major multiprotein complexes, PRC1 and PRC2 (Wang 2001 Nat. Genet.28, 371–375 (doi:10.1038/ng574); Silva 2003 Dev. Cell4, 481–495 (doi:10.1016/S1534-5807(03)00068-6); de Napoles 2004 Dev. Cell7, 663–676 (doi:10.1016/j.devcel.2004.10.005); Plath 2003 Science300, 131–135 (doi:10.1126/science.1084274)). PRC1 and PRC2 complexes catalyse specific histone post-translational modifications (PTMs), ubiquitylation of histone H2A at position lysine 119 (H2AK119u1) and methylation of histone H3 at position lysine 27 (H3K27me3), respectively, and accordingly, these modifications are highly enriched over the length of the inactive X chromosome (Xi). A key study proposed that PRC2 subunits bind directly to Xist RNA A-repeat element, a region located at the 5′ end of the transcript known to be required for Xist mediated silencing (Zhao 2008 Science322, 750–756 (doi:10.1126/science.1163045)). Subsequent recruitment of PRC1 was assumed to occur via recognition of PRC2 mediated H3K27me3 by the CBX subunit of PRC1, as has been shown to be the case at other Polycomb target loci (Cao 2002 Science298, 1039–1043 (doi:10.1126/science.1076997)). More recently, several reports have questioned aspects of the prevailing view, both in relation to the mechanism for Polycomb recruitment by Xist RNA and the contribution of the Polycomb pathway to Xist mediated silencing. In this article I provide an overview of our recent progress towards resolving these discrepancies. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
16
|
Studying X chromosome inactivation in the single-cell genomic era. Biochem Soc Trans 2018; 46:577-586. [PMID: 29678955 DOI: 10.1042/bst20170346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Single-cell genomics is set to revolutionise our understanding of how epigenetic silencing works; by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to ask whether they cause transcriptional silencing or are instead a consequence of the silent state. Here, we review what single-cell genomics has revealed about X chromosome inactivation, perhaps the best characterised mammalian epigenetic process, highlighting the novel findings and important differences between mouse and human X inactivation uncovered through these studies. We consider what fundamental questions these techniques are set to answer in coming years and propose that X chromosome inactivation is an ideal model to study gene silencing by single-cell genomics as technical limitations are minimised through the co-analysis of hundreds of genes.
Collapse
|
17
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, Castello A, Mohammed S, Moindrot B, Nesterova TB, Brockdorff N. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing. Mol Cell 2017; 68:955-969.e10. [PMID: 29220657 PMCID: PMC5735038 DOI: 10.1016/j.molcel.2017.11.013] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023]
Abstract
The Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood. Here we define the Xist RNA Polycomb Interaction Domain (XR-PID), a 600 nt sequence encompassing the Xist B-repeat element. Deletion of XR-PID abolishes Xist-dependent Polycomb recruitment, in turn abrogating Xist-mediated gene silencing and reversing Xist-induced chromatin inaccessibility. We identify the RNA-binding protein hnRNPK as the principal XR-PID binding factor required to recruit PCGF3/5-PRC1. Accordingly, synthetically tethering hnRNPK to Xist RNA lacking XR-PID is sufficient for Xist-dependent Polycomb recruitment. Our findings define a key pathway for Polycomb recruitment by Xist RNA, providing important insights into mechanisms of chromatin modification by non-coding RNA. A 600 nt element in Xist RNA, XR-PID, is required for Polycomb recruitment Deletion of XR-PID abrogates Xist-mediated chromosome silencing hnRNPK binds XR-PID to recruit the Polycomb-initiating complex PCGF3/5-PRC1 Tethering hnRNPK to Xist RNA bypasses the requirement for XR-PID
Collapse
Affiliation(s)
- Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Chloë Roustan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Burcu Anil Kirmizitas
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Nicolae Solcan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrea Cerase
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Posttranscriptional Networks in Infection and Cell Cycle Progression, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Proteomics Technology Development and Application, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Benoît Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
19
|
Long Y, Bolanos B, Gong L, Liu W, Goodrich KJ, Yang X, Chen S, Gooding AR, Maegley KA, Gajiwala KS, Brooun A, Cech TR, Liu X. Conserved RNA-binding specificity of polycomb repressive complex 2 is achieved by dispersed amino acid patches in EZH2. eLife 2017; 6. [PMID: 29185984 PMCID: PMC5706960 DOI: 10.7554/elife.31558] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a key chromatin modifier responsible for methylation of lysine 27 in histone H3. PRC2 has been shown to interact with thousands of RNA species in vivo, but understanding the physiological function of RNA binding has been hampered by the lack of separation-of-function mutants. Here, we use comprehensive mutagenesis and hydrogen deuterium exchange mass spectrometry (HDX-MS) to identify critical residues for RNA interaction in PRC2 core complexes from Homo sapiens and Chaetomium thermophilum, for which crystal structures are known. Preferential binding of G-quadruplex RNA is conserved, surprisingly using different protein elements. Key RNA-binding residues are spread out along the surface of EZH2, with other subunits including EED also contributing, and missense mutations of some of these residues have been found in cancer patients. The unusual nature of this protein-RNA interaction provides a paradigm for other epigenetic modifiers that bind RNA without canonical RNA-binding motifs.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Ben Bolanos
