1
|
Abstract
We previously discovered that a set of 5 microRNAs are concentrated in the nucleolus of rat myoblasts. We now report that several mRNAs are also localized in the nucleoli of these cells as determined by microarray analysis of RNA from purified nucleoli. Among the most abundant of these nucleolus-localized mRNAs is that encoding insulin-like growth factor 2 (IGF2), a regulator of myoblast proliferation and differentiation. The presence of IGF2 mRNA in nucleoli was confirmed by fluorescence in situ hybridization, and RT-PCR experiments demonstrated that these nucleolar transcripts are spliced, thus arriving from the nucleoplasm. Bioinformatics analysis predicted canonically structured, highly thermodynamically stable interactions between IGF2 mRNA and all 5 of the nucleolus-localized microRNAs. These results raise the possibility that the nucleolus is a staging site for setting up particular mRNA-microRNA interactions prior to export to the cytoplasm.
Collapse
Affiliation(s)
- Pablo Reyes-Gutierrez
- a Program in Cell and Developmental Dynamics; Department of Biochemistry and Molecular Pharmacology; University of Massachusetts Medical School ; Worcester , MA USA
| | | | | |
Collapse
|
2
|
Smith CS, Preibisch S, Joseph A, Abrahamsson S, Rieger B, Myers E, Singer RH, Grunwald D. Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking. ACTA ACUST UNITED AC 2015; 209:609-19. [PMID: 26008747 PMCID: PMC4442804 DOI: 10.1083/jcb.201411032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that β-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 µm away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization.
Collapse
Affiliation(s)
- Carlas S Smith
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephan Preibisch
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Aviva Joseph
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sara Abrahamsson
- Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147 The Rockefeller University, New York, NY 10065
| | - Bernd Rieger
- Department of Imaging Sciences, Technical University Delft, Delft 2628CJ, Netherlands
| | - Eugene Myers
- Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
3
|
Abstract
While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.
Collapse
Affiliation(s)
- Christopher M Austin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
4
|
Kylberg K, Björkroth B, Ivarsson B, Fomproix N, Daneholt B. Close coupling between transcription and exit of mRNP from the cell nucleus. Exp Cell Res 2008; 314:1708-20. [PMID: 18374333 DOI: 10.1016/j.yexcr.2008.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 12/27/2022]
Abstract
Transcription is intimately coupled to co-transcriptional formation of mRNP particles and their preparation for export. In the dipteran Chironomus tentans we have now investigated whether on-going transcription is closely linked also to the ensuing transfer of the mRNPs from genes to cytoplasm. The assembly and nucleocytoplasmic transport of a specific mRNP particle, the Balbiani ring (BR) RNP granule, were visualized in larval salivary glands by electron microscopy. When transcription was inhibited with DRB or actinomycin D (AMD), the growing BR mRNPs disappeared from the genes. The two inhibitors affected the distribution of BR mRNPs in the nucleoplasm and in the nuclear pores in essentially the same way. At the nuclear pore complexes (NPCs) the basket-associated and translocating mRNPs were substantially reduced in number, the translocating RNPs being essentially absent after 90 min treatment. Remarkably, the amount of BR mRNPs in the nucleoplasm did not change. We conclude that on-going transcription is required for the mRNPs to exit from the cell nucleus. Interruption of transcription seems to primarily affect the intranuclear movement of BR mRNPs and/or prevent the binding of mRNPs to the NPCs rather than to directly interfere with translocation per se.
