1
|
Symington SB, Toltin AC, Murenzi E, Lansky D, Clark JM. Determination of potential toxicodynamic differences of pyrethroid insecticides on native voltage-sensitive sodium channels in juvenile versus adult rat brain. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105296. [PMID: 36549822 DOI: 10.1016/j.pestbp.2022.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Microtransplantation of neurolemma tissue fragments from mammalian brain into the plasma membrane of Xenopus laevis oocytes is a tool to examine the endogenous structure and function of various ion channels and receptors associated with the central nervous system. Microtransplanted neurolemma can originate from a variety of sources, contain ion channels and receptors in their native configuration, and are applicable to examine diseases associated with different channelopathies. Here, we examined potential age-related differences in voltage-sensitive sodium channel (VSSC) expression and concentration-dependent responses to pyrethroids following the microtransplantation of juvenile or adult rat brain tissue (neurolemma) into X. laevis oocytes. Using automated western blotting, adult neurolemma exhibited a 2.5-fold higher level of expression of VSSCs compared with juvenile neurolemma. The predominant isoform expressed in both tissues was Nav1.2. However, adult neurolemma expressed 2.8-fold more Nav1.2 than juvenile and expressed Nav1.6 at a significantly higher level (2.2-fold). Microtransplanted neurolemma elicited ion currents across the plasma membrane of oocytes following membrane depolarization using two electrode voltage clamp electrophysiology. A portion of this current was sensitive to tetrodotoxin (TTX) and this TTX-sensitive current was abolished when external sodium ion was replaced by choline ion, functionally demonstrating the presence of native VSSC. Increasing concentrations of permethrin or deltamethrin exhibited concentration-dependent increases in inward TTX-sensitive current in the presence of niflumic acid from both adult and juvenile tissues following a pulsed depolarization of the oocyte plasma membrane. Concentration-dependent response curves illustrate that VSSCs associated with juvenile neurolemma were up to 2.5-fold more sensitive to deltamethrin than VSSCs in adult neurolemma. In contrast, VSSCs from juvenile neurolemma were less sensitive to permethrin than adult VSSCs at lower concentrations (0.6-0.8-fold) but were more sensitive at higher concentrations (up to 2.4-fold). Nonetheless, because the expected concentrations in human brains following realistic exposure levels are approximately 21- (deltamethrin) to 333- (permethrin) times below the threshold concentration for response in rat neurolemma-injected oocytes, age-related differences, if any, are not likely to be toxicologically relevant.
Collapse
Affiliation(s)
- Steven B Symington
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, USA.
| | - Abigail C Toltin
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, USA
| | - Edwin Murenzi
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA.
| | - David Lansky
- Precision Bioassay, Inc., Burlington, VT 05401, USA.
| | - John M Clark
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
2
|
Zhorov BS, Dong K. Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel. INSECTS 2022; 13:745. [PMID: 36005370 PMCID: PMC9409284 DOI: 10.3390/insects13080745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Pyrethroid insecticides stabilize the open state of insect sodium channels. Previous mutational, electrophysiological, and computational analyses led to the development of homology models predicting two pyrethroid receptor sites, PyR1 and PyR2. Many of the naturally occurring sodium channel mutations, which confer knockdown resistance (kdr) to pyrethroids, are located within or close to these receptor sites, indicating that these mutations impair pyrethroid binding. However, the mechanism of the state-dependent action of pyrethroids and the mechanisms by which kdr mutations beyond the receptor sites confer resistance remain unclear. Recent advances in protein structure prediction using the AlphaFold2 (AF2) neural network allowed us to generate a new model of the mosquito sodium channel AaNav1-1, with the activated voltage-sensing domains (VSMs) and the presumably inactivated pore domain (PM). We further employed Monte Carlo energy minimizations to open PM and deactivate VSM-I and VSM-II to generate additional models. The docking of a Type II pyrethroid deltamethrin in the models predicted its interactions with many known pyrethroid-sensing residues in the PyR1 and PyR2 sites and revealed ligand-channel interactions that stabilized the open PM and activated VSMs. Our study confirms the predicted two pyrethroid receptor sites, explains the state-dependent action of pyrethroids, and proposes the mechanisms of the allosteric effects of various kdr mutations on pyrethroid action. The AF2-based models may assist in the structure-based design of new insecticides.