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Lihu Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Wei Liu
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Karen J Goodrich
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Anne R Gooding
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Karen A Maegley
- Oncology Research Unit, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Ketan S Gajiwala
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Alexei Brooun
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Thomas R Cech
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
Maclary E, Hinten M, Harris C, Sethuraman S, Gayen S, Kalantry S. PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice. Genome Biol 2017; 18:82. [PMID: 28468635 PMCID: PMC5415793 DOI: 10.1186/s13059-017-1211-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022] Open
Abstract
Background Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27me3, which marks many transcriptionally silent genes throughout the mammalian genome. Although H3K27me3 is associated with silenced gene expression broadly, it remains unclear why some but not other PRC2 target genes require PRC2 and H3K27me3 for silencing. Results Here we define the transcriptional and chromatin features that predict which PRC2 target genes require PRC2/H3K27me3 for silencing by interrogating imprinted mouse X-chromosome inactivation. H3K27me3 is enriched at promoters of silenced genes across the inactive X chromosome. To abrogate PRC2 function, we delete the core PRC2 protein EED in F1 hybrid trophoblast stem cells (TSCs), which undergo imprinted inactivation of the paternally inherited X chromosome. Eed–/– TSCs lack H3K27me3 and Xist lncRNA enrichment on the inactive X chromosome. Despite the absence of H3K27me3 and Xist RNA, only a subset of the inactivated X-linked genes is derepressed in Eed–/– TSCs. Unexpectedly, in wild-type (WT) TSCs these genes are transcribed and are enriched for active chromatin hallmarks on the inactive-X, including RNA PolII, H3K27ac, and H3K36me3, but not the bivalent mark H3K4me2. By contrast, PRC2 targets that remain repressed in Eed–/– TSCs are depleted for active chromatin characteristics in WT TSCs. Conclusions A comparative analysis of transcriptional and chromatin features of inactive X-linked genes in WT and Eed–/– TSCs suggests that PRC2 acts as a brake to prevent induction of transcribed genes on the inactive X chromosome, a mode of PRC2 function that may apply broadly. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1211-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Shriya Sethuraman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
| |
Collapse
|
21
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
22
|
Dupont C, Maduro C, Den Braanker H, Boers R, Kurek D, Gribnau J. Characterization of Histone Modifications Associated with Inactive X-Chromosome in Trophoblast Stem Cells, eXtra-Embryonic Endoderm Cells and in In Vitro Derived Undifferentiated and Differentiated Epiblast Like Stem Cells. PLoS One 2016; 11:e0167154. [PMID: 27977710 PMCID: PMC5157996 DOI: 10.1371/journal.pone.0167154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 11/30/2022] Open
Abstract
In mouse, X-chromosome inactivation (XCI) can either be imprinted or random. Imprinted XCI (iXCI) is considered unstable and depending on continuous Xist expression, whereas random XCI (rXCI) is stably maintained even in the absence of Xist. Here we have systematically examined epigenetic modifications associated with the inactive X-chromosome (Xi) in Trophoblast Stem cells, eXtra-Embryonic Endoderm Cells, undifferentiated and differentiated Epiblast Like Stem Cells in order to understand intrinsic differences in epigenetic mechanisms involved in silencing of the inactive X-chromosome in lineages presenting iXCI and rXCI. Whereas euchromatic histone modifications are predominantly lost from the Xi territory in all cell types, the accumulation of heterochromatic modifications diverges in between the analysed cell lineages. Particularly, only the Xi of multipotent Trophoblast (iXCI) and Epiblast stem cells (rXCI) display a visible accumulation of Polycomb Repressive Complexes (PRCs), in contrast to the Xi in differentiated Epiblast Like Stem Cells and eXtra-embryonic Endoderm cells. Despite this, the histone modifications catalysed by PRCs, ubH2AK119 and H3K27me3, remain the best heterochromatic markers for the Xi in all assessed lineages. Heterochromatic chromatin modifications associated with the Xi are a reflection of the epigenetic landscape of the entire genome of the assessed cell regardless whether XCI is imprinted or random.