Collapse
Affiliation(s)
- Karin Kylberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
5
|
Platani M, Lamond AI. Nuclear organisation and subnuclear bodies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:1-22. [PMID: 15113077 DOI: 10.1007/978-3-540-74266-1_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Melpomeni Platani
- Wellcome Trust Biocentre, MSI/WTB Complex, DD1 5EH, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
6
|
Shahin V. Route of glucocorticoid-induced macromolecules across the nuclear envelope as viewed by atomic force microscopy. Pflugers Arch 2006; 453:1-9. [PMID: 16736207 DOI: 10.1007/s00424-006-0102-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Glucocorticoids are vital steroid hormones. The physiologic activities of these hydrophobic molecules predominantly require translocation of glucocorticoid-initiated macromolecules (GIMs), proteins and mRNA transcripts, in and out of the nucleus, respectively. The bidirectional transport of GIMs is mediated by nuclear pore complexes (NPCs) that span the nuclear envelope at regular distances. The transport proceeds through the NPC central channel, whose interior is lined up by hydrophobic proteins. The NPC channel is assumed to dilate while hydrophobic cargos are being translocated through. Upon glucocorticoid injection into a glucocorticoid-sensitive cell, Xenopus laevis oocyte, and using atomic force microscopy, we have recently unraveled the long unexplored paths that GIMs take through the nuclear envelope and described interactions of GIMs with NPCs. In so doing, surprising and intriguing observations were made and the following conclusions were drawn: glucocorticoid-initiated proteins evoke NPC channel dilation before physical interaction with the NPC. NPC channel dilation is apparently transmitted through binding of glucocorticoid-induced proteins to NPC-associated filaments or yet unknown structures in the cytoplasmic nuclear envelope surface. The transport of both proteins and ribonucleoproteins seems to be non-randomly confined to local areas on either nuclear envelope site, the so-called hot spots.
Collapse
Affiliation(s)
- Victor Shahin
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
7
|
Abstract
Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin--not likely in the classical F-actin conformation--in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
8
|
Dower K, Kuperwasser N, Merrikh H, Rosbash M. A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. RNA (NEW YORK, N.Y.) 2004; 10:1888-99. [PMID: 15547135 PMCID: PMC1370677 DOI: 10.1261/rna.7166704] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To investigate the role of 3' end formation in yeast mRNA export, we replaced the mRNA cleavage and polyadenylation signal with a self-cleaving hammerhead ribozyme element. The resulting RNA is unadenylated and accumulates near its site of synthesis. Nonetheless, a significant fraction of this RNA reaches the cytoplasm. Nuclear accumulation was relieved by insertion of a stretch of DNA-encoded adenosine residues immediately upstream of the ribozyme element (a synthetic A tail). This indicates that a 3' stretch of adenosines can promote export, independently of cleavage and polyadenylation. We further show that a synthetic A tail-containing RNA is unaffected in 3' end formation mutant strains, in which a normally cleaved and polyadenylated RNA accumulates within nuclei. Our results support a model in which a polyA tail contributes to efficient mRNA progression away from the gene, most likely through the action of the yeast polyA-tail binding protein Pab1p.
Collapse
MESH Headings
- Base Sequence
- Cell Nucleus/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Models, Biological
- Mutation
- Poly A/chemistry
- Poly A/genetics
- Poly A/metabolism
- Poly(A)-Binding Proteins/genetics
- Poly(A)-Binding Proteins/metabolism
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Ken Dower
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
9
|
Politz JCR, Tuft RA, Pederson T. Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 2003; 14:4805-12. [PMID: 12960421 PMCID: PMC284785 DOI: 10.1091/mbc.e03-06-0395] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/18/2003] [Accepted: 08/08/2003] [Indexed: 11/11/2022] Open
Abstract
Although the complex process of ribosome assembly in the nucleolus is beginning to be understood, little is known about how the ribosomal subunits move from the nucleolus to the nuclear membrane for transport to the cytoplasm. We show here that large ribosomal subunits move out from the nucleolus and into the nucleoplasm in all directions, with no evidence of concentrated movement along directed paths. Mobility was slowed compared with that expected in aqueous solution in a manner consistent with anomalous diffusion. Once nucleoplasmic, the subunits moved in the same random manner and also sometimes visited another nucleolus before leaving the nucleus.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
