1
|
Liu Y, Liu C, Tang S, Xiao H, Wu X, Peng Y, Wang X, Que L, Di Z, Zhou D, Heinemann M. The "weaken-fill-repair" model for cell budding: Linking cell wall biosynthesis with mechanics. iScience 2024; 27:110981. [PMID: 39391722 PMCID: PMC11466628 DOI: 10.1016/j.isci.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/08/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The interplay between cellular mechanics and biochemical processes in the cell cycle is not well understood. We propose a quantitative model of cell budding in Saccharomyces cerevisiae as a "weaken-fill-repair" process, linking Newtonian mechanics of the cell wall with biochemical changes that affect its properties. Our model reveals that (1) oscillations in mother cell size during budding are an inevitable outcome of the process; (2) asymmetric division is necessary for the daughter cell to maintain mechanical stiffness; and (3) although various aspects of the cell are constrained and interconnected, the budding process is governed by a single reduced parameter, ψ, which balances osmolyte accumulation with enzymatic wall-weakening to ensure homeostasis. This model provides insights into the evolution of cell walls and their role in cell division, offering a system-level perspective on cell morphology.
Collapse
Affiliation(s)
- Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Chunxiuzi Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Shaohua Tang
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Hui Xiao
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Xinlin Wu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Yunru Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Xianyi Wang
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
2
|
Hayashi M, Ohnuki S, Tsai Y, Kondo N, Zhou Y, Zhang H, Ishii NT, Ding T, Herbig M, Isozaki A, Ohya Y, Goda K. Is AI essential? Examining the need for deep learning in image-activated sorting of Saccharomyces cerevisiae. LAB ON A CHIP 2023; 23:4232-4244. [PMID: 37650583 DOI: 10.1039/d3lc00556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Artificial intelligence (AI) has become a focal point across a multitude of societal sectors, with science not being an exception. Particularly in the life sciences, imaging flow cytometry has increasingly integrated AI for automated management and categorization of extensive cell image data. However, the necessity of AI over traditional classification methods when extending imaging flow cytometry to include cell sorting remains uncertain, primarily due to the time constraints between image acquisition and sorting actuation. AI-enabled image-activated cell sorting (IACS) methods remain substantially limited, even as recent advancements in IACS have found success while largely relying on traditional feature gating strategies. Here we assess the necessity of AI for image classification in IACS by contrasting the performance of feature gating, classical machine learning (ML), and deep learning (DL) with convolutional neural networks (CNNs) in the differentiation of Saccharomyces cerevisiae mutant images. We show that classical ML could only yield a 2.8-fold enhancement in target enrichment capability, albeit at the cost of a 13.7-fold increase in processing time. Conversely, a CNN could offer an 11.0-fold improvement in enrichment capability at an 11.5-fold increase in processing time. We further executed IACS on mixed mutant populations and quantified target strain enrichment via downstream DNA sequencing to substantiate the applicability of DL for the proposed study. Our findings validate the feasibility and value of employing DL in IACS for morphology-based genetic screening of S. cerevisiae, encouraging its incorporation in future advancements of similar technologies.
Collapse
Affiliation(s)
- Mika Hayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.
| | - Yating Tsai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.
| | - Naoko Kondo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.
| | - Yuqi Zhou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Hongqian Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Natsumi Tiffany Ishii
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Tianben Ding
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Maik Herbig
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan.
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- CYBO, Tokyo 135-0064, Japan
| |
Collapse
|
3
|
Holland CL, Weis MF, England CJ, Berry AM, Hall PD, Lewis LK. Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae. Exp Cell Res 2023; 430:113701. [PMID: 37393982 PMCID: PMC11770826 DOI: 10.1016/j.yexcr.2023.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Exposure of eukaryotic cells to ionizing radiation or clastogenic chemicals leads to formation of DNA double-strand breaks (DSBs). These lesions are also generated internally by chemicals and enzymes, in the absence of exogenous agents, though the sources and consequences of such endogenously generated DSBs remain poorly understood. In the current study, we have investigated the impact of reduced recombinational repair of endogenous DSBs on stress responses, cell morphology and other physical properties of S. cerevisiae (budding yeast) cells. Use of phase contrast and DAPI-based fluorescence microscopy combined with FACS analysis confirmed that recombination-deficient rad52 cell cultures exhibit chronically high levels of G2 phase cells. Cell cycle phase transit times during G1, S and M were similar in WT and rad52 cells, but the length of G2 phase was increased by three-fold in the mutants. rad52 cells were larger than WT in all phases of the cycle and displayed other quantifiable changes in physical characteristics. The high G2 cell phenotype was abolished when DNA damage checkpoint genes, but not spindle assembly checkpoint genes, were co-inactivated with RAD52. Several other RAD52 group mutants (rad51, rad54, rad55, rad57 and rad59) also exhibited the high G2 cell phenotype. The results indicate that recombination deficiency leads to accumulation of unrepaired DSBs during normal mitotic growth that activate a major stress response and produce distinct changes in cellular physiology and morphology.
Collapse
Affiliation(s)
- Cory L Holland
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Monica F Weis
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Corbin J England
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Armand M Berry
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Paige D Hall
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - L Kevin Lewis
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| |
Collapse
|
4
|
Shimasawa M, Sakamaki JI, Maeda T, Mizushima N. The pH-sensing Rim101 pathway regulates cell size in budding yeast. J Biol Chem 2023; 299:102973. [PMID: 36738789 PMCID: PMC10011510 DOI: 10.1016/j.jbc.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Although cell size regulation is crucial for cellular functions in a variety of organisms from bacteria to humans, the underlying mechanisms remain elusive. Here, we identify Rim21, a component of the pH-sensing Rim101 pathway, as a positive regulator of cell size through a flow cytometry-based genome-wide screen of Saccharomyces cerevisiae deletion mutants. We found that mutants defective in the Rim101 pathway were consistently smaller than wildtype cells in the log and stationary phases. We show that the expression of the active form of Rim101 increased the size of wildtype cells. Furthermore, the size of wildtype cells increased in response to external alkalization. Microscopic observation revealed that this cell size increase was associated with changes in both vacuolar and cytoplasmic volume. We also found that these volume changes were dependent on Rim21 and Rim101. In addition, a mutant lacking Vph1, a component of V-ATPase that is transcriptionally regulated by Rim101, was also smaller than wildtype cells, with no increase in size in response to alkalization. We demonstrate that the loss of Vph1 suppressed the Rim101-induced increase in cell size under physiological pH conditions. Taken together, our results suggest that the cell size of budding yeast is regulated by the Rim101-V-ATPase axis under physiological conditions as well as in response to alkaline stresses.
