1
|
Ekenstedt KJ, Oberbauer AM. Inherited epilepsy in dogs. Top Companion Anim Med 2014; 28:51-8. [PMID: 24070682 DOI: 10.1053/j.tcam.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Abstract
Epilepsy is the most common neurologic disease in dogs and many forms are considered to have a genetic basis. In contrast, some seizure disorders are also heritable, but are not technically defined as epilepsy. Investigation of true canine epilepsies has uncovered genetic associations in some cases, however, many remain unexplained. Gene mutations have been described for 2 forms of canine epilepsy: primary epilepsy (PE) and progressive myoclonic epilepsies. To date, 9 genes have been described to underlie progressive myoclonic epilepsies in several dog breeds. Investigations into genetic PE have been less successful, with only 1 causative gene described. Genetic testing as an aid to diagnosis, prognosis, and breeding decisions is available for these 10 forms. Additional studies utilizing genome-wide tools have identified PE loci of interest; however, specific genetic tests are not yet developed. Many studies of dog breeds with PE have failed to identify genes or loci of interest, suggesting that, similar to what is seen in many human genetic epilepsies, inheritance is likely complex, involving several or many genes, and reflective of environmental interactions. An individual dog's response to therapeutic intervention for epilepsy may also be genetically complex. Although the field of inherited epilepsy has faced challenges, particularly with PE, newer technologies contribute to further advances.
Collapse
Affiliation(s)
- Kari J Ekenstedt
- Department of Animal and Food Science, College of Agriculture, Food, and Environmental Sciences, University of Wisconsin - River Falls, River Falls, WI, USA.
| | | |
Collapse
|
2
|
|
3
|
Patterson EE, Mickelson JR, Da Y, Roberts MC, McVey AS, O'Brien DP, Johnson GS, Armstrong PJ. Clinical characteristics and inheritance of idiopathic epilepsy in Vizslas. J Vet Intern Med 2003; 17:319-25. [PMID: 12774973 DOI: 10.1111/j.1939-1676.2003.tb02455.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Medical record, seizure survey, and telephone interview information was obtained for 29 Vizslas with idiopathic epilepsy (IE), 74 unaffected siblings, and 41 parents to determine the common clinical characteristics and most likely mode of inheritance. IE was diagnosed on the basis of the age of seizure onset, laboratory results, and neurologic examination findings. Computerized tomography (CT) or magnetic resonance imaging (MRI) scan with cerebrospinal fluid (CSF) analysis was required for the inclusion of dogs with an age of seizure onset of < 6 months or > 5 years. Simple segregation analysis was performed with an ascertainment correction and chi-square analysis. IE appeared to be familial in these pedigrees, with 79% of affected Vizslas exhibiting partial onset seizures. Partial seizure signs included a combination of limb tremors, staring, pupillary dilatation, or salivation without loss of consciousness in > 50% of the dogs with partial signs. The estimated segregation frequency of P = .22 (95% CI, P = .08 to .36) was consistent with autosomal recessive inheritance; however, polygenic inheritance could not be excluded as a possibility. Simulated linkage with FASTSLINK estimated that the average logarithm of odds (LOD) score would be 3.23 with a 10-centimorgan (cM) whole-genome scan for these families, indicating that these families would be useful for a whole-genome scan to potentially find the chromosomal segment(s) containing the epilepsy gene or genes. We conclude that IE in Vizslas appears to be primarily a partial onset seizure disorder that may be inherited as an autosomal recessive trait.