Collapse
Affiliation(s)
- Cathérine Dupont
- Erasmus MC, Department of Developmental Biology, Rotterdam, The Netherlands
| | - Cheryl Maduro
- Erasmus MC, Department of Developmental Biology, Rotterdam, The Netherlands
| | | | - Ruben Boers
- Erasmus MC, Department of Developmental Biology, Rotterdam, The Netherlands
| | - Dorota Kurek
- Erasmus MC, Department of Developmental Biology, Rotterdam, The Netherlands
| | - Joost Gribnau
- Erasmus MC, Department of Developmental Biology, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 2016; 537:558-562. [DOI: 10.1038/nature19362] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
24
|
Vallot C, Ouimette JF, Rougeulle C. Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. Bioessays 2016; 38:869-80. [PMID: 27389958 DOI: 10.1002/bies.201600121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X chromosome inactivation (XCI) is an essential epigenetic process that ensures X-linked gene dosage equilibrium between sexes in mammals. XCI is dynamically regulated during development in a manner that is intimately linked to differentiation. Numerous studies, which we review here, have explored the dynamics of X inactivation and reactivation in the context of development, differentiation and diseases, and the phenotypic and molecular link between the inactive status, and the cellular context. Here, we also assess whether XCI is a uniform mechanism in mammals by analyzing epigenetic signatures of the inactive X (Xi) in different species and cellular contexts. It appears that the timing of XCI and the epigenetic signature of the inactive X greatly vary between species. Surprisingly, even within a given species, various Xi configurations are found across cellular states. We discuss possible mechanisms underlying these variations, and how they might influence the fate of the Xi.
Collapse
Affiliation(s)
- Céline Vallot
- Sorbonne Paris Cité, Epigenetics and Cell Fate, Université Paris Diderot, Paris, France
| | | | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, Université Paris Diderot, Paris, France
| |
Collapse
|
25
|
Grijzenhout A, Godwin J, Koseki H, Gdula MR, Szumska D, McGouran JF, Bhattacharya S, Kessler BM, Brockdorff N, Cooper S. Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs. Development 2016; 143:2716-23. [PMID: 27317809 PMCID: PMC5004903 DOI: 10.1242/dev.123935] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/07/2016] [Indexed: 01/02/2023]
Abstract
The Polycomb repressive complexes PRC1 and PRC2 are key mediators of heritable gene silencing in multicellular organisms. Here, we characterise AEBP2, a known PRC2 co-factor which, in vitro, has been shown to stimulate PRC2 activity. We show that AEBP2 localises specifically to PRC2 target loci, including the inactive X chromosome. Proteomic analysis confirms that AEBP2 associates exclusively with PRC2 complexes. However, analysis of embryos homozygous for a targeted mutation of Aebp2 unexpectedly revealed a Trithorax phenotype, normally linked to antagonism of Polycomb function. Consistent with this, we observe elevated levels of PRC2-mediated histone H3K27 methylation at target loci in Aebp2 mutant embryonic stem cells (ESCs). We further demonstrate that mutant ESCs assemble atypical hybrid PRC2 subcomplexes, potentially accounting for enhancement of Polycomb activity, and suggesting that AEBP2 normally plays a role in defining the mutually exclusive composition of PRC2 subcomplexes. Highlighted article: Targeted mutation of the Polycomb protein AEBP2 in mouse provides evidence for a role for this factor in defining the composition and activity of PRC2 complexes.
Collapse
Affiliation(s)
- Anne Grijzenhout
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan Godwin
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Michal Ryszard Gdula
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dorota Szumska
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Joanna F McGouran
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
26
|
Rayon T, Menchero S, Rollán I, Ors I, Helness A, Crespo M, Nieto A, Azuara V, Rossant J, Manzanares M. Distinct mechanisms regulate Cdx2 expression in the blastocyst and in trophoblast stem cells. Sci Rep 2016; 6:27139. [PMID: 27256674 PMCID: PMC4891713 DOI: 10.1038/srep27139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/15/2016] [Indexed: 01/20/2023] Open
Abstract
The first intercellular differences during mammalian embryogenesis arise in the blastocyst, producing the inner cell mass and the trophectoderm. The trophectoderm is the first extraembryonic tissue and does not contribute to the embryo proper, its differentiation instead forming tissues that sustain embryonic development. Crucial roles in extraembryonic differentiation have been identified for certain transcription factors, but a comprehensive picture of the regulation of this early specification is still lacking. Here, we investigated whether the regulatory mechanisms involved in Cdx2 expression in the blastocyst are also utilized in the postimplantation embryo. We analyzed an enhancer that is regulated through Hippo and Notch in the blastocyst trophectoderm, unexpectedly finding that it is inactive in the extraembryonic structures at postimplantation stages. Further analysis identified other Cdx2 regulatory elements including a stem-cell specific regulatory sequence and an element that drives reporter expression in the trophectoderm, a subset of cells in the extraembryonic region of the postimplantation embryo and in trophoblast stem cells. The cross-comparison in this study of cis-regulatory elements employed in the blastocyst, stem cell populations and the postimplantation embryo provides new insights into early mammalian development and suggests a two-step mechanism in Cdx2 regulation.