Collapse
Affiliation(s)
- Masaru Shimasawa
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Liu S, Tan C, Tyers M, Zetterberg A, Kafri R. What programs the size of animal cells? Front Cell Dev Biol 2022; 10:949382. [PMID: 36393871 PMCID: PMC9665425 DOI: 10.3389/fcell.2022.949382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023] Open
Abstract
The human body is programmed with definite quantities, magnitudes, and proportions. At the microscopic level, such definite sizes manifest in individual cells - different cell types are characterized by distinct cell sizes whereas cells of the same type are highly uniform in size. How do cells in a population maintain uniformity in cell size, and how are changes in target size programmed? A convergence of recent and historical studies suggest - just as a thermostat maintains room temperature - the size of proliferating animal cells is similarly maintained by homeostatic mechanisms. In this review, we first summarize old and new literature on the existence of cell size checkpoints, then discuss additional advances in the study of size homeostasis that involve feedback regulation of cellular growth rate. We further discuss recent progress on the molecules that underlie cell size checkpoints and mechanisms that specify target size setpoints. Lastly, we discuss a less-well explored teleological question: why does cell size matter and what is the functional importance of cell size control?
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Ceryl Tan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Anders Zetterberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
6
|
Chaillot J, Mallick J, Sellam A. The transcription factor Ahr1 links cell size control to amino acid metabolism in the opportunistic yeast Candida albicans. Biochem Biophys Res Commun 2022; 616:63-69. [DOI: 10.1016/j.bbrc.2022.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
|
7
|
Zhao X, Oh SH, Coleman DA, Hoyer LL. ALS1 Deletion Increases the Proportion of Small Cells in a Candida albicans Culture Population: Hypothesizing a Novel Role for Als1. Front Cell Infect Microbiol 2022; 12:895068. [PMID: 35646731 PMCID: PMC9130707 DOI: 10.3389/fcimb.2022.895068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans Als1 is a large cell-surface glycoprotein most often discussed for its role in mediating ligand-binding and aggregative interactions. Relative to a wild-type control, deletion of ALS1 produced a strain that showed delayed germ-tube formation and delayed disease progression in a murine model of disseminated candidiasis. Populations of Δals1/Δals1 cultured cells had a higher proportion of smaller cells compared to wild-type or ALS1 reintegrant control cultures. The goal of this work was to investigate whether this difference in cell-size distributions was responsible for delayed germ-tube formation and delayed disease progression. Flow cytometry was used to select populations of wild-type and Δals1/Δals1 cells with varied cell-size distributions. Delayed germ-tube formation was demonstrated for small cells sorted from a wild-type (ALS1/ALS1) culture population. Large cells sorted from a Δals1/Δals1 culture formed germ tubes as quickly as the wild-type control demonstrating clearly that the Δals1/Δals1 germ-tube formation delays were attributable to cell size. In vivo, smaller-sized cells of the wild-type control showed fewer colony-forming units (cfu) per gram of kidney tissue and less-severe histopathology lesions compared to larger cells of the same strain. The Δals1/Δals1 strain showed reduced cfu/g of kidney tissue and less-severe lesions compared to the wild-type control. However, isolation and testing of the larger cells from the Δals1/Δals1 population increased cfu/g of tissue and showed increased lesion severity compared to the overall mutant cell population. In vivo hypha lengths from the large, sorted Δals1/Δals1 cells were comparable to those for the wild-type control strain. These results demonstrated that a large share of the Δals1/Δals1 in-vivo phenotype was attributable to cell size. Collectively, the data suggest a role for Als1 in C. albicans cell size homeostasis, a novel hypothesis for further exploration.
Collapse
|
8
|
Litsios A, Goswami P, Terpstra HM, Coffin C, Vuillemenot LA, Rovetta M, Ghazal G, Guerra P, Buczak K, Schmidt A, Tollis S, Tyers M, Royer CA, Milias-Argeitis A, Heinemann M. The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor. Mol Biol Cell 2022; 33:rp2. [PMID: 35482514 PMCID: PMC9282015 DOI: 10.1091/mbc.e21-07-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Pooja Goswami
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Hanna M Terpstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Carleton Coffin
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Luc-Alban Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Mattia Rovetta
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ghada Ghazal
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Sylvain Tollis
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada.,Institute of Biomedicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Catherine A Royer
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
9
|
Yahya G, Hashem Mohamed N, Pijuan J, Seleem NM, Mosbah R, Hess S, Abdelmoaty AA, Almeer R, Abdel‐Daim MM, Shulaywih Alshaman H, Juraiby I, Metwally K, Storchova Z. Profiling the physiological pitfalls of anti-hepatitis C direct-acting agents in budding yeast. Microb Biotechnol 2021; 14:2199-2213. [PMID: 34378349 PMCID: PMC8449668 DOI: 10.1111/1751-7915.13904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/05/2023] Open
Abstract
Sofosbuvir and Daclatasvir are among the direct-acting antiviral (DAA) medications prescribed for the treatment of chronic hepatitis C (CHC) virus infection as combination therapy with other antiviral medications. DAA-based therapy achieves high cure rates, reaching up to 97% depending on the genotype of the causative hepatitis C virus (HCV). While DAAs have been approved as an efficient and well-tolerated therapy for CHC, emerging concerns about adverse cardiac side effects, higher risk of recurrence and occurrence of hepatocellular carcinoma (HCC) and doubts of genotoxicity have been reported. In our study, we investigated in detail physiological off-targets of DAAs and dissected the effects of these drugs on cellular organelles using budding yeast, a unicellular eukaryotic organism. DAAs were found to disturb the architecture of the endoplasmic reticulum (ER) and the mitochondria, while showing no apparent genotoxicity or DNA damaging effect. Our study provides evidence that DAAs are not associated with genotoxicity and highlights the necessity for adjunctive antioxidant therapy to mitigate the adverse effects of DAAs on ER and mitochondria.