10
|
Pederson T. Nuclear impressionism: how the active genome creates the very canvas on which gene expression is painted. J Appl Biomed 2003. [DOI: 10.32725/jab.2003.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Shibata S, Matsuoka Y, Yoneda Y. Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 2002; 7:421-34. [PMID: 11952838 DOI: 10.1046/j.1365-2443.2002.00525.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND It is known that Tpr is a component of an intranuclear long filament which extends from the nuclear pore complex (NPC) into the nucleoplasm. Since the over-expression of the full-length of or some fragments of Tpr in living cells leads to the accumulation of poly(A)+ RNA within the nuclei, it is generally thought that a relationship exists between Tpr and the nuclear export of mRNA in mammalian cells. In contrast, the nuclear export of poly(A)+ RNA was not inhibited in a double deletion mutant of yeast Tpr homologues (Mlp1p and Mlp2p). Therefore, the precise function of Tpr remains unknown. RESULTS By microinjecting two types of polyclonal antibodies which are specific to Tpr into the cytoplasm of living mammalian interphase cells, we succeeded in reconstituting the Tpr-less nuclei. In the Tpr-less nuclei, the localization of the major components of the NPC, the nuclear import of SV40 T-NLS substrates and the nuclear export of HIV Rev NES-substrates were not affected. However poly(A)+ RNA accumulated in the non-snRNP splicing factor SC35-positive clusters, which became larger in size and fewer in number, compared with normal nuclei. CONCLUSION These results indicate that Tpr plays a critical role in the intranuclear dynamics of RNA pol II transcripts, including the processing, intranuclear transport and targeting, as well as their translocation through the NPC in mammalian cells.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
12
|
Schmitt I, Gerace L. In vitro analysis of nuclear transport mediated by the C-terminal shuttle domain of Tap. J Biol Chem 2001; 276:42355-63. [PMID: 11551912 DOI: 10.1074/jbc.m103916200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tap protein of higher eukaryotes is implicated in the nuclear export of type D retroviral mRNA and some cellular mRNAs. Here we have developed an in vitro assay to study nuclear export mediated by the C-terminal shuttle domain of Tap involving the rapamycin-induced attachment of this transport domain to a nuclear green fluorescent protein-containing reporter. We found that export by the Tap transport domain does not involve cytosolic transport factors including the GTPase Ran. The transport domain directly binds to several nucleoporins positioned in different regions of the nuclear pore complex. These results argue that a direct interaction of the Tap transport domain with nucleoporins is responsible for its nucleocytoplasmic translocation. We found that the karyopherin beta-related export receptor CRM1 competes with the Tap transport domain for binding to Nup214 but not for binding to Nup62 or Nup153, suggesting that the Tap and CRM1 nuclear export pathways converge at the cytoplasmic periphery of the nuclear pore complex. Because the rates of in vitro nuclear import and export by the Tap transport domain are very similar, the directionality of mRNA export mediated by Tap probably is determined by mechanisms other than simple binding of the Tap transport domain to nucleoporins.
Collapse
Affiliation(s)
- I Schmitt
- Department of Cell, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
13
|
Bassler J, Grandi P, Gadal O, Lessmann T, Petfalski E, Tollervey D, Lechner J, Hurt E. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell 2001; 8:517-29. [PMID: 11583615 DOI: 10.1016/s1097-2765(01)00342-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A nuclear GTPase, Nug1p, was identified in a genetic screen for components linked to 60S ribosomal subunit export. Nug1p cosedimented with nuclear 60S preribosomes and was required for subunit export to the cytoplasm. Tagged Nug1p coprecipitated with proteins of the 60S subunit, late precursors to the 25S and 5.8S rRNAs, and at least 21 nonribosomal proteins. These included a homologous nuclear GTPase, Nug2p, the Noc2p/Noc3p heterodimer, Rix1p, and Rlp7p, each of which was implicated in 60S subunit export. Other known ribosome synthesis factors and proteins of previously unknown function, including the 559 kDa protein Ylr106p, also copurified. Eight of these proteins were copurified with nuclear pore complexes, suggesting that this complex represents the transport intermediate for 60S subunit export.