Collapse
Affiliation(s)
- Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Isabel Rollán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Inmaculada Ors
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Anne Helness
- Epigenetics and Development Group; Institute of Reproductive and Developmental Biology; Faculty of Medicine; Imperial College London; London, W12 ONN UK
| | - Miguel Crespo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andres Nieto
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Véronique Azuara
- Epigenetics and Development Group; Institute of Reproductive and Developmental Biology; Faculty of Medicine; Imperial College London; London, W12 ONN UK
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
27
|
Keniry A, Gearing LJ, Jansz N, Liu J, Holik AZ, Hickey PF, Kinkel SA, Moore DL, Breslin K, Chen K, Liu R, Phillips C, Pakusch M, Biben C, Sheridan JM, Kile BT, Carmichael C, Ritchie ME, Hilton DJ, Blewitt ME. Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing. Epigenetics Chromatin 2016; 9:16. [PMID: 27195021 PMCID: PMC4870784 DOI: 10.1186/s13072-016-0064-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022] Open
Abstract
Background
The presence of histone 3 lysine 9 (H3K9) methylation on the mouse inactive X chromosome has been controversial over the last 15 years, and the functional role of H3K9 methylation in X chromosome inactivation in any species has remained largely unexplored. Results Here we report the first genomic analysis of H3K9 di- and tri-methylation on the inactive X: we find they are enriched at the intergenic, gene poor regions of the inactive X, interspersed between H3K27 tri-methylation domains found in the gene dense regions. Although H3K9 methylation is predominantly non-genic, we find that depletion of H3K9 methylation via depletion of H3K9 methyltransferase Set domain bifurcated 1 (Setdb1) during the establishment of X inactivation, results in failure of silencing for around 150 genes on the inactive X. By contrast, we find a very minor role for Setdb1-mediated H3K9 methylation once X inactivation is fully established. In addition to failed gene silencing, we observed a specific failure to silence X-linked long-terminal repeat class repetitive elements. Conclusions Here we have shown that H3K9 methylation clearly marks the murine inactive X chromosome. The role of this mark is most apparent during the establishment phase of gene silencing, with a more muted effect on maintenance of the silent state. Based on our data, we hypothesise that Setdb1-mediated H3K9 methylation plays a role in epigenetic silencing of the inactive X via silencing of the repeats, which itself facilitates gene silencing through alterations to the conformation of the whole inactive X chromosome. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0064-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Linden J Gearing
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Joy Liu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Aliaksei Z Holik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Sarah A Kinkel
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Darcy L Moore
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Kelan Chen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Ruijie Liu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Catherine Phillips
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Miha Pakusch
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Julie M Sheridan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Benjamin T Kile
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Catherine Carmichael
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052 Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010 Australia.,Department of Genetics, University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
28
|
Pérez-Palacios R, Macías-Redondo S, Climent M, Contreras-Moreira B, Muniesa P, Schoorlemmer J. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells. PLoS One 2016; 11:e0154268. [PMID: 27191592 PMCID: PMC4871433 DOI: 10.1371/journal.pone.0154268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/11/2016] [Indexed: 12/27/2022] Open
Abstract
Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent.
Collapse
Affiliation(s)
- Raquel Pérez-Palacios
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - Sofía Macías-Redondo
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | - Bruno Contreras-Moreira
- ARAID Foundation, Zaragoza, Spain
- Estación Experimental de Aula Dei /CSIC, Av. Montañana 1.005, 50059 Zaragoza, Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | - Jon Schoorlemmer
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
- ARAID Foundation, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
29
|
Mak W, Fang C, Holden T, Dratver MB, Lin H. An Important Role of Pumilio 1 in Regulating the Development of the Mammalian Female Germline. Biol Reprod 2016; 94:134. [PMID: 27170441 PMCID: PMC4946805 DOI: 10.1095/biolreprod.115.137497] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Pumilio/FBF (PUF) proteins are a highly conserved family of translational regulators. The Drosophila PUF protein, Pumilio, is crucial for germline establishment and fertility. In mammals, primordial folliculogenesis is a key process that establishes the initial cohort of female mammalian germ cells prior to birth, and this primordial follicle pool is a prerequisite for female reproductive competence. We sought to understand whether PUF proteins have a conserved role in mammals during primordial folliculogenesis and female reproductive competency. In mammals, two homologs of Pumilio exist: Pumilio 1 (Pum1) and Pum2. Here, we report that PUMILIO (PUM) 1 plays an important role in the establishment of the primordial follicle pool, meiosis, and female reproductive competency, whereas PUM2 does not have a detectable function in these processes. Furthermore, we show that PUM1 facilitates the transition of the late meiotic prophase I oocyte from pachytene to diplotene stage by regulating SYCP1 protein. Our study reveals an important role of translational regulation in mammalian female germ cell development.