Collapse
Affiliation(s)
- Galal Yahya
- Department of Microbiology and ImmunologyFaculty of PharmacyZagazig UniversityAl Sharqia44519Egypt
- Department of Molecular GeneticsFaculty of BiologyTechnical University of KaiserslauternPaul‐Ehrlich Str. 24Kaiserslautern67663Germany
| | | | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine ‐ IPERInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Noura M. Seleem
- Department of Microbiology and ImmunologyFaculty of PharmacyZagazig UniversityAl Sharqia44519Egypt
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityAl SharqiaEgypt
| | - Steffen Hess
- Department of Cell BiologyFaculty of BiologyTechnical University of KaiserslauternKaiserslauternGermany
| | - Ahmed A. Abdelmoaty
- Department of Tropical MedicineFaculty of MedicineZagazig UniversityZagazig44519Egypt
| | - Rafa Almeer
- Department of ZoologyCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of ZoologyCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
- Pharmacology DepartmentCollege of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | | | - Ibrahim Juraiby
- General Directorate of Health AffairsMinistry of HealthJazan82723Saudi Arabia
| | - Kamel Metwally
- Department of Pharmaceutical ChemistryFaculty of PharmacyTabuk UniversityTabuk47713Saudi Arabia
- Department of Medicinal ChemistryFaculty of PharmacyZagazig UniversityZagazig44519Egypt
| | - Zuzana Storchova
- Department of Molecular GeneticsFaculty of BiologyTechnical University of KaiserslauternPaul‐Ehrlich Str. 24Kaiserslautern67663Germany
| |
Collapse
|
10
|
Mukherjee A, Thakur B, Pandey AK, Marmeisse R, Fraissinet-Tachet L, Reddy MS. Multi-metal tolerance of DHHC palmitoyl transferase-like protein isolated from metal contaminated soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:67-79. [PMID: 33159264 DOI: 10.1007/s10646-020-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The microbiota inhabiting in metal polluted environment develops strong defense mechanisms to combat pollution and sustain life. Investigating the functional genes of the eukaryotic microbiota inhabiting in these environments by using metatranscriptomics approach was the focus of this study. Size fractionated eukaryotic cDNA libraries (library A, < 0.5 kb, library B, 0.5-1.0 kb, and library C, > 1.0 kb) were constructed from RNA isolated from the metal contaminated soil. The library C was screened for Cadmium (Cd) tolerant genes by using Cd sensitive yeast mutant ycf1Δ by functional complementation assay, which yielded various clones capable of growing in Cd amended media. One of the Cd tolerant clones, PLCg39 was selected because of its ability to grow at high concentrations of Cd. Sequence analysis of PLCg39 showed homology with DHHC palmitoyl transferases, which are responsible for addition of palmitoyl groups to proteins and usually possess metal coordination domains. The cDNA PLCg39 was able to confer tolerance to Cd-sensitive (ycf1Δ), Copper-sensitive (cup1Δ) and Zn-sensitive (zrc1Δ) yeast mutants when grown at different concentrations of Cd (40-100 μM), Cu (150-1000 μM) and Zn (10-13 mM), respectively. The DHHC mutant akr1Δ transformed with PLCg39 rescued from the metal sensitivity indicating the role of DHHC palmitoyl transferase in metal tolerance. This study demonstrated that PLCg39 acts as a potential metal tolerant gene which could be used in bioremediation, biosensing and other biotechnological fields.
Collapse
Affiliation(s)
- Arkadeep Mukherjee
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bharti Thakur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute, Sector-81, Knowledge city, Mohali, 140306, Punjab, India
| | - Roland Marmeisse
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1 Université de Lyon, F-69622, Villeurbanne, France
| | - Laurence Fraissinet-Tachet
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1 Université de Lyon, F-69622, Villeurbanne, France
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
11
|
Li P, Hao Z, Zeng F. Tumor suppressor stars in yeast G1/S transition. Curr Genet 2020; 67:207-212. [PMID: 33175222 DOI: 10.1007/s00294-020-01126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Yeast is one of the best-understood biological systems for genetic research. Over the last 40 years, geneticists have striven to search for homologues of tumor suppressors in yeast to simplify cancer research. The star tumor suppressor p21, downstream target of p53, is one of the primary factors on the START point through negatively regulating CycD/E-CDK, the yeast counterpart Cln3-Cdk1. Not like yeast Whi5 that was identified as the analog of the retinoblastoma tumor suppressor protein (Rb) and hence promoted to uncover the mechanism of its cancer suppression, homologue of p21 had not been found in yeast. Our lab identified Cip1 in budding yeast as a novel negative regulator of G1-Cdk1 and proposed that Cip1 is an analog of human p21. Recently, we demonstrated a dual repressive function of Cip1 on START timing via the redundant Cln3 and Ccr4 pathways. This work in yeast may help clarify the complex regulation in human p53-p21 signaling cascade. In this review, we will discuss the yeast paralogs of star tumor suppressors in the control of G1/S transition and present the new findings in this field.
Collapse
Affiliation(s)
- Pan Li
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhimin Hao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
12
|
Chen Y, Futcher B. Scaling gene expression for cell size control and senescence in Saccharomyces cerevisiae. Curr Genet 2020; 67:41-47. [PMID: 33151380 PMCID: PMC7886820 DOI: 10.1007/s00294-020-01098-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022]
Abstract
Cells divide with appropriate frequency by coupling division to growth—that is, cells divide only when they have grown sufficiently large. This process is poorly understood, but has been studied using cell size mutants. In principle, mutations affecting cell size could affect the mean size (“set-point” mutants), or they could affect the variability of sizes (“homeostasis” mutants). In practice, almost all known size mutants affect set-point, with little effect on size homeostasis. One model for size-dependent division depends on a size-dependent gene expression program: Activators of cell division are over-expressed at larger and larger sizes, while inhibitors are under-expressed. At sufficiently large size, activators overcome inhibitors, and the cell divides. Amounts of activators and inhibitors determine the set-point, but the gene expression program (the rate at which expression changes with cell size) determines the breadth of the size distribution (homeostasis). In this model, set-point mutants identify cell cycle activators and inhibitors, while homeostasis mutants identify regulators that couple expression of activators and inhibitors to size. We consider recent results suggesting that increased cell size causes senescence, and suggest that at very large sizes, an excess of DNA binding proteins leads to size induced senescence.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, 94305-5174, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
13
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Blank HM, Papoulas O, Maitra N, Garge R, Kennedy BK, Schilling B, Marcotte EM, Polymenis M. Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Mol Biol Cell 2020; 31:1069-1084. [PMID: 32129706 PMCID: PMC7346729 DOI: 10.1091/mbc.e19-12-0708] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Establishing the pattern of abundance of molecules of interest during cell division has been a long-standing goal of cell cycle studies. Here, for the first time in any system, we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from unarrested, growing, and synchronously dividing yeast cells. Overall, transcript and protein levels were correlated, but specific processes that appeared to change at the RNA level (e.g., ribosome biogenesis) did not do so at the protein level, and vice versa. We also found no significant changes in codon usage or the ribosome content during the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control of lipid metabolism.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Ophelia Papoulas
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Riddhiman Garge
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596.,Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore 117609.,Buck Institute for Research on Aging, Novato, CA 94945
| | | | - Edward M Marcotte
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712.,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
15
|
Jonas F, Soifer I, Barkai N. A Visual Framework for Classifying Determinants of Cell Size. Cell Rep 2019; 25:3519-3529.e2. [PMID: 30566874 PMCID: PMC6315284 DOI: 10.1016/j.celrep.2018.11.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/19/2018] [Accepted: 11/20/2018] [Indexed: 12/04/2022] Open
Abstract
Cells control their size by coordinating cell cycle progression with volume growth. Size control is typically studied at specific cell cycle transitions that are delayed or accelerated depending on size. This focus is well suited for revealing mechanisms acting at these transitions, but neglects the dynamics in other cell cycle phases, and is therefore inherently limited for studying how the characteristic cell size is determined. We address this limitation through a formalism that intuitively visualizes the characteristic size emerging from integrated cell cycle dynamics of individual cells. Applying this formalism to budding yeast, we describe the contributions of the un-budded (G1) and budded (S-G2-M) phase to size adjustments following environmental or genetic perturbations. We show that although the budded phase can be perturbed with little consequences for G1 dynamics, perturbations in G1 propagate to the budded phase. Our study provides an integrated view on cell size determinants in budding yeast. An intuitive visualization framework for cell size control is described Cell size control in different environments or mutant backgrounds can be compared Mutual dependencies between size control at different cell cycle phases are described
Collapse
Affiliation(s)
- Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilya Soifer
- Calico Labs, South San Francisco, CA 94080, USA
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
17
|
Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution of Cell Size Values in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:239-250. [PMID: 30463882 PMCID: PMC6325893 DOI: 10.1534/g3.118.200854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.