Collapse
Affiliation(s)
- J Bassler
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kues T, Peters R, Kubitscheck U. Visualization and tracking of single protein molecules in the cell nucleus. Biophys J 2001; 80:2954-67. [PMID: 11371468 PMCID: PMC1301479 DOI: 10.1016/s0006-3495(01)76261-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A recently developed laser fluorescence videomicroscopy method was used to determine for the first time the intranuclear trajectories of single protein molecules. Using the recombinant Escherichia coli beta-galactosidase protein P4K, labeled with an average of 4.6 ALEXA 488 chromophores per tetramer, single P4K molecules could be localized and tracked in the nuclei of permeabilized 3T3 cells at a spatial accuracy of approximately 30 nm and a time resolution of 18 ms. Our previous photobleaching measurements indicated that P4K had two fractions inside the nucleus, a larger mobile and a smaller immobile fraction. The present study supported this observation but revealed a much larger variety of mobility classes. Thus, a fraction of P4K molecules appeared to be truly immobile while another fraction was mobile but confined to very small areas. In addition, a large fraction of the P4K molecules appeared to be mobile and to move over extended distances by diffusion. However, a quantitative analysis showed that at least two subpopulations were present differing widely in diffusion coefficients. Importantly, both the diffusion coefficients and the fractions of these subpopulations were time-dependent. Our results suggest that proteins can move inside the nucleus over extended distances by diffusion. However, intranuclear protein diffusion is severely restricted, most likely by multiple association-dissociation events and/or impermeable obstacles.
Collapse
Affiliation(s)
- T Kues
- Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | |
Collapse
|
15
|
Carson JH, Cui H, Krueger W, Schlepchenko B, Brumwell C, Barbarese E. RNA trafficking in oligodendrocytes. Results Probl Cell Differ 2001; 34:69-81. [PMID: 11288680 DOI: 10.1007/978-3-540-40025-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A2RE and hnRNP A2 have been identified as important cis/trans determinants for MBP RNA trafficking in oligodendrocytes. Since A2RE-like sequences are found in several different transported RNAs, and since hnRNP A2 is expressed in most cell types, this may represent a general RNA trafficking pathway shared by a variety of different RNAs in different cell types. In oligodendrocytes, A2RE/hnRNP A2 determinants are involved in at least four steps in the RNA trafficking pathway: (1) export from the nucleus to the cytoplasm, (2) granule assembly in the perikaryon, (3) transport along microtubules in the processes, and (4) translation activation in the myelin compartment. The components of the cellular machinery mediating each of these steps are known. How A2RE/hnRNP A2 determinants interact with these components to mediate RNA trafficking is being investigated by a combination of: biochemistry to analyze molecular interactions in vitro, imaging to visualize molecular interactions in living cells, and computational modeling to simulate molecular interactions in the Virtual Cell.
Collapse
Affiliation(s)
- J H Carson
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- T Pederson
- Department of Biochemistry and Molecular, Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Mouland AJ, Xu H, Cui H, Krueger W, Munro TP, Prasol M, Mercier J, Rekosh D, Smith R, Barbarese E, Cohen EA, Carson JH. RNA trafficking signals in human immunodeficiency virus type 1. Mol Cell Biol 2001; 21:2133-43. [PMID: 11238947 PMCID: PMC86835 DOI: 10.1128/mcb.21.6.2133-2143.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.
Collapse
Affiliation(s)
- A J Mouland
- Laboratory of Human Retrovirology, Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The advent of jellyfish green fluorescent protein and its spectral variants, together with promising new fluorescent proteins from other classes of the Cnidarian phylum (coral and anemones), has greatly enhanced and promises to further boost the detection and localization of proteins in cell biology. It has been less widely appreciated that highly sensitive methods have also recently been developed for detecting the movement and localization in living cells of the very molecules that precede proteins in the gene expression pathway, i.e. RNAs. These approaches include the microinjection of fluorescent RNAs into living cells, the in vivo hybridization of fluorescent oligonucleotides to endogenous RNAs and the expression in cells of fluorescent RNA-binding proteins. This new field of 'fluorescent RNA cytochemistry' is summarized in this article, with emphasis on the biological insights it has already provided. These new techniques are likely to soon collaborate with other emerging approaches to advance the investigation of RNA birth, RNA-protein assembly and ribonucleoprotein particle transport in systems such as oocytes, embryos, neurons and other somatic cells, and may even permit the observation of viral replication and transcription pathways as they proceed in living cells, ushering in a new era of nucleic acids research in vivo.