Collapse
Affiliation(s)
- Winifred Mak
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Caodi Fang
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Tobias Holden
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut Department of Genetics, Yale University School of Medicine, New Haven, Connecticut Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
30
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
31
|
Prudhomme J, Dubois A, Navarro P, Arnaud D, Avner P, Morey C. A rapid passage through a two-active-X-chromosome state accompanies the switch of imprinted X-inactivation patterns in mouse trophoblast stem cells. Epigenetics Chromatin 2015; 8:52. [PMID: 26628922 PMCID: PMC4665903 DOI: 10.1186/s13072-015-0044-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In female mice, while the presence of two-active X-chromosomes characterises pluripotency, it is not tolerated in most other cellular contexts. In particular, in the trophoblastic lineage, impairment of paternal X (X(P)) inactivation results in placental defects. RESULTS Here, we show that Trophoblast Stem (TS) cells can undergo a complete reversal of imprinted X-inactivation without detectable change in cell-type identity. This reversal occurs through a reactivation of the X(P) leading to TS clones showing two active Xs. Intriguingly, within such clones, all the cells rapidly and homogeneously either re-inactivate the X(P) or inactivate, de novo, the X(M). CONCLUSION This secondary non-random inactivation suggests that the two-active-X states in TS and in pluripotent contexts are epigenetically distinct. These observations also reveal a pronounced plasticity of the TS epigenome allowing TS cells to dramatically and accurately reprogram gene expression profiles. This plasticity may serve as a back-up system when X-linked mono-allelic gene expression is perturbed.
Collapse
Affiliation(s)
- Julie Prudhomme
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Agnès Dubois
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Epigenetics of Stem Cells Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Danielle Arnaud
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Philip Avner
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Dynamics of Epigenetic Regulation, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Céline Morey
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; CNRS, UMR7216 Epigenetics and Cell Fate, 35 rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
32
|
Stuppia L, Franzago M, Ballerini P, Gatta V, Antonucci I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics 2015; 7:120. [PMID: 26566402 PMCID: PMC4642754 DOI: 10.1186/s13148-015-0155-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/05/2015] [Indexed: 12/23/2022] Open
Abstract
The correlation between epigenetics and human reproduction represents a very interesting field of study, mainly due to the possible transgenerational effects related to epigenetic modifications of male and female gametes. In the present review, we focused our attention to the role played by epigenetics on male reproduction, evidencing at least four different levels at which sperm epigenetic modifications could affect reproduction: (1) spermatogenesis failure; (2) embryo development; (3) outcome of assisted reproduction technique (ART) protocols, mainly as concerning genomic imprinting; and (4) long-term effects during the offspring lifetime. The environmental agents responsible for epigenetic modifications are also examined, suggesting that the control of paternal lifestyle prior to conception could represent in the next future a novel hot topic in the management of human reproduction.
Collapse
Affiliation(s)
- Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy ; Ce.S.I.-MeT, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
| | - Marica Franzago
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Pharmacogenetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
| | - Valentina Gatta
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy ; Ce.S.I.-MeT, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio University" Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy ; Ce.S.I.-MeT, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
| |
Collapse
|
33
|
Pervasive lncRNA binding by epigenetic modifying complexes--The challenges ahead. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:93-101. [PMID: 26463275 DOI: 10.1016/j.bbagrm.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023]
Abstract
Epigenetic modifying factors are fundamental regulators of chromatin structure and gene expression during development and differentiation through the induction of chemical modifications on histones, DNA or via remodeling of the chromatin structure. Protein complexes involved in these three processes contain non-canonical RNA-binding components that interact with long non-coding RNAs, in many cases in the absence of any sequence or structural signatures. However, there is growing evidence of the role of such protein-lncRNA interactions in the regulation of the epigenetic landscape in vivo. This review summarizes the growing number of epigenetic modifying factors described to interact with lncRNAs in mouse and human, and then discusses the challenges that lay ahead in understanding lncRNAs as part of the intricate networks of epigenetic regulation. A combination of protein and RNA-centric approaches is required for this purpose. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
34
|
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep 2015; 16:1467-81. [PMID: 26474904 PMCID: PMC4641500 DOI: 10.15252/embr.201540945] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2015; 9:3-12. [PMID: 24739571 DOI: 10.4161/epi.27473] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic regulation of gene expression is an increasingly well-understood concept that explains much of the contribution of an organism's environment and experience to its biology. However, discussion persists as to which mechanisms can be classified as epigenetic. Ongoing research continues to uncover novel pathways, including the important role of non-protein coding RNA transcripts in epigenetic gene regulation. We know that the majority of human and other mammalian transcripts are not translated but that many of these are nonetheless functional. These non-coding RNAs (ncRNAs) can be short (<200 nt) or long (<200 nt) and are further classified by genomic origin and mechanism of action. We discuss examples of ncRNAs that interact with histone modifying complexes or DNA methyltransferases to regulate gene expression, others that are targets of these epigenetic mechanisms, and propose a model in which such transcripts feed back into an epigenetic regulatory network.