Collapse
|
18
|
G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast. Cell Syst 2018; 6:539-554.e11. [DOI: 10.1016/j.cels.2018.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/17/2018] [Accepted: 04/25/2018] [Indexed: 11/20/2022]
|
19
|
Rao MJ, Srinivasan M, Rajasekharan R. Cell size is regulated by phospholipids and not by storage lipids in Saccharomyces cerevisiae. Curr Genet 2018. [PMID: 29536156 DOI: 10.1007/s00294-018-0821-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell size and morphology are key adaptive features that influence almost all aspects of cellular physiology such as cell cycle and lipid metabolism. Here we report the role of a transcription factor Suppressor Phenotype of Ty elements insertion 10 (SPT10) of Saccharomyces cerevisiae in regulating cell cycle, cell size and lipid metabolism in concert, in addition to its defined role of histone gene expression. Morphological and biochemical analyses of spt10Δ strain show an abnormal cell size, cell cycle and lipid levels. The expression of Spt10p in spt10Δ strain helps the cell revert to typical wild-type phenotypes. SPT10 controls lipid metabolism by negatively regulating the expression of lipid biosynthetic genes, and positively regulating the expression of the lipid hydrolyzing genes. Spt10p helps in maintaining the cell size by regulating the amount of carbon flux into the phospholipid constituents of the cell membranes. On the contrary, storage lipids have no role in regulating the cell size. An exogenous supply of phosphatidic acid increases the cell size, proving the positive impact of the phospholipids on cell size modulation. SPT10 affects cell cycle, cell size and lipid metabolism by an orchestrated transcriptional regulation of the corresponding genes.
Collapse
Affiliation(s)
- Monala Jayaprakash Rao
- Department of Lipid Science, Lipidomics Center, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Malathi Srinivasan
- Department of Lipid Science, Lipidomics Center, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Ram Rajasekharan
- Department of Lipid Science, Lipidomics Center, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India. .,Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
20
|
Felcmanova K, Neveceralova P, Sychrova H, Zimmermannova O. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation. FEMS Yeast Res 2017; 17:3966712. [DOI: 10.1093/femsyr/fox053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
|
21
|
Aldea M, Jenkins K, Csikász-Nagy A. Growth Rate as a Direct Regulator of the Start Network to Set Cell Size. Front Cell Dev Biol 2017; 5:57. [PMID: 28603712 PMCID: PMC5445111 DOI: 10.3389/fcell.2017.00057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Cells are able to adjust their growth and size to external inputs to comply with specific fates and developmental programs. Molecular pathways controlling growth also have an enormous impact in cell size, and bacteria, yeast, or epithelial cells modify their size as a function of growth rate. This universal feature suggests that growth (mass) and proliferation (cell number) rates are subject to general coordinating mechanisms. However, the underlying molecular connections are still a matter of debate. Here we review the current ideas on growth and cell size control, and focus on the possible mechanisms that could link the biosynthetic machinery to the Start network in budding yeast. In particular, we discuss the role of molecular chaperones in a competition framework to explain cell size control by growth at the individual cell level.
Collapse
Affiliation(s)
- Martí Aldea
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelona, Spain.,Departament de Ciències Bàsiques, Universitat Internacional de CatalunyaBarcelona, Spain
| | - Kirsten Jenkins
- Randall Division of Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College LondonLondon, United Kingdom
| | - Attila Csikász-Nagy
- Randall Division of Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College LondonLondon, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
22
|
Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans. G3-GENES GENOMES GENETICS 2017; 7:355-360. [PMID: 28040776 PMCID: PMC5295585 DOI: 10.1534/g3.116.037986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.
Collapse
|
23
|
Yamamoto K, Mak TW. Mechanistic aspects of mammalian cell size control. Dev Growth Differ 2016; 59:33-40. [DOI: 10.1111/dgd.12334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Kazuo Yamamoto
- Biomedical Research Support Center; Nagasaki University School of Medicine; Nagasaki 852-8523 Japan
- The Campbell Family Cancer Research Institute; Toronto Ontario M5G 2C1 Canada
| | - Tak W. Mak
- The Campbell Family Cancer Research Institute; Toronto Ontario M5G 2C1 Canada
| |
Collapse
|
24
|
Jo MC, Qin L. Microfluidic Platforms for Yeast-Based Aging Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5787-5801. [PMID: 27717149 PMCID: PMC5554731 DOI: 10.1002/smll.201602006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been a powerful model for the study of aging and has enabled significant contributions to our understanding of basic mechanisms of aging in eukaryotic cells. However, the laborious low-throughput nature of conventional methods of performing aging assays limits the pace of discoveries in this field. Some of the technical challenges of conventional aging assay methods can be overcome by use of microfluidic systems coupled to time-lapse microscopy. One of the major advantages is the ability of a microfluidic system to perform long-term cell culture under well-defined environmental conditions while tracking individual yeast. Here, recent advancements in microfluidic platforms for various yeast-based studies including replicative lifespan assay, long-term culture and imaging, gene expression, and cell signaling are discussed. In addition, emerging problems and limitations of current microfluidic approaches are examined and perspectives on the future development of this dynamic field are presented.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
25
|
Nislow C, Wong LH, Lee AHY, Giaever G. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top080945. [PMID: 27587784 DOI: 10.1101/pdb.top080945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations.