Collapse
Affiliation(s)
- T Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Chiodi I, Biggiogera M, Denegri M, Corioni M, Weighardt F, Cobianchi F, Riva S, Biamonti G. Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J Cell Sci 2000; 113 ( Pt 22):4043-53. [PMID: 11058091 DOI: 10.1242/jcs.113.22.4043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously described HAP, a novel hnRNP protein that is identical both to SAF-B, a component of the nuclear scaffold, and to HET, a transcriptional regulator of the gene for heat shock protein 27. After heat shock, HAP is recruited to a few nuclear bodies. Here we report the characterisation of these bodies, which are distinct from other nuclear components such as coiled bodies and speckles. The formation of HAP bodies is part of a general cell response to stress agents, such as heat shock and cadmium sulfate, which also affect the distribution of hnRNP protein M. Electron microscopy demonstrates that in untreated cells, similar to other hnRNP proteins, HAP is associated to perichromatin fibrils. Instead, in heat shocked cells the protein is preferentially associated to clusters of perichromatin granules, which correspond to the HAP bodies observed in confocal microscopy. Inside such clusters, perichromatin granules eventually merge into a highly packaged ‘core’. HAP and hnRNP M mark different districts of these structures. HAP is associated to perichromatin granules surrounding the core, while hnRNP M is mostly detected within the core. BrU incorporation experiments demonstrate that no transcription occurs within the stress-induced clusters of perichromatin granules, which are depots for RNAs synthesised both before and after heat shock.
Collapse
Affiliation(s)
- I Chiodi
- Istituto di Genetica Biochimica ed Evoluzionistica del Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207. 27100 Pavia. Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Pre-mRNA splicing has to be coordinated with other processes occurring in the nucleus including transcription, mRNA 3' end formation and mRNA export. To analyze the relationship between transcription and splicing, we constructed a network of nested introns. Introns were inserted in the 5' splice site and/or branchpoint of a synthetic yeast intron interrupting a reporter gene. The inserted introns mask the recipient intron from the cellular machinery until they are removed by splicing. Production of functional mRNA from these constructs therefore requires recognition of a spliced RNA as a splicing substrate. We show that recurrent splicing occurs in a sequential and ordered fashion in vivo. Thus, in Saccharomyces cerevisiae, intron recognition and pre-spliceosome assembly is not tightly coupled to transcription.
Collapse
|
21
|
Johnson C, Primorac D, McKinstry M, McNeil J, Rowe D, Lawrence JB. Tracking COL1A1 RNA in osteogenesis imperfecta. splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J Cell Biol 2000; 150:417-32. [PMID: 10931857 PMCID: PMC2175183 DOI: 10.1083/jcb.150.3.417] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Accepted: 06/28/2000] [Indexed: 11/22/2022] Open
Abstract
This study illuminates the intra-nuclear fate of COL1A1 RNA in osteogenesis imperfecta (OI) Type I. Patient fibroblasts were shown to carry a heterozygous defect in splicing of intron 26, blocking mRNA export. Both the normal and mutant allele associated with a nuclear RNA track, a localized accumulation of posttranscriptional RNA emanating to one side of the gene. Both tracks had slightly elongated or globular morphology, but mutant tracks were cytologically distinct in that they lacked the normal polar distribution of intron 26. Normal COL1A1 RNA tracks distribute throughout an SC-35 domain, from the gene at the periphery. Normally, almost all 50 COL1A1 introns are spliced at or adjacent to the gene, before mRNA transits thru the domain. Normal COL1A1 transcripts may undergo maturation needed for export within the domain such as removal of a slow-splicing intron (shown for intron 24), after which they may disperse. Splice-defective transcripts still distribute thru the SC-35 domain, moving approximately 1-3 micrometer from the gene. However, microfluorimetric analyses demonstrate mutant transcripts accumulate to abnormal levels within the track and domain. Hence, mutant transcripts initiate transport from the gene, but are impeded in exit from the SC-35 domain. This identifies a previously undefined step in mRNA export, involving movement through an SC-35 domain. A model is presented in which maturation and release for export of COL1A1 mRNA is linked to rapid cycling of metabolic complexes within the splicing factor domain, adjacent to the gene. This paradigm may apply to SC-35 domains more generally, which we suggest may be nucleated at sites of high demand and comprise factors being actively used to facilitate expression of associated loci.