Collapse
Affiliation(s)
- Veronica J Peschansky
- Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences; University of Miami; Miller School of Medicine; Miami, FL USA
| |
Collapse
|
36
|
Hayakawa K, Himeno E, Tanaka S, Kunath T. Isolation and Manipulation of Mouse Trophoblast Stem Cells. ACTA ACUST UNITED AC 2015; 32:1E.4.1-1E.4.32. [DOI: 10.1002/9780470151808.sc01e04s32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Hayakawa
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo Tokyo Japan
| | - Emi Himeno
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo Tokyo Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo Tokyo Japan
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh United Kingdom
| |
Collapse
|
37
|
Richard JLC, Ogawa Y. Understanding the Complex Circuitry of lncRNAs at the X-inactivation Center and Its Implications in Disease Conditions. Curr Top Microbiol Immunol 2015; 394:1-27. [PMID: 25982976 DOI: 10.1007/82_2015_443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Balanced gene expression is a high priority in order to maintain optimal functioning since alterations and variations could result in acute consequences. X chromosome inactivation (X-inactivation) is one such strategy utilized by mammalian species to silence the extra X chromosome in females to uphold a similar level of expression between the two sexes. A functionally versatile class of molecules called long noncoding RNA (lncRNA) has emerged as key regulators of gene expression and plays important roles during development. An lncRNA that is indispensable for X-inactivation is X-inactive specific transcript (Xist), which induces a repressive epigenetic landscape and creates the inactive X chromosome (Xi). With recent advents in the field of X-inactivation, novel positive and negative lncRNA regulators of Xist such as Jpx and Tsix, respectively, have broadened the regulatory network of X-inactivation. Xist expression failure or dysregulation has been implicated in producing developmental anomalies and disease states. Subsequently, reactivation of the Xi at a later stage of development has also been associated with certain tumors. With the recent influx of information about lncRNA biology and advancements in methods to probe lncRNA, we can now attempt to understand this complex network of Xist regulation in development and disease. It has become clear that the presence of an extra set of genes could be fatal for the organism. Only by understanding the precise ways in which lncRNAs function can treatments be developed to bring aberrations under control. This chapter summarizes our current understanding and knowledge with regard to how lncRNAs are orchestrated at the X-inactivation center (Xic), with a special focus on how genetic diseases come about as a consequence of lncRNA dysregulation.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yuya Ogawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
38
|
Guyochin A, Maenner S, Chu ETJ, Hentati A, Attia M, Avner P, Clerc P. Live cell imaging of the nascent inactive X chromosome during the early differentiation process of naive ES cells towards epiblast stem cells. PLoS One 2014; 9:e116109. [PMID: 25546018 PMCID: PMC4278889 DOI: 10.1371/journal.pone.0116109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome.
Collapse
Affiliation(s)
- Aurélia Guyochin
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- Université de Technologie de Compiègne, Compiègne, France
| | - Sylvain Maenner
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
| | - Erin Tsi-Jia Chu
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
| | - Asma Hentati
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- Université Blaise Pascal, Clermont-Ferrand, France
| | - Mikael Attia
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
| | - Philip Avner
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Monterotondo, Italy
| | - Philippe Clerc
- Génétique Moléculaire Murine, CNRS URA2578, Institut Pasteur, Paris, France
- Epigénétique des Cellules Souches, Department of Developmental Biology, CNRS URA2578, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014; 24:651-63. [PMID: 25441720 DOI: 10.1016/j.tcb.2014.08.009] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs) that play important roles in diverse biological processes. As a class, lncRNAs are generally enriched in the nucleus and, specifically, within the chromatin-associated fraction. Consistent with their localization, many lncRNAs have been implicated in the regulation of gene expression and in shaping 3D nuclear organization. In this review, we discuss the evidence that many nuclear-retained lncRNAs can interact with various chromatin regulatory proteins and recruit them to specific sites on DNA to regulate gene expression. Furthermore, we discuss the role of specific lncRNAs in shaping nuclear organization and their emerging mechanisms. Based on these examples, we propose a model that explains how lncRNAs may shape aspects of nuclear organization to regulate gene expression.
Collapse
|
40
|
Genetic and pharmacological reactivation of the mammalian inactive X chromosome. Proc Natl Acad Sci U S A 2014; 111:12591-8. [PMID: 25136103 DOI: 10.1073/pnas.1413620111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
X-chromosome inactivation (XCI), the random transcriptional silencing of one X chromosome in somatic cells of female mammals, is a mechanism that ensures equal expression of X-linked genes in both sexes. XCI is initiated in cis by the noncoding Xist RNA, which coats the inactive X chromosome (Xi) from which it is produced. However, trans-acting factors that mediate XCI remain largely unknown. Here, we perform a large-scale RNA interference screen to identify trans-acting XCI factors (XCIFs) that comprise regulators of cell signaling and transcription, including the DNA methyltransferase, DNMT1. The expression pattern of the XCIFs explains the selective onset of XCI following differentiation. The XCIFs function, at least in part, by promoting expression and/or localization of Xist to the Xi. Surprisingly, we find that DNMT1, which is generally a transcriptional repressor, is an activator of Xist transcription. Small-molecule inhibitors of two of the XCIFs can reversibly reactivate the Xi, which has implications for treatment of Rett syndrome and other dominant X-linked diseases. A homozygous mouse knockout of one of the XCIFs, stanniocalcin 1 (STC1), has an expected XCI defect but surprisingly is phenotypically normal. Remarkably, X-linked genes are not overexpressed in female Stc1(-/-) mice, revealing the existence of a mechanism(s) that can compensate for a persistent XCI deficiency to regulate X-linked gene expression.