Collapse
Affiliation(s)
- Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
26
|
Torres NP, Ho B, Brown GW. High-throughput fluorescence microscopic analysis of protein abundance and localization in budding yeast. Crit Rev Biochem Mol Biol 2016; 51:110-9. [PMID: 26893079 DOI: 10.3109/10409238.2016.1145185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins directly carry out and regulate cellular functions. As a result, changes in protein levels within a cell directly influence cellular processes. Similarly, it is intuitive that the intracellular localization of proteins is a key component of their functionality. Optimal activity is achieved by a combination of protein concentration, co-compartmentalization with substrates, co-factors and regulators and sequestration from deleterious locales. The proteome within a cell is highly dynamic and changes in response to different environmental conditions. High-throughput microscopic analysis in the budding yeast Saccharomyces cerevisiae has afforded proteome-wide views of protein organization in living cells, and of how protein abundance and location is regulated and remodeled in response to stress.
Collapse
Affiliation(s)
- Nikko P Torres
- a Department of Biochemistry and Donnelly Centre , University of Toronto , Toronto , Ontario , Canada
| | - Brandon Ho
- a Department of Biochemistry and Donnelly Centre , University of Toronto , Toronto , Ontario , Canada
| | - Grant W Brown
- a Department of Biochemistry and Donnelly Centre , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
27
|
Quan Z, Cao L, Tang Y, Yan Y, Oliver SG, Zhang N. The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan. PLoS Genet 2015; 11:e1005282. [PMID: 26103122 PMCID: PMC4477894 DOI: 10.1371/journal.pgen.1005282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.
Collapse
Affiliation(s)
- Zhenzhen Quan
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lu Cao
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yingzhi Tang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yanchun Yan
- Graduate school of Chinese Academy of Agricultural Sciences, Zhongguancun, Beijing, PR China
| | - Stephen G. Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Polymenis M, Aramayo R. Translate to divide: сontrol of the cell cycle by protein synthesis. MICROBIAL CELL 2015; 2:94-104. [PMID: 28357283 PMCID: PMC5348972 DOI: 10.15698/mic2015.04.198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein synthesis underpins much of cell growth and, consequently, cell multiplication. Understanding how proliferating cells commit and progress into the cell cycle requires knowing not only which proteins need to be synthesized, but also what determines their rate of synthesis during cell division.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Abstract
Cell size is determined by a complex interplay between growth and division, involving multiple
cellular pathways. To identify systematically processes affecting size control in G1 in budding
yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591
mutants implicated in size control. Quantitative metric distinguished mutants affecting the
mechanism of size control from the majority of mutants that have a perturbed size due to indirect
effects modulating cell growth. Overall, we identified 17 negative and dozens positive size control
regulators, with the negative regulators forming a small network centered on elements of mitotic
exit network. Some elements of the translation machinery affected size control with a notable
distinction between the deletions of parts of small and large ribosomal subunit: parts of small
ribosomal subunit tended to regulate size control, while parts of the large subunit affected cell
growth. Analysis of small cells revealed additional size control mechanism that functions in G2/M,
complementing the primary size control in G1. Our study provides new insights about size control
mechanisms in budding yeast.
Collapse
Affiliation(s)
- Ilya Soifer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Soma S, Yang K, Morales MI, Polymenis M. Multiple metabolic requirements for size homeostasis and initiation of division in Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:256-266. [PMID: 28357252 PMCID: PMC5349232 DOI: 10.15698/mic2014.08.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most cells must grow before they can divide, but it is not known how cells
determine when they have grown enough so they can commit to a new round of cell
division. Several parameters affect the timing of initiation of division: cell
size at birth, the size cells have to reach when they commit to division, and
how fast they reach that size. We report that Saccharomyces
cerevisiae mutants in metabolic and biosynthetic pathways differ in
these variables, controlling the timing of initiation of cell division in
various ways. Some mutants affect the size at birth, size at initiation of
division, the rate of increase in size, or any combination of the above.
Furthermore, we show that adenylate kinase, encoded by ADK1, is
a significant determinant of the efficiency of size control mechanisms. Finally,
our data argue strongly that the cell size at division is not necessarily a
function of the rate cells increase in size in the G1 phase of the cell cycle.
Taken together, these findings reveal an unexpected diversity in the G1 cell
cycle phenotypes of metabolic and biosynthetic mutants, suggesting that growth
requirements for cell division are multiple, distinct and imposed throughout the
G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Maria I Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
31
|
Abstract
The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.
Collapse
|
32
|
Kang X, Jiang L, Chen X, Yuan H, Luo C, Ouyang Q. Pump-free multi-well-based microfluidic system for high-throughput analysis of size-control relative genes in budding yeast. Integr Biol (Camb) 2014; 6:685-93. [PMID: 24872017 DOI: 10.1039/c4ib00054d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-lapse single cell imaging by microscopy can provide precise cell information such as the cell size, the cell cycle duration, protein localization and protein expression level. Usually, a microfluidic system is needed for these measurements in order to provide a constant culture environment and confine the cells so that they grow in a monolayer. However, complex connections are required between the channels inside the chip and the outside media, and a complex procedure is needed for loading of cells, thereby making this type of system unsuitable for application in high-throughput single cell scanning experiments. Here we provide a novel and easily operated pump-free multi-well-based microfluidic system which enables the high-throughput loading of many different budding yeast strains into monolayer growth conditions just by use of a multi-channel pipette. Wild type budding yeast (Saccharomyces cerevisiae) and 62 different budding yeast size control relative gene deletion strains were chosen for scanning. We obtained normalized statistical results for the mother cell doubling time, daughter cell doubling time, mother cell size and daughter cell size of different gene deletion strains relative to the corresponding parameters of the wild type cells. Meanwhile, we compared the typical cell morphology of different strains and analyzed the relationship between the cell genotype and phenotype. This method which can be easily used in a normal biology lab may help researchers who need to carry out the high-throughput scanning of cell morphology and growth.