Collapse
Affiliation(s)
- Edward E Patterson
- Department of Small Animal Clinical Sciences, University of Minnesota, College of Veterinary Medicine, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Schauwecker PE. Complications associated with genetic background effects in models of experimental epilepsy. PROGRESS IN BRAIN RESEARCH 2002; 135:139-48. [PMID: 12143336 DOI: 10.1016/s0079-6123(02)35014-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To elucidate the genetic influences contributing to susceptibility to seizure disorders, researchers have long used selected lines and inbred strains of rodents. In recent years, the use of genetically altered mice as models of complex human disease has revolutionized biomedical research into the genetics of disease pathogenesis and potential therapeutic interventions. In particular, the study of transgenic and gene-deleted (knockout) mice can provide important insights into the in vivo function and interaction of specific gene products. While a variety of inbred mouse mutations have been used to directly evaluate the genetic basis of seizure disorders, data obtained from such genetically altered mice must be interpreted carefully. An increasing number of scientific articles have reported that the phenotype of a given single gene mutation in mice can be modulated by the genetic background of the inbred strain in which the mutation is maintained. This effect is attributable to so-called modifier genes, which act in combination with the causative gene. In this review, the author points out the importance of considering the genetic background of the strain used to create these animal models, the potential problems with interpretation of phenotype, and solutions to selecting an appropriate mouse model of experimental epilepsy. Despite these potential limitations, knockout mice provide a powerful tool for understanding the genetic and neurobiological mechanisms contributing to experimental epilepsy.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
5
|
Abstract
To study the role of mGlu7 receptors (mGluR7), we used homologous recombination to generate mice lacking this metabotropic receptor subtype (mGluR7(-/-)). After the serendipitous discovery of a sensory stimulus-evoked epileptic phenotype, we tested two convulsant drugs, pentylenetetrazole (PTZ) and bicuculline. In animals aged 12 weeks and older, subthreshold doses of these drugs induced seizures in mGluR7(-/-), but not in mGluR7(+/-), mice. PTZ-induced seizures were inhibited by three standard anticonvulsant drugs, but not by the group III selective mGluR agonist (R,S)-4-phosphonophenylglycine (PPG). Consistent with the lack of signs of epileptic activity in the absence of specific stimuli, mGluR7(-/-) mice showed no major changes in synaptic properties in two slice preparations. However, slightly increased excitability was evident in hippocampal slices. In addition, there was slower recovery from frequency facilitation in cortical slices, suggesting a role for mGluR7 as a frequency-dependent regulator in presynaptic terminals. Our findings suggest that mGluR7 receptors have a unique role in regulating neuronal excitability and that these receptors may be a novel target for the development of anticonvulsant drugs.
Collapse
|
6
|
Hendriksen H, Datson NA, Ghijsen WE, van Vliet EA, da Silva FH, Gorter JA, Vreugdenhil E. Altered hippocampal gene expression prior to the onset of spontaneous seizures in the rat post-status epilepticus model. Eur J Neurosci 2001; 14:1475-84. [PMID: 11722609 DOI: 10.1046/j.0953-816x.2001.01778.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal loss, gliosis and axonal sprouting in the hippocampal formation are characteristics of the syndrome of mesial temporal sclerosis (MTS). In the post-status epilepticus (SE) rat model of spontaneous seizures these features of the MTS syndrome can be reproduced. To get a global view of the changes in gene expression in the hippocampus we applied serial analysis of gene expression (SAGE) during the early phase of epileptogenesis (latent period), prior to the onset of the first spontaneous seizure. A total of 10 000 SAGE tags were analyzed per experimental group, resulting in 5053 (SE) and 5918 (control group) unique tags (genes), each representing a specific mRNA transcript. Of these, 92 genes were differentially expressed in the hippocampus of post-SE rats in comparison to controls. These genes appeared to be mainly associated with ribosomal proteins, protein processing, axonal growth and glial proliferation proteins. Verification of two of the differentially expressed genes by in situ hybridization confirmed the changes found by SAGE. Histological analysis of hippocampal sections obtained 8 days after SE showed extensive cell loss, mossy fibre sprouting and gliosis in hippocampal sub regions. This study identifies new high-abundant genes that may play an important role in post-SE epileptogenesis.
Collapse
Affiliation(s)
- H Hendriksen
- Swammerdam Institute for Life Sciences (SILS), Section Neurobiology, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Raza M, Pal S, Rafiq A, DeLorenzo RJ. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res 2001; 903:1-12. [PMID: 11382382 DOI: 10.1016/s0006-8993(01)02127-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pilocarpine model of temporal lobe epilepsy is an animal model that shares many of the clinical and pathophysiological characteristics of temporal lobe or limbic epilepsy in humans. This model of acquired epilepsy produces spontaneous recurrent seizure discharges following an initial brain injury produced by pilocarpine-induced status epilepticus. Understanding the molecular mechanisms mediating these long lasting changes in neuronal excitability would provide an important insight into developing new strategies for the treatment and possible prevention of this condition. Our laboratory has been studying the role of alterations in calcium and calcium-dependent systems in mediating some of the long-term neuroplasticity changes associated with epileptogenesis. In this study, [Ca(2+)](i) imaging fluorescence microscopy was performed on CA1 hippocampal neurons acutely isolated from control and chronically epileptic animals at 1 year after the induction of epileptogenesis with two different fluorescent dyes (Fura-2 and Fura-FF) having high and low affinities for [Ca(2+)](i). The high affinity Ca(2+) indicator Fura-2 was utilized to evaluate [Ca(2+)](i) levels up to 900 nM and the low affinity indicator Fura-FF was employed for evaluating [Ca(2+)](i) levels above this range. Baseline [Ca(2+)](i) levels and the ability to restore resting [Ca(2+)](i) levels after a brief exposure to several glutamate concentrations in control and epileptic neurons were evaluated. Epileptic neurons demonstrated a statistically significantly higher baseline [Ca(2+)](i) level in comparison to age-matched control animals. This alteration in basal [Ca(2+)](i) levels persisted up to 1 year after the induction of epileptogenesis. In addition, the epileptic neurons were unable to rapidly restore [Ca(2+)](i) levels to baseline following the glutamate-induced [Ca(2+)](i) loads. These changes in Ca(2+) regulation were not produced by a single seizure and were not normalized by controlling the seizures in the epileptic animals with anticonvulsant treatment. Peak [Ca(2+)](i) levels in response to different concentrations of glutamate were the same in both epileptic and control neurons. Thus, glutamate produced the same initial [Ca(2+)](i) load in both epileptic and control neurons. Characterization of the viability of acutely isolated neurons from control and epileptic animals utilizing standard techniques to identify apoptotic or necrotic neurons demonstrated that epileptic neurons had no statistically significant difference in viability compared to age-matched controls. These results provide the first direct measurement of [Ca(2+)](i) levels in an intact model of epilepsy and indicate that epileptogenesis in this model produced long-lasting alterations in [Ca(2+)](i) homeostatic mechanisms that persist for up to 1 year after induction of epileptogenesis. These observations suggest that altered [Ca(2+)](i) homeostatic mechanisms may underlie some aspects of the epileptic phenotype and contribute to the persistent neuroplasticity changes associated with epilepsy.
