1
|
Li J, Qin Y, Shen C, Zhang J, Tu S, Yang J, Wang Y, Zhou R, Zhang K, Chen J, Yang W. A new miniMOS tool kit capable of visualizing single copy insertion in C. elegans. PeerJ 2023; 11:e15433. [PMID: 37214099 PMCID: PMC10199674 DOI: 10.7717/peerj.15433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The miniMOS technique has been widely used in the C. elegans community to generate single copy insertions. A worm is considered as a potential insertion candidate if it is resistant to G418 antibiotics and does not express a co-injected fluorescence marker. If the expression of the extrachromosomal array is very low, it is possible for a worm to be mistakenly identified as a miniMOS candidate, as this low expression level can still confer resistance to G418 without producing a detectable fluorescence signal from the co-injection marker. This may increase the workload for identifying the insertion locus in the subsequent steps. In the present study, we modified the plasmid platform for miniMOS insertion by incorporating a myo-2 promoter-driven TagRFP or a ubiquitous H2B::GFP expression cassette into the targeting vector and introducing two loxP sites flanking the selection cassettes. Based on this new miniMOS tool kit, the removable fluorescence reporters can be used to visualize the single copy insertions, greatly reducing insertion locus identification efforts. In our experience, this new platform greatly facilitates the isolation of the miniMOS mutants.
Collapse
Affiliation(s)
- Jiangyun Li
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuang Qin
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shasha Tu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ruyun Zhou
- Department of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Tochigi, Japan
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Carvalho DO, Costa-da-Silva AL, Petersen V, de Souza MS, Ioshino RS, Marques ICS, Franz AWE, Olson KE, James AA, Capurro ML. Transgene-induced cell death following dengue-2 virus infection in Aedes aegypti. Sci Rep 2023; 13:5958. [PMID: 37045866 PMCID: PMC10097671 DOI: 10.1038/s41598-023-32895-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Dengue viruses (DENVs) are mosquito-borne flaviviruses causing millions of human infections each year and pose a challenge for public health systems worldwide. Aedes aegypti is the principal vector species transmitting DENVs to humans. Controlling Ae. aegypti is difficult due to the abundance of breeding sites and increasing insecticide resistance in the vector populations. Developing new vector control strategies is critical for decreasing the disease burden. One potential approach is genetically replacing Ae. aegypti populations with vector populations highly resistant to DENV transmission. Here, we focus on an alternative strategy for generating dengue 2 virus (DENV-2) resistance in genetically-modified Ae. aegypti in which the mosquitoes express an inactive form of Michelob_x (Mx), an antagonist of the Inhibitor of Apoptosis (IAP), to induce apoptosis in those cells in which actively replicating DENV-2 is present. The inactive form of Mx was flanked by the RRRRSAG cleavage motif, which was recognized by the NS2B/NS3 protease of the infecting DENV-2 thereby releasing and activating Mx which then induced apoptosis. Our transgenic strain exhibited a significantly higher mortality rate than the non-transgenic control when infected with DENV-2. We also transfected a DNA construct containing inactive Mx fused to eGFP into C6/36 mosquito cells and indirectly observed Mx activation on days 3 and 6 post-DENV-2 infections. There were