Collapse
Affiliation(s)
- Xianjie Kang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.
| | | | | | | | | | | |
Collapse
|
33
|
Miettinen TP, Pessa HKJ, Caldez MJ, Fuhrer T, Diril MK, Sauer U, Kaldis P, Björklund M. Identification of transcriptional and metabolic programs related to mammalian cell size. Curr Biol 2014; 24:598-608. [PMID: 24613310 PMCID: PMC3991852 DOI: 10.1016/j.cub.2014.01.071] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022]
Abstract
Background Regulation of cell size requires coordination of growth and proliferation. Conditional loss of cyclin-dependent kinase 1 in mice permits hepatocyte growth without cell division, allowing us to study cell size in vivo using transcriptomics and metabolomics. Results Larger cells displayed increased expression of cytoskeletal genes but unexpectedly repressed expression of many genes involved in mitochondrial functions. This effect appears to be cell autonomous because cultured Drosophila cells induced to increase cell size displayed a similar gene-expression pattern. Larger hepatocytes also displayed a reduction in the expression of lipogenic transcription factors, especially sterol-regulatory element binding proteins. Inhibition of mitochondrial functions and lipid biosynthesis, which is dependent on mitochondrial metabolism, increased the cell size with reciprocal effects on cell proliferation in several cell lines. Conclusions We uncover that large cell-size increase is accompanied by downregulation of mitochondrial gene expression, similar to that observed in diabetic individuals. Mitochondrial metabolism and lipid synthesis are used to couple cell size and cell proliferation. This regulatory mechanism may provide a possible mechanism for sensing metazoan cell size. Gene expression and metabolites levels relative to cell size are analyzed in liver Mitochondrial gene expression is repressed cell-autonomously in larger cells Cell size can be modulated by targeting mitochondria functions and lipid synthesis Lipids are negative regulators of cell size because they promote cell proliferation
Collapse
Affiliation(s)
- Teemu P Miettinen
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Heli K J Pessa
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matias J Caldez
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos #03-09, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 16, 8093 Zürich, Switzerland
| | - M Kasim Diril
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos #03-09, Singapore 138673, Singapore
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 16, 8093 Zürich, Switzerland
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos #03-09, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Mikael Björklund
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
34
|
|
35
|
Yamamoto K, Gandin V, Sasaki M, McCracken S, Li W, Silvester J, Elia A, Wang F, Wakutani Y, Alexandrova R, Oo Y, Mullen PJ, Inoue S, Itsumi M, Lapin V, Haight J, Wakeham A, Shahinian A, Ikura M, Topisirovic I, Sonenberg N, Mak T. Largen: A Molecular Regulator of Mammalian Cell Size Control. Mol Cell 2014; 53:904-15. [DOI: 10.1016/j.molcel.2014.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 11/26/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
|
36
|
A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast. Mol Syst Biol 2013; 9:707. [PMID: 24217298 PMCID: PMC4039374 DOI: 10.1038/msb.2013.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pharmaco-epistasis analyses using drugs mimicking cell size mutations in yeast uncovered a novel pathway in cell size homeostasis regulation. This pathway involves the sirtuin Sir2, the large ribosomal subunit (60S) and the Swi4/Swi6 transcription factors. ![]()
Drug–gene epistatic interactions with nicotinamide and diazaborine were analyzed using 189 previously identified small and 155 large mutants, showing that cell size homeostasis is the result of signals emanating from several independent pathways. Ribosome biogenesis affects cell size homeostasis in different ways. Modulation of cell size by Sir2 correlates with NAD+ intracellular variation. No simple causal relationship was found between cell size and replicative aging even though both Sir2 and the 60S ribosomal subunit are contributing to these two complex traits.
Cell size is a complex quantitative trait resulting from interactions between intricate genetic networks and environmental conditions. Here, taking advantage of previous studies that uncovered hundreds of genes affecting budding yeast cell size homeostasis, we performed a wide pharmaco-epistasis analysis using drugs mimicking cell size mutations. Simple epistasis relationship emerging from this approach allowed us to characterize a new cell size homeostasis pathway comprising the sirtuin Sir2, downstream effectors including the large ribosomal subunit (60S) and the transcriptional regulators Swi4 and Swi6. We showed that this Sir2/60S signaling route acts independently of other previously described cell size controlling pathways and may integrate the metabolic status of the cell through NAD+ intracellular concentration. Finally, although Sir2 and the 60S subunits regulate both cell size and replicative aging, we found that there is no clear causal relationship between these two complex traits. This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships.
Collapse
|
37
|
Wright J, Schneider BL. Cell size control is sirtuin(ly) exciting. Mol Syst Biol 2013; 9:706. [PMID: 24217297 PMCID: PMC4039377 DOI: 10.1038/msb.2013.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jill Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brandt L Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
38
|
Genetic determinants of cell size at birth and their impact on cell cycle progression in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:1525-30. [PMID: 23821617 PMCID: PMC3755912 DOI: 10.1534/g3.113.007062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In most cases, cells must increase their size before they can divide. Hence, a small size has been used often as a phenotype for mutants that accelerate initiation of division, such as the celebrated WHI mutants of budding yeast. Recently, we measured the DNA content of all nonessential gene deletion strains in Saccharomyces cerevisiae. Surprisingly, there was little, if any, correlation between mean cell size and cell-cycle progression. Here, we examine this issue further, providing the first systematic analysis of genetic determinants of the cell size at birth. We found that although a large birth size strongly correlates with a large mean size, the converse relationship (i.e., small birth size vs. small mean size) is not as strong. Our data also suggest that mutants that are born large do not have a significant advantage for faster cell-cycle progression. In contrast, mutants that are born small are more likely to progress slower in the cell cycle. The majority of gene deletions that displayed such phenotypes affect protein synthesis or ribosome biogenesis. Overall, our data suggest that birth size may be a more informative parameter for cell-cycle progression than the mean size of a proliferating cell population. In contrast to WHI phenotype expectations, a small size is more likely to be associated with delayed cell-cycle progression.
Collapse
|
39
|
Dungrawala H, Hua H, Wright J, Abraham L, Kasemsri T, McDowell A, Stilwell J, Schneider BL. Identification of new cell size control genes in S. cerevisiae. Cell Div 2012; 7:24. [PMID: 23234503 PMCID: PMC3541103 DOI: 10.1186/1747-1028-7-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.
Collapse
Affiliation(s)
- Huzefa Dungrawala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St Rm, 5C119, Lubbock, TX, 79430, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Coordinating genome expression with cell size. Trends Genet 2012; 28:560-5. [PMID: 22863032 DOI: 10.1016/j.tig.2012.07.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/20/2012] [Accepted: 07/02/2012] [Indexed: 01/21/2023]
Abstract
Cell size is highly variable; cells from various tissues differ in volume over orders of magnitudes, from tiny lymphocytes to giant neurons, and cells of a given type change size during the cell cycle. Larger cells need to produce and maintain higher amounts of RNA and protein to sustain biomass and function, although the genome content often remains constant. Available data indicate that the transcriptional and translational outputs scale with cell size at a genome-wide level, but how such remarkably coordinated regulation is achieved remains largely mysterious. With global and systems-level approaches becoming more widespread and quantitative, it is worth revisiting this fascinating problem. Here, we outline current knowledge of the fundamental relations between genome regulation and cell size, and highlight the biological implications and potential mechanisms of the global tuning of gene expression to cellular volume.
Collapse
|
41
|
McLaughlan JM, Liti G, Sharp S, Maslowska A, Louis EJ. Apparent ploidy effects on silencing are post-transcriptional at HML and telomeres in Saccharomyces cerevisiae. PLoS One 2012; 7:e39044. [PMID: 22792162 PMCID: PMC3392252 DOI: 10.1371/journal.pone.0039044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2012] [Indexed: 02/07/2023] Open
Abstract
The repression of genes in regions of heterochromatin is known as transcriptional silencing. It occurs in a wide range of organisms and can have importance in adaptation to the environment, developmental changes and disease. The model organism Saccharomyces cerevisiae has been used for many years to study transcriptional silencing, but until recently no study has been made in relation to ploidy. The aim of this work was to compare transcriptional silencing in haploids and diploids at both telomeres and the hidden mating-type (HM) loci. Transcriptional silencing was assayed, by growth on 5-fluoroorotic acid (5-FOA) media or by flow cytometry, on strains where a telomere or HM locus was marked. RNA levels were measured by quantitative RT-PCR to confirm that effects were transcriptional. 5-FOA assays and flow cytometry were consistent with transcriptional silencing at telomeres and at HML being reduced as ploidy increases which agreed with conclusions in previous publications. However, QRT-PCR revealed that transcriptional silencing was unaffected by ploidy and thus protein levels were increasing independently of RNA levels. At telomere XI left (XI-L), changes in protein level were strongly influenced by mating-type, whereas at HML mating-type had much less influence. The post-transcriptional effects seen in this study, illustrate the often ignored need to measure RNA levels when assaying transcriptional silencing in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jenny M. McLaughlan
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Gianni Liti
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sarah Sharp
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Agnieszka Maslowska
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Edward J. Louis
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
42
|
Fang W, Price MS, Toffaletti DL, Tenor J, Betancourt-Quiroz M, Price JL, Pan WH, Liao WQ, Perfect JR. Pleiotropic effects of deubiquitinating enzyme Ubp5 on growth and pathogenesis of Cryptococcus neoformans. PLoS One 2012; 7:e38326. [PMID: 22719877 PMCID: PMC3375289 DOI: 10.1371/journal.pone.0038326] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host.
Collapse
Affiliation(s)
- Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Price
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dena L. Toffaletti
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer Tenor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marisol Betancourt-Quiroz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer L. Price
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-hua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JRP); (W-QL)
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JRP); (W-QL)
| |
Collapse
|
43
|
Navarro FJ, Nurse P. A systematic screen reveals new elements acting at the G2/M cell cycle control. Genome Biol 2012; 13:R36. [PMID: 22624651 PMCID: PMC3446289 DOI: 10.1186/gb-2012-13-5-r36] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/03/2012] [Accepted: 05/24/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The major cell cycle control acting at the G2 to mitosis transition is triggered in all eukaryotes by cyclin-dependent kinases (CDKs). In the fission yeast Schizosaccharomyces pombe the activation of the G2/M CDK is regulated primarily by dephosphorylation of the conserved residue Tyr15 in response to the stress-nutritional response and cell geometry sensing pathways. To obtain a more complete view of the G2/M control we have screened systematically for gene deletions that advance cells prematurely into mitosis. RESULTS A screen of 82% of fission yeast non-essential genes, comprising approximately 3,000 gene deletion mutants, identified 18 genes that act negatively at mitotic entry, 7 of which have not been previously described as cell cycle regulators. Eleven of the 18 genes function through the stress response and cell geometry sensing pathways, both of which act through CDK Tyr15 phosphorylation, and 4 of the remaining genes regulate the G2/M transition by inputs from hitherto unknown pathways. Three genes act independently of CDK Tyr15 phosphorylation and define additional uncharacterized molecular control mechanisms. CONCLUSIONS Despite extensive investigation of the G2/M control, our work has revealed new components of characterized pathways that regulate CDK Tyr15 phosphorylation and new components of novel mechanisms controlling mitotic entry.
Collapse
Affiliation(s)
- Francisco J Navarro
- Cell Cycle Lab. Cancer Research UK-London Research Institute, Lincoln's Inn Fields 44, London WC2A 3LY, UK
| | - Paul Nurse
- Cell Cycle Lab. Cancer Research UK-London Research Institute, Lincoln's Inn Fields 44, London WC2A 3LY, UK
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, York Avenue 1230, New York 10065, USA
- Francis Crick Institute, Euston Road 215, London, NW1 2BE, UK
| |
Collapse
|
44
|
Abstract
Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell-cycle regulatory network, the molecular mechanisms coupling cell growth to division, and thereby controlling cell size, have remained elusive. Recent work in yeast has reinvigorated the size control field and suggested provocative mechanisms for the distinct functions of setting and sensing cell size. Further examination of size-sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control.
Collapse
|
45
|
Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2012; 102:163-75. [PMID: 22460278 DOI: 10.1007/s10482-012-9724-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Research during the last years has accumulated a large body of data that suggest that a permanent high flux through the glycolytic pathway may be a source of intracellular toxicity via continuous generation of endogenous reactive dicarbonyl compound methylglyoxal (MG). MG detoxification by the action of the glyoxalase system produces D-lactate. Thus, this article extends our previous work and presents new insights concerning D-lactate fate in aerobically grown yeast cells. Biochemical studies using intact functional mitochondrial preparations derived from Saccharomyces cerevisiae show that D-lactate produced in the extramitochondrial phase can be taken up by mitochondria, metabolised inside the organelles with efflux of newly synthesized malate. Experiments were carried out photometrically and the rate of malate efflux was measured by use of NADP(+) and malic enzyme and it depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (K(m) = 20 μM; V(max) = 6 nmol min(-1) mg(-1) of mitochondrial protein) and was inhibited by α-cyanocinnamate, a non-penetrant compound. Our data reveal that reducing equivalents export from mitochondria is due to the occurrence of a putative D-lactate/malate antiporter which differs from both D-lactate/pyruvate antiporter and D-lactate/H(+) symporter as shown by the different V(max) values, pH profile and inhibitor sensitivity. Based on these results we propose that D-lactate translocators and D-lactate dehydrogenases work together for decreasing the production of MG from the cytosol, thus mitochondria could play a pro-survival role in the metabolic stress response as well as for D-lactate-dependent gluconeogenesis.
Collapse
|
46
|
Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, Robles JP, Taylor D, Hoover EM, Hailu B, McEnery KA, Downing SS, Kaushal D, Chen Y, Rife A, Brahmbhatt KA, Smith R, Polymenis M. A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division. PLoS Genet 2012; 8:e1002590. [PMID: 22438835 PMCID: PMC3305459 DOI: 10.1371/journal.pgen.1002590] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/25/2012] [Indexed: 01/20/2023] Open
Abstract
Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms. What determines when cells begin a new round of cell division also dictates how fast cells multiply. Knowing which cellular pathways and how these pathways affect the machinery of cell division will allow modulations of cell proliferation. Baker's yeast is suited for genetic and biochemical studies of eukaryotic cell division. Previous studies relied mainly on cell size changes to identify systematically factors that control initiation of cell division. Here, we measured the DNA content of each non-essential single gene deletion strain to identify genes required for the correct timing of cell cycle transitions. Our comprehensive strategy revealed new pathways that control cell division. We expect that this study will be a valuable resource for numerous future analyses of mechanisms that control cell division in yeast and other organisms, including humans.
Collapse
Affiliation(s)
- Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy A. Rawlings
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michelle M. Kelly
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - M. Camille Leitch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Qotaiba O. Ababneh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Juan P. Robles
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - David Taylor
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Evelyn M. Hoover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bethel Hailu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kayla A. McEnery
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - S. Sabina Downing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Deepika Kaushal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Yi Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Alex Rife
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kirtan A. Brahmbhatt
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ohtani M, Saka A, Sano F, Ohya Y, Morishita S. DEVELOPMENT OF IMAGE PROCESSING PROGRAM FOR YEAST CELL MORPHOLOGY. J Bioinform Comput Biol 2011; 1:695-709. [PMID: 15290760 DOI: 10.1142/s0219720004000363] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 08/01/2003] [Accepted: 08/04/2003] [Indexed: 11/18/2022]
Abstract
Every living organism has its own species-specific morphology. Despite the relatively simple ellipsoidal shape of budding yeast cells, the global regulation of yeast morphology remains unclear. In the past, each mutated gene from many mutants with abnormal morphology had to be classified manually. To investigate the morphological characteristics of yeast in detail, we developed a novel image-processing program that extracts quantitative data from microscope images automatically. This program extracts data on cells that are often used by yeast morphology researchers, such as cell size, roundness, bud neck position angle, and bud growth direction, and fits an ellipse to the cell outline. We evaluated the ability of the program to extract quantitative parameters. The results suggest that our image-processing program can play a central objective role in yeast morphology studies.
Collapse
Affiliation(s)
- Miwaka Ohtani
- Department of Computer Science, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
48
|
Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider BL. Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle 2011; 10:144-55. [PMID: 21248481 DOI: 10.4161/cc.10.1.14455] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast cells, like mammalian cells, enlarge steadily as they age. Unabated cell growth can promote cellular senescence; however, the significance of the relationship between size and cellular lifespan is not well understood. Herein, we report a genetic link between cell size, growth rate and lifespan. Mutations that increase cell size concomitantly increase growth rate and decrease lifespan. As a result, large cells grow, divide and age dramatically faster than small cells. Conversely, small cell mutants age slowly and are long-lived. Investigation of the mechanisms involved suggests that attainment of a maximal size modulates lifespan. Indeed, cumulative results revealed that life expectancy is size-dependent, and that the rate at which cells age is determined in large part by the amount of cell growth per generation.
Collapse
Affiliation(s)
- Jingye Yang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee SH, Kim PJ, Jeong H. Global organization of protein complexome in the yeast Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2011; 5:126. [PMID: 21843333 PMCID: PMC3169507 DOI: 10.1186/1752-0509-5-126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/15/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Proteins in organisms, rather than act alone, usually form protein complexes to perform cellular functions. We analyze the topological network structure of protein complexes and their component proteins in the budding yeast in terms of the bipartite network and its projections, where the complexes and proteins are its two distinct components. Compared to conventional protein-protein interaction networks, the networks from the protein complexes show more homogeneous structures than those of the binary protein interactions, implying the formation of complexes that cause a relatively more uniform number of interaction partners. In addition, we suggest a new optimization method to determine the abundance and function of protein complexes, based on the information of their global organization. Estimating abundance and biological functions is of great importance for many researches, by providing a quantitative description of cell behaviors, instead of just a "catalogues" of the lists of protein interactions. RESULTS With our new optimization method, we present genome-wide assignments of abundance and biological functions for complexes, as well as previously unknown abundance and functions of proteins, which can provide significant information for further investigations in proteomics. It is strongly supported by a number of biologically relevant examples, such as the relationship between the cytoskeleton proteins and signal transduction and the metabolic enzyme Eno2's involvement in the cell division process. CONCLUSIONS We believe that our methods and findings are applicable not only to the specific area of proteomics, but also to much broader areas of systems biology with the concept of optimization principle.
Collapse
Affiliation(s)
- Sang Hoon Lee
- IceLab, Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
50
|
McMahon KW, Manukyan A, Dungrawala H, Montgomery M, Nordstrom B, Wright J, Abraham L, Schneider BL. FASTA barcodes: a simple method for the identification of yeast ORF deletions. Yeast 2011; 28:661-71. [PMID: 21809386 DOI: 10.1002/yea.1894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/14/2011] [Indexed: 01/18/2023] Open
Abstract
A consortium of yeast geneticists have created -6000 individual ORF deletions, representing > 96% of the currently verified or predicted ORFs in S. cerevisiae. Importantly, molecular barcodes (each a unique 20 bp sequence termed either Uptag or Downtag) were used as identifiers for every ORF deletion. Microarray analyses of pooled yeast deletions has been used to identify thousands of genes involved in general fitness, haploinsufficiency, drug resistance and DNA damage repair. However, application of this powerful technology requires considerable expense, expertise and specialized equipment. While standard PCR techniques and specifically designed PCR primers can be used to confirm that a given ORF is in fact deleted, this procedure cannot be used to identify unknown deletions. In theory, every ORF deletion could be determined by barcode sequencing. However, neither a consolidated barcode database nor a reliable search engine is currently available for this purpose. To address this need, we have adapted a FASTA sequence program that utilizes the unique barcode database to allow users to identify individual ORF deletions, based upon simple sequencing reactions of PCR amplifications of either Uptag or Downtag barcodes. In silico and practical testing of this application reveals that it is an inexpensive, reliable and reproducible method for rapidly identifying unknown deletions. This approach allows laboratories to conduct small- or large-scale genetic screens with pooled yeast deletion strains and identify or verify any ORF deletion without the need for microarray technology.
Collapse
Affiliation(s)
- K Wyatt McMahon
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|