Collapse
Affiliation(s)
- M Raza
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980599, Richmond, VA 23298-0599, USA
| | | | | | | |
Collapse
|
8
|
Pal S, Limbrick DD, Rafiq A, DeLorenzo RJ. Induction of spontaneous recurrent epileptiform discharges causes long-term changes in intracellular calcium homeostatic mechanisms. Cell Calcium 2000; 28:181-93. [PMID: 11020380 DOI: 10.1054/ceca.2000.0146] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calcium and calcium-dependent systems have been long implicated in the induction of epilepsy. We have previously observed that intracellular calcium ([Ca2+]i) levels remain elevated in cells undergoing epileptogenesis in the hippocampal neuronal culture (HNC) model. In this study, we employed the hippocampal neuronal culture (HNC) model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs) for the life of the neurons in culture to investigate alterations in [Ca2+]i homeostatic mechanisms that may be associated with the 'epileptic' phenotype. [Ca2+]i imaging fluorescence microscopy was performed on control and 'epileptic' neurons with two different fluorescent dyes ranging from high to low affinities for [Ca2+]i. We measured baseline [Ca2+]i levels and the ability to restore resting [Ca2+]i levels after a brief 2-min exposure to the excitatory amino acid glutamate in control neurons and neurons with SREDs. Neurons manifesting SREDs had statistically significantly higher baseline [Ca2+]i levels that persisted for the life of the culture. In addition, the 'epileptic' phenotype was associated with an inability to rapidly restore [Ca2+]i levels to baseline following a glutamate induced [Ca2+]i load. The use of the low affinity dye Fura-FF demonstrated that the difference in restoring baseline [Ca2+]i levels was not due to saturation of the high affinity dye Indo-1, which was utilized for evaluating the [Ca2+]i kinetics at lower [Ca2+]i levels. Peak [Ca2+]i levels in response to glutamate were the same in both 'epileptic' and control neurons. While [Ca2+]i levels recovered in approximately 30 min in control cells, it took more than 90 min to reach baseline levels in cells manifesting SREDs. Alterations of [Ca2+]i homeostatic mechanisms observed with the 'epileptic' phenotype were shown to be independent of the presence of continuous SREDs and persisted for the life of the neurons in culture. Epileptogenesis was shown not to affect the degree or duration of glutamate induced neuronal depolarization in comparing control and 'epileptic' neurons. The results indicate that epileptogenesis in this in vitro model produced long-lasting alterations in [Ca2+]i regulation that may underlie the 'epileptic' phenotype and contribute to the persistent neuroplasticity changes associated with epilepsy.
Collapse
Affiliation(s)
- S Pal
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | |
Collapse
|
9
|
Samochowiec J, Smolka M, Winterer G, Rommelspacher H, Schmidt LG, Sander T. Association analysis between a Cys23ser substitution polymorphism of the human 5-HT2c receptor gene and neuronal hyperexcitability. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19990416)88:2<126::aid-ajmg6>3.0.co;2-m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Vreugdenhil E, Datson N, Engels B, de Jong J, van Koningsbruggen S, Schaaf M, de Kloet ER. Kainate-elicited seizures induce mRNA encoding a CaMK-related peptide: A putative modulator of kinase activity in rat hippocampus. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199904)39:1<41::aid-neu4>3.0.co;2-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|