Collapse
|
41
|
Maclary E, Hinten M, Harris C, Kalantry S. Long nonoding RNAs in the X-inactivation center. Chromosome Res 2014; 21:601-614. [PMID: 24297756 DOI: 10.1007/s10577-013-9396-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.
Collapse
Affiliation(s)
- Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
42
|
Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat Commun 2014; 5:4209. [PMID: 24979243 PMCID: PMC4086345 DOI: 10.1038/ncomms5209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/26/2014] [Indexed: 01/01/2023] Open
Abstract
Imprinted X-inactivation is a paradigm of mammalian transgenerational epigenetic regulation resulting in silencing of genes on the paternally inherited X-chromosome. The preprogrammed fate of the X-chromosomes is thought to be controlled in cis by the parent-of-origin-specific expression of two opposing long non-coding RNAs, Tsix and Xist, in mice. Exclusive expression of Tsix from the maternal-X has implicated it as the instrument through which the maternal germline prevents inactivation of the maternal-X in the offspring. Here, we show that Tsix is dispensable for inhibiting Xist and X-inactivation in the early embryo and in cultured stem cells of extra-embryonic lineages. Tsix is instead required to prevent Xist expression as trophectodermal progenitor cells differentiate. Despite induction of wild-type Xist RNA and accumulation of histone H3-K27me3, many Tsix-mutant X-chromosomes fail to undergo ectopic X-inactivation. We propose a novel model of lncRNA function in imprinted X-inactivation that may also apply to other genomically imprinted loci.
Collapse
|
43
|
Abstract
In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, 75248 Paris, France;
| | | |
Collapse
|
44
|
Merzouk S, Deuve JL, Dubois A, Navarro P, Avner P, Morey C. Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 2014; 7:11. [PMID: 25053977 PMCID: PMC4105886 DOI: 10.1186/1756-8935-7-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
Background Silencing of the paternal X chromosome (Xp), a phenomenon known as imprinted X-chromosome inactivation (I-XCI), characterises, amongst mouse extraembryonic lineages, the primitive endoderm and the extraembryonic endoderm (XEN) stem cells derived from it. Results Using a combination of chromatin immunoprecipitation characterisation of histone modifications and single-cell expression studies, we show that whilst the Xp in XEN cells, like the inactive X chromosome in other cell types, globally accumulates the repressive histone mark H3K27me3, a large number of Xp genes locally lack H3K27me3 and escape from I-XCI. In most cases this escape is specific to the XEN cell lineage. Importantly, the degree of escape and the genes concerned remain unchanged upon XEN conversion into visceral endoderm, suggesting stringent control of I-XCI in XEN derivatives. Surprisingly, chemical inhibition of EZH2, a member of the Polycomb repressive complex 2 (PRC2), and subsequent loss of H3K27me3 on the Xp, do not drastically perturb the pattern of silencing of Xp genes in XEN cells. Conclusions The observations that we report here suggest that the maintenance of gene expression profiles of the inactive Xp in XEN cells involves a tissue-specific mechanism that acts partly independently of PRC2 catalytic activity.
Collapse
Affiliation(s)
- Sarra Merzouk
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Pasteur Cell, Pierre and Marie Curie University (UPMC), 25 rue du Dr Roux, 75015 Paris, France
| | - Jane Lynda Deuve
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Pierre and Marie Curie University (UPMC), UMR7622, Institute of Biology of Paris-Seine (IBPS), 75005 Paris, France
| | - Agnès Dubois
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Pablo Navarro
- Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Philip Avner
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Dynamics of Epigenetic Regulation, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Céline Morey
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
45
|
Chaligné R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett 2014; 588:2514-22. [PMID: 24937141 DOI: 10.1016/j.febslet.2014.06.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer.
Collapse
Affiliation(s)
- Ronan Chaligné
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, CNRS UMR3215, INSERM U934, 75248 Paris, France.
| |
Collapse
|
46
|
Abstract
X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes.