Collapse
Affiliation(s)
- C Johnson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
In eukaryotic cells, the nuclear membrane creates a barrier between the nucleus and the cytoplasm. Whereas RNA synthesis occurs in the nucleus, they mostly function in the cytoplasm; thus export of RNA molecules from the nucleus to the cytoplasm is indispensable for normal function of the cells. The molecular mechanisms involved in each kind of cellular RNA export is gradually understood. The focus of this review will be mRNA export. mRNAs are multiformed. In order to ensure that this variety of mRNA molecules are all exported, cells are probably equipped with multiple export pathways. A number of proteins is predicted to be involved in mRNA export. Ascertaining which proteins play crucial roles in the pathways is the key point in the study of mRNA export.
Collapse
Affiliation(s)
- M C Siomi
- Institute for Genome Research, University of Tokushima, Japan.
| |
Collapse
|
23
|
Shulga N, Mosammaparast N, Wozniak R, Goldfarb DS. Yeast nucleoporins involved in passive nuclear envelope permeability. J Cell Biol 2000; 149:1027-38. [PMID: 10831607 PMCID: PMC2174828 DOI: 10.1083/jcb.149.5.1027] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The vertebrate nuclear pore complex (NPC) harbors an approximately 10-nm diameter diffusion channel that is large enough to admit 50-kD polypeptides. We have analyzed the permeability properties of the Saccharomyces cerevisiae nuclear envelope (NE) using import (NLS) and export (NES) signal-containing green fluorescent protein (GFP) reporters. Compared with wild-type, passive export rates of a classical karyopherin/importin (Kap) Kap60p/Kap95p-targeted NLS-GFP reporter (cNLS-GFP) were significantly faster in nup188-Delta and nup170-Delta cells. Similar results were obtained using two other NLS-GFP reporters, containing either the Kap104p-targeted Nab2p NLS (rgNLS) or the Kap121p-targeted Pho4p NLS (pNLS). Elevated levels of Hsp70 stimulated cNLS-GFP import, but had no effect on the import of rgNLS-GFP. Thus, the role of Hsp70 in NLS-directed import may be NLS- or targeting pathway-specific. Equilibrium sieving limits for the diffusion channel were assessed in vivo using NES-GFP reporters of 36-126 kD and were found to be greater than wild-type in nup188-Delta and nup170-Delta cells. We propose that Nup170p and Nup188p are involved in establishing the functional resting diameter of the NPC's central transport channel.
Collapse
Affiliation(s)
- Nataliya Shulga
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Nima Mosammaparast
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Richard Wozniak
- Department of Cell Biology, University of Alberta, Alberta, Canada T6G 2H7
| | - David S. Goldfarb
- Department of Biology, University of Rochester, Rochester, New York 14627
| |
Collapse
|
24
|
Abstract
The mammalian cell nucleus contains numerous sub-compartments, which have been implicated in essential processes such as transcription and splicing. The mechanisms by which nuclear compartments are formed and maintained are unclear. More fundamentally, it is not known how proteins move within the cell nucleus. We have measured the kinetic properties of proteins in the nucleus of living cells using photobleaching techniques. Here we show that proteins involved in diverse nuclear processes move rapidly throughout the entire nucleus. Protein movement is independent of energy, which indicates that proteins may use a passive mechanism of movement. Proteins rapidly associate and dissociate with nuclear compartments. Using kinetic modelling, we determined residence times and steady-state fluxes of molecules in two main nuclear compartments. These data show that many nuclear proteins roam the cell nucleus in vivo and that nuclear compartments are the reflection of the steady-state association/dissociation of its 'residents' with the nucleoplasmic space. Our observations have conceptual implications for understanding nuclear architecture and how nuclear processes are organized in vivo.