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Thompson AJ, Verdin PS, Burton MJ, Davies TGE, Williamson MS, Field LM, Baines RA, Mellor IR, Duce IR. The effects of knock-down resistance mutations and alternative splicing on voltage-gated sodium channels in Musca domestica and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103388. [PMID: 32376273 DOI: 10.1016/j.ibmb.2020.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are a major target site for the action of pyrethroid insecticides and resistance to pyrethroids has been ascribed to mutations in the VGSC gene. VGSCs in insects are encoded by only one gene and their structural and functional diversity results from posttranscriptional modification, particularly, alternative splicing. Using whole cell patch clamping of neurons from pyrethroid susceptible (wild-type) and resistant strains (s-kdr) of housefly, Musca domestica, we have shown that the V50 for activation and steady state inactivation of sodium currents (INa+) is significantly depolarised in s-kdr neurons compared with wild-type and that 10 nM deltamethrin significantly hyperpolarised both of these parameters in the neurons from susceptible but not s-kdr houseflies. Similarly, tail currents were more sensitive to deltamethrin in wild-type neurons (EC15 14.5 nM) than s-kdr (EC15 133 nM). We also found that in both strains, INa+ are of two types: a strongly inactivating (to 6.8% of peak) current, and a more persistent (to 17.1% of peak) current. Analysis of tail currents showed that the persistent current in both strains (wild-type EC15 5.84 nM) was more sensitive to deltamethrin than was the inactivating type (wild-type EC15 35.1 nM). It has been shown previously, that the presence of exon l in the Drosophila melanogaster VGSC gives rise to a more persistent INa+ than does the alternative splice variant containing exon k and we used PCR with housefly head cDNA to confirm the presence of the housefly orthologues of splice variants k and l. Their effect on deltamethrin sensitivity was determined by examining INa+ in Xenopus oocytes expressing either the k or l variants of the Drosophila para VGSC. Analysis of tail currents, in the presence of various concentrations of deltamethrin, showed that the l splice variant was significantly more sensitive (EC50 42 nM) than the k splice variant (EC50 866 nM). We conclude that in addition to the presence of point mutations, target site resistance to pyrethroids may involve the differential expression of splice variants.
Collapse
Affiliation(s)
- Andrew J Thompson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Paul S Verdin
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Mark J Burton
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - T G Emyr Davies
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Martin S Williamson
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Linda M Field
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ian R Duce
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
4
|
Karakuş M, Atıcı T, Karabela ŞN, Baylan O, Limoncu ME, Balcıoğlu İC. Detection of permethrin resistance and phylogenetic clustering of turkish head lice (Pediculus humanus capitis; De Geer, 1767 populations. Acta Trop 2020; 204:105362. [PMID: 32006522 DOI: 10.1016/j.actatropica.2020.105362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
Head lice infestation caused by Pediculus humanus capitis De Geer, 1767 is one of the most common public health problems. The relationship between humans and head lice dates back millions of years ago that differentiated into different phylogenetic clades. Treatment of head lice infestation usually based on insecticide-based products, which promotes the resistance in the head lice populations. In the present study, we aimed to screen the presence of permethrin resistance among collected P. h. capitis specimens in Turkey. Three mutation sites (T917I, L920F, and M815I) were screened using real-time PCR and resistance was identified by melt analysis. Of the studied specimens, resistance allele frequency (RAF) was found 0.98 for T917I, 0.99 for L920F, and 1.00 for M815I. The phylogenetic study revealed that Clade A and Clade B are present and overlap in Turkey. The present study is first to screen the resistance among Turkish head lice specimens. To not stimulate the pyrethroids resistance in head lice populations, early detection of resistance is crucial and will help the health professionals to choose suitable formula in the treatment. We suggest that the resistance status needs to be screened in randomly selected populations before any treatment application is given.
Collapse
Affiliation(s)
- Mehmet Karakuş
- Department of Medical Microbiology, Hamidiye Faculty of Medicine, University of Health Sciences, İstanbul, Turkey.
| | - Tuğçe Atıcı
- Department of Parasitology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Şemsi Nur Karabela
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Orhan Baylan
- Department of Medical Microbiology, Hamidiye Faculty of Medicine, University of Health Sciences, İstanbul, Turkey
| | - Mehmet Emin Limoncu
- Vocational School of Health Services, Manisa Celal Bayar University Manisa, Turkey
| | | |
Collapse
|
5
|
Murenzi E, Toltin AC, Symington SB, Morgan MM, Clark JM. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels. Neurotoxicology 2016; 60:260-273. [PMID: 27063102 DOI: 10.1016/j.neuro.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Nav1.1-Nav1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Nav1.2 and Nav1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE was without effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs in Xenopus oocytes and with many other electrophysiological approaches, validating the use of the microtransplantation procedure as a toxicologically-relevant ex vivo assay. Once fully characterized, it is likely that this approach could be expanded to study the role of environmental toxicants and contaminants on various target tissues (e.g. neural, reproductive, developmental) from many species.
Collapse
Affiliation(s)
- Edwin Murenzi
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - Abigail C Toltin
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Steven B Symington
- Department of Biology and Biomedical Science, Salve Regina University, Newport, RI, United States.
| | - Molly M Morgan
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| | - John M Clark
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
6
|
Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish. INVERTEBRATE NEUROSCIENCE 2016; 16:2. [PMID: 27032955 DOI: 10.1007/s10158-016-0185-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/12/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue.
Collapse
|
7
|
Bourdin CM, Guérineau NC, Murillo L, Quinchard S, Dong K, Legros C. Molecular and functional characterization of a novel sodium channel TipE-like auxiliary subunit from the American cockroach Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:136-144. [PMID: 26524962 DOI: 10.1016/j.ibmb.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
In Drosophila melanogaster, the functions of voltage-gated sodium (Nav) channels are modulated by TipE and its orthologs. Here, we describe a novel TipE homolog of the American cockroach, Periplaneta americana, called PaTipE. Like DmTipE, PaTipE mRNAs are ubiquitously expressed. Surprisingly, PaTipE mRNA was undetectable in neurosecretory cells identified as dorsal unpaired median neurons. Phylogenetic analysis placed this new sequence in TipE clade, indicating an independent evolution from a common ancestor. Contrary to previous reports, our data indicate that the auxiliary subunits of insect Nav channels are very distant from the mammalian BKCa auxiliary subunits. To decipher the functional roles of PaTipE, we characterized the gating properties of DmNav1-1 channels co-expressed with DmTipE or PaTipE, in Xenopus oocytes. Compared to DmTipE, PaTipE increased Na(+) currents by a 4.2-fold. The voltage-dependence of steady-state fast inactivation of DmNav1-1/PaTipE channels was shifted by 5.8 mV to more negative potentials than that of DmNav1-1/DmTipE channels. DmNav1-1/PaTipE channels recovered 3.2-fold slower from the fast-inactivated state than DmNav1-1/DmTipE channels. In conclusion, this study supports that the insect Nav auxiliary subunits share functional features with their mammalian counterparts, although structurally and phylogenetically distant.
Collapse
Affiliation(s)
- Céline M Bourdin
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC, INRA 1330, SFR QUASAV n° 4207, Université d'Angers, UFR Sciences, 2 boulevard Lavoisier, F-49045, Angers Cedex, France
| | - Nathalie C Guérineau
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214, INSERM U1083, UFR de Sciences Médicales, Université d'Angers, rue Haute de Reculée, F-49045, Angers Cedex, France; Institut de Génomique Fonctionnelle, UMR CNRS 5203, INSERM U661, Université de Montpellier, 141 rue de la Cardonille, F-34094, Montpellier Cedex 5, France
| | - Laurence Murillo
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC, INRA 1330, SFR QUASAV n° 4207, Université d'Angers, UFR Sciences, 2 boulevard Lavoisier, F-49045, Angers Cedex, France; Laboratoire LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, F-17000, La Rochelle, France
| | - Sophie Quinchard
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC, INRA 1330, SFR QUASAV n° 4207, Université d'Angers, UFR Sciences, 2 boulevard Lavoisier, F-49045, Angers Cedex, France
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, 106 CIPS, MI 48824, USA
| | - Christian Legros
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214, INSERM U1083, UFR de Sciences Médicales, Université d'Angers, rue Haute de Reculée, F-49045, Angers Cedex, France.
| |
Collapse
|
8
|
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS. Molecular biology of insect sodium channels and pyrethroid resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:1-17. [PMID: 24704279 PMCID: PMC4484874 DOI: 10.1016/j.ibmb.2014.03.012] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 05/06/2023]
Abstract
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.
Collapse
Affiliation(s)
- Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA.
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Frank Rinkevich
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Peng Xu
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Lingxin Wang
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Kristopher Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
9
|
Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS, Dong K. Voltage-Gated Sodium Channels as Insecticide Targets. ADVANCES IN INSECT PHYSIOLOGY 2014; 46:389-433. [PMID: 29928068 PMCID: PMC6005695 DOI: 10.1016/b978-0-12-417010-0.00005-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Voltage-gated sodium channels are critical for the generation and propagation of action potentials. They are the primary target of several classes of insecticides, including DDT, pyrethroids and sodium channel blocker insecticides (SCBIs). DDT and pyrethroids preferably bind to open sodium channels and stabilize the open state, causing prolonged currents. In contrast, SCBIs block sodium channels by binding to the inactivated state. Many sodium channel mutations are associated with knockdown resistance (kdr) to DDT and pyrethroids in diverse arthropod pests. Functional characterization of kdr mutations together with computational modelling predicts dual pyrethroid receptor sites on sodium channels. In contrast, the molecular determinants of the SCBI receptor site remain largely unknown. In this review, we summarize current knowledge about the molecular mechanisms of action of pyrethroids and SCBIs, and highlight the differences in the molecular interaction of these insecticides with insect versus mammalian sodium channels.
Collapse
Affiliation(s)
- Kristopher S Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Vic¸osa, Vic¸osa, Minas Gerais, Brasil
| | - Vincent L Salgado
- BASF Agricultural Products, BASF Corporation, Research Triangle Park, North Carolina, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Soderlund DM. State-Dependent Modification of Voltage-Gated Sodium Channels by Pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2010; 97:78-86. [PMID: 20652092 PMCID: PMC2905833 DOI: 10.1016/j.pestbp.2009.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pyrethroids disrupt nerve function by altering the rapid kinetic transitions between conducting and nonconducting states of voltage-gated sodium channels that underlie the generation of nerve action potentials. Recent studies of pyrethroid action on cloned insect and mammalian sodium channel isoforms expressed in Xenopus laevis oocytes show that in some cases pyrethroid modification is either absolutely dependent on or significantly enhanced by repeated channel activation. These use-dependent effects have been interpreted as evidence of preferential binding of at least some pyrethroids to the open, rather than resting, state of the sodium channel. This paper reviews the evidence for state-dependent modification of insect and mammalian sodium channels expressed in oocytes by pyrethroids and considers the implications of state-dependent effects for understanding the molecular mechanism of pyrethroid action and the development and testing of models of the pyrethroid receptor.
Collapse
Affiliation(s)
- David M. Soderlund
- Corresponding author: Department of Entomology, New York State Agricultural Experiment Station, Cornell University, 630 W. North Street, Geneva, NY 14456-1371. Tel: (315) 787-2364; Fax: (315) 787-2326;
| |
Collapse
|
11
|
Tseng TT, McMahon AM, Johnson VT, Mangubat EZ, Zahm RJ, Pacold ME, Jakobsson E. Sodium channel auxiliary subunits. J Mol Microbiol Biotechnol 2007; 12:249-62. [PMID: 17587873 DOI: 10.1159/000099646] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.
Collapse
Affiliation(s)
- Tsai-Tien Tseng
- Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stühmer W, Tytgat J, Gurevitz M. The differential preference of scorpion α-toxins for insect or mammalian sodium channels: Implications for improved insect control. Toxicon 2007; 49:452-72. [PMID: 17215013 DOI: 10.1016/j.toxicon.2006.11.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
Receptor site-3 on voltage-gated sodium channels is targeted by a variety of structurally distinct toxins from scorpions, sea anemones, and spiders whose typical action is the inhibition of sodium current inactivation. This site interacts allosterically with other topologically distinct receptors that bind alkaloids, lipophilic polyether toxins, pyrethroids, and site-4 scorpion toxins. These features suggest that design of insecticides with specificity for site-3 might be rewarding due to the positive cooperativity with other toxins or insecticidal agents. Yet, despite the central role of scorpion alpha-toxins in envenomation and their vast use in the study of channel functions, molecular details on site-3 are scarce. Scorpion alpha-toxins vary greatly in preference for sodium channels of insects and mammals, and some of them are highly active on insects. This implies that despite its commonality, receptor site-3 varies on insect vs. mammalian channels, and that elucidation of these differences could potentially be exploited for manipulation of toxin preference. This review provides current perspectives on (i) the classification of scorpion alpha-toxins, (ii) their mode of interaction with sodium channels and pharmacological divergence, (iii) molecular details on their bioactive surfaces and differences associated with preference for channel subtypes, as well as (iv) a summary of the present knowledge about elements involved in constituting receptor site-3. These details, combined with the variations in allosteric interactions between site-3 and the other receptor sites on insect and mammalian sodium channels, may be useful in new strategies of insect control and future design of anti-insect selective ligands.
Collapse
Affiliation(s)
- Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Derst C, Walther C, Veh RW, Wicher D, Heinemann SH. Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE. Biochem Biophys Res Commun 2005; 339:939-48. [PMID: 16325765 DOI: 10.1016/j.bbrc.2005.11.096] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/12/2005] [Indexed: 11/25/2022]
Abstract
TipE is an auxiliary subunit of the Drosophila Para sodium channel. Here we describe four sequences, TEH1-4, homologous to TipE in the Drosophila melanogaster genome, harboring all typical structures of both TipE and the beta-Subunit family of big-conductance Ca(2+)-activated potassium channels: short cytosolic N- and C-terminal stretches, two transmembrane domains, and a large extracellular loop with two disulfide bonds. Whereas TEH1 and TEH2 lack the TipE-specific extension in the extracellular loop, both TEH3 and TEH4 possess two extracellular EGF-like domains. A CNS-specific expression was found for TEH1, while TEH2-4 were more widely expressed. The genes for TEH2-4 are localized close to the tipE gene on chromosome 3L. Coexpression of TEH subunits with Para in Xenopus oocytes showed a strong (30-fold, TEH1), medium (5- to 10-fold, TEH2 and TEH3), or no (TEH4) increase in sodium current amplitude, while TipE increased the current 20-fold. In addition, steady-state inactivation and the recovery from fast inactivation were altered by coexpression of Para with TEH1. We conclude that members of the TEH-family are auxiliary subunits for Para sodium channels and possibly other ion channels.
Collapse
Affiliation(s)
- Christian Derst
- Center for Anatomy, Charité Berlin, Philippstr. 12, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB. Ion channels: molecular targets of neuroactive insecticides. INVERTEBRATE NEUROSCIENCE 2005; 5:119-33. [PMID: 16172884 DOI: 10.1007/s10158-005-0004-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.
Collapse
Affiliation(s)
- Valérie Raymond-Delpech
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | | | | | | | |
Collapse
|
15
|
Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:563-577. [PMID: 12770575 DOI: 10.1016/s0965-1748(03)00023-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The term "knockdown resistance" is used to describe cases of resistance to diphenylethane (e.g. DDT) and pyrethroid insecticides in insects and other arthropods that result from reduced sensitivity of the nervous system. Knockdown resistance, first identified and characterized in the house fly (Musca domestica) in the 1950's, remains a threat to the continued usefulness of pyrethroids in the control of many pest species. Research since 1990 has provided a wealth of new information on the molecular basis of knockdown resistance. This paper reviews these recent developments with emphasis on the results of genetic linkage analyses, the identification of gene mutations associated with knockdown resistance, and the functional characterization of resistance-associated mutations. Results of these studies identify voltage-sensitive sodium channel genes orthologous to the para gene of Drosophila melanogaster as the site of multiple knockdown resistance mutations and define the molecular mechanisms by which these mutations cause pyrethroid resistance. These results also provide new insight into the mechanisms by which pyrethroids modify the function of voltage-sensitive sodium channels.
Collapse
Affiliation(s)
- D M Soderlund
- Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA.
| | | |
Collapse
|
16
|
Vais H, Williamson MS, Devonshire AL, Usherwood PN. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. PEST MANAGEMENT SCIENCE 2001; 57:877-888. [PMID: 11695180 DOI: 10.1002/ps.392] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent progress in the cloning of alpha (para) and beta (TipE) Na channel sub-units from Drosophila melanogaster (fruit fly) and Musca domestica (housefly) have facilitated functional expression studies of insect Na channels in Xenopus laevis oocytes, assayed by voltage clamp techniques. The effects of Type I and Type III pyrethroids on the biophysical properties of these channels are critically reviewed. Pyrethroid resistance mutations (termed kdr and super-kdr) that reduce the sensitivity of the insect Na channel to pyrethroids have been identified in a range of insect species. Some of these mutations (e.g. L1014F, M918T and T929I) have been incorporated into the para Na channel of Drosophila, either individually or in combination, to investigate their effects on the sensitivity of this channel to pyrethroids. The kdr mutation (L1014F) shifts the voltage dependence of both activation and steady-state inactivation by approximately 5 mV towards more positive potentials and facilitates Na channel inactivation. Incorporation of the super-kdr mutation (M918T) into the Drosophila Na channel also increases channel inactivation and causes a > 100-fold reduction in deltamethrin sensitivity. These effects are shared by T929I, an alternative mutation that confers super-kdr-like resistance. Parallel studies have been undertaken using the rat IIA Na channel to investigate the molecular basis for the low sensitivity of mammalian brain Na channels to pyrethroids. Rat IIA channels containing the mutation L1014F exhibit a shift in their mid-point potential for Na activation, but their overall sensitivity to permethrin remains similar to that of the wild-type rat channel (i.e. both are 1000-fold less sensitive than the wild-type insect channel). Mammalian neuronal Na channels have an isoleucine rather than a methionine at the position (874) corresponding to the super-kdr (M918) residue of the insect channel. Replacement of the isoleucine of the wild-type rat IIA Na channel with a methionine (I874M) increases deltamethrin sensitivity 100-fold. In this way, studies of wild-type and mutant Na channels of insects and mammals are providing a molecular understanding of kdr and super-kdr resistance in insects, and of the low pyrethroid sensitivity of most mammalian Na channels. They are also giving valuable insights into the binding sites for pyrethroids on these channels.
Collapse
Affiliation(s)
- H Vais
- Division of Molecular Toxicology, School of Life and Environmental Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
17
|
Lee SH, Soderlund DM. The V410M mutation associated with pyrethroid resistance in Heliothis virescens reduces the pyrethroid sensitivity of house fly sodium channels expressed in Xenopus oocytes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:19-29. [PMID: 11102831 DOI: 10.1016/s0965-1748(00)00089-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some strains of Heliothis virescens carry a novel sodium channel mutation, corresponding to the replacement of Val410 by Met (designated V410M) in the house fly Vssc1 sodium channel, that is genetically and physiologically associated with pyrethroid resistance. To test the functional significance of this mutation, we created a house fly Vssc1 sodium channel containing the V410M mutation by site-directed mutagenesis, expressed wildtype and specifically mutated sodium channels in Xenopus laevis oocytes, and evaluated the effects of the V410M mutation on the functional and pharmacological properties of the expressed channels by two-electrode voltage clamp. The V410M mutation caused depolarizing shifts of approximately 9mV and approximately 5mV in the voltage dependence of activation and steady-state inactivation, respectively, of Vssc1 sodium channels. The V410M mutation also reduced the sensitivity of Vssc1 sodium channels to the pyrethroid cismethrin at least 10-fold and accelerated the decay of cismethrin-induced sodium tail currents. The degree of resistance conferred by the V410M mutation in the present study is sufficient to account for the degree of pyrethroid resistance in H. virescens that is associated with this mutation. Although Val410 is located in a sodium channel segment identified as part of the binding site for batrachotoxin, the V410M mutation did not alter the sensitivity of house fly sodium channels to batrachotoxin. The effects of the V410M mutation on the voltage dependence and cismethrin sensitivity of Vssc1 sodium channels were indistinguishable from those caused by another sodium channel point mutation, replacement of Leu1014 by Phe (L1014F), that is the cause of knockdown resistance to pyrethroids in the house fly. The positions of the V410M and L1014F mutations in models of the tertiary structure of sodium channels suggest that the pyrethroid binding site on the sodium channel alpha subunit is located at the interface between sodium channel domains I and II.
Collapse
Affiliation(s)
- S H Lee
- Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | |
Collapse
|