Collapse
|
47
|
Dynamics of the two heterochromatin types during imprinted X chromosome inactivation in vole Microtus levis. PLoS One 2014; 9:e88256. [PMID: 24505450 PMCID: PMC3913780 DOI: 10.1371/journal.pone.0088256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022] Open
Abstract
In rodent female mammals, there are two forms of X-inactivation – imprinted and random which take place in extraembryonic and embryonic tissues, respectively. The inactive X-chromosome during random X-inactivation was shown to contain two types of facultative heterochromatin that alternate and do not overlap. However, chromatin structure of the inactive X-chromosome during imprinted X-inactivation, especially at early stages, is still not well understood. In this work, we studied chromatin modifications associated with the inactive X-chromosome at different stages of imprinted X-inactivation in a rodent, Microtus levis. It has been found that imprinted X-inactivation in vole occurs in a species-specific manner in two steps. The inactive X-chromosome at early stages of imprinted X-inactivation is characterized by accumulation of H3K9me3, HP1, H4K20me3, and uH2A, resembling to some extent the pattern of repressive chromatin modifications of meiotic sex chromatin. Later, the inactive X-chromosome recruits trimethylated H3K27 and acquires the two types of heterochromatin associated with random X-inactivation.
Collapse
|
48
|
Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci U S A 2014; 111:2235-40. [PMID: 24469834 DOI: 10.1073/pnas.1312951111] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In female mammals, one of the two X chromosomes is transcriptionally silenced to equalize X-linked gene dosage relative to XY males, a process termed X chromosome inactivation. Mechanistically, this is thought to occur via directed recruitment of chromatin modifying factors by the master regulator, X-inactive specific transcript (Xist) RNA, which localizes in cis along the entire length of the chromosome. A well-studied example is the recruitment of polycomb repressive complex 2 (PRC2), for which there is evidence of a direct interaction involving the PRC2 proteins Enhancer of zeste 2 (Ezh2) and Supressor of zeste 12 (Suz12) and the A-repeat region located at the 5' end of Xist RNA. In this study, we have analyzed Xist-mediated recruitment of PRC2 using two approaches, microarray-based epigenomic mapping and superresolution 3D structured illumination microscopy. Making use of an ES cell line carrying an inducible Xist transgene located on mouse chromosome 17, we show that 24 h after synchronous induction of Xist expression, acquired PRC2 binding sites map predominantly to gene-rich regions, notably within gene bodies. Paradoxically, these new sites of PRC2 deposition do not correlate with Xist-mediated gene silencing. The 3D structured illumination microscopy was performed to assess the relative localization of PRC2 proteins and Xist RNA. Unexpectedly, we observed significant spatial separation and absence of colocalization both in the inducible Xist transgene ES cell line and in normal XX somatic cells. Our observations argue against direct interaction between Xist RNA and PRC2 proteins and, as such, prompt a reappraisal of the mechanism for PRC2 recruitment in X chromosome inactivation.
Collapse
|
49
|
The Potential Role of SRY in Epigenetic Gene Regulation During Brain Sexual Differentiation in Mammals. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:135-65. [DOI: 10.1016/b978-0-12-800222-3.00007-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
McGraw S, Oakes CC, Martel J, Cirio MC, de Zeeuw P, Mak W, Plass C, Bartolomei MS, Chaillet JR, Trasler JM. Loss of DNMT1o disrupts imprinted X chromosome inactivation and accentuates placental defects in females. PLoS Genet 2013; 9:e1003873. [PMID: 24278026 PMCID: PMC3836718 DOI: 10.1371/journal.pgen.1003873] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 08/28/2013] [Indexed: 01/04/2023] Open
Abstract
The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1omat−/− mouse embryos born to Dnmt1Δ1o/Δ1o female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1Δ1o/Δ1o mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation. During oocyte growth and maturation, vital proteins and enzymes are produced to ensure that, when fertilized, a healthy embryo will arise. When this natural process is interrupted, one or more of these essential elements can fail to be produced thus compromising the health of the future embryo. We are using a mouse model, lacking an enzyme (DNMT1o) produced in the oocyte and only required post-fertilization in the early embryo for the maintenance of inherited DNA methylation marks. Here, we reveal that oocytes lacking DNMT1o, when fertilized, generated conceptuses with a wide variety of placental abnormalities. These placental abnormalities were more frequent and severe in females, and showed specific genomic regions constantly deprived of their normal methylation marks. The affected genomic regions were concentrated on the X chromosome. Interestingly, we also found that a region important for the regulation of the X chromosome inactivation process was hypomethylated in female blastocysts and was associated with sex-specific abnormalities in the placenta, relaxation of imprinted X chromosome inactivation, and disruption of DNA methylation later in development. Our findings provide a novel unanticipated role for DNA methylation events taking place within the first few days of life specifically in female preimplantation embryos.
Collapse
Affiliation(s)
- Serge McGraw
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Christopher C. Oakes
- Department of Epigenomics and Cancer Risk Factors, The German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Josée Martel
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - M. Cecilia Cirio
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pauline de Zeeuw
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Winifred Mak
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, The German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Richard Chaillet
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacquetta M. Trasler
- Departments of Pharmacology & Therapeutics, Pediatrics and Human Genetics, Research Institute at The Montreal Children's Hospital of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|