Collapse
Affiliation(s)
- R D Phair
- BioInformatics Services, Rockville, Maryland 20854, USA
| | | |
Collapse
|
25
|
Abstract
Pre-mRNA is transcribed primarily from genes located at the interface between chromatin domains and the interchromatin space. After partial or complete processing and complexing with nuclear proteins, the transcripts leave their site of synthesis and travel through the interchromatin space to the nuclear pores for export to the cytoplasm. It is unclear whether transcripts are tethered within the interchromatin space and move toward the nuclear pores using a metabolic energy-requiring, directed mechanism or, alternatively, move randomly by a diffusion-based process. We discuss here recent progress in understanding this step of gene expression, including our experiments tracking the movement of intranuclear poly(A) RNA in living cells. Our results and those of others are most consistent with a model in which newly synthesized mRNAs diffuse throughout the interchromatin space until they randomly encounter and are captured by the export machinery. Because the export machinery appears to preferentially bind transport-competent mRNAs (complexed with the correct complement of nuclear proteins), this diffusion-based model for intranuclear RNA movement potentially allows for a significant level of posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- J C Politz
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, Massachusetts, 01605, USA
| | | |
Collapse
|
26
|
Keller RW, Kühn U, Aragón M, Bornikova L, Wahle E, Bear DG. The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J Mol Biol 2000; 297:569-83. [PMID: 10731412 DOI: 10.1006/jmbi.2000.3572] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian nuclear poly(A) binding protein, PABP2, controls the length of the newly synthesized poly(A) tail on messenger RNAs. To gain a better understanding of the mechanism of length control, we have investigated the structure of the PABP2.poly(A) complex. Electron microscopy and scanning force microscopy studies reveal that PABP2, when bound to poly(A), forms both linear filaments and discrete-sized, compact, oligomeric particles. The maximum diameter of the filament is 7 nm; the maximum diameter of the particle is 21(+/-2) nm. Maximum particle size is realized when the PABP2. poly(A) complex is formed with poly(A) molecules 200-300 nt long, which corresponds to the average length of the newly synthesized poly(A) tail in vitro and in vivo. The equilibrium between filaments and particles is highly sensitive to ionic strength; filaments are favored at low ionic strength, while particles predominate at moderate to high ionic strength. Nitrocellulose filter binding and gel mobility shift assays indicate that the PABP2.poly(A) particle formed on A(300) is not significantly more stable than complexes formed with smaller species of poly(A). These results are discussed in the context of the proposed functions for PABP2.
Collapse
Affiliation(s)
- R W Keller
- Department of Cell Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.
Collapse
Affiliation(s)
- T Pederson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
28
|
Miralles F, Öfverstedt LG, Sabri N, Aissouni Y, Hellman U, Skoglund U, Visa N. Electron tomography reveals posttranscriptional binding of pre-mRNPs to specific fibers in the nucleoplasm. J Cell Biol 2000; 148:271-82. [PMID: 10648560 PMCID: PMC2174289 DOI: 10.1083/jcb.148.2.271] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using electron tomography, we have analyzed whether the Balbiani ring (BR) pre-mRNP particles in transit from the gene to the nuclear pore complex (NPC) are bound to any structure that could impair free diffusion through the nucleoplasm. We show that one-third of the BR particles are in contact with thin connecting fibers (CFs), which in some cases merge into large fibrogranular clusters. The CFs have a specific protein composition different from that of BR particles, as shown by immuno-EM. Moreover, we have identified hrp65 as one of the protein components of the CFs. The sequencing of hrp65 cDNA reveals similarities with hnRNP proteins and splicing factors. However, hrp65 is likely to have a different function because it does not bind to nascent pre-mRNA and is not part of the pre-mRNP itself. Taken together, our observations indicate that pre-mRNPs are not always freely diffusible in the nucleoplasm but interact with fibers of specific structure and composition, which implies that some of the posttranscriptional events that the pre-mRNPs undergo before reaching the NPC occur in a bound state.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biological Transport
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Chironomidae
- Chromosomes/ultrastructure
- Cloning, Molecular
- DNA, Complementary/genetics
- Insect Proteins
- Microscopy, Electron/methods
- Models, Biological
- Models, Structural
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/isolation & purification
- RNA Precursors/isolation & purification
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Ribonucleoproteins/isolation & purification
- Salivary Glands/ultrastructure
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Francesc Miralles
- Department of Molecular Genome Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars-Göran Öfverstedt
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Nafiseh Sabri
- Department of Molecular Genome Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Youssef Aissouni
- Institut Paoli Calmettes, INSERM-U119, Cancérologie Expérimentale, F-13009 Marseille, France
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, SE-751 24 Uppsala, Sweden
| | - Ulf Skoglund
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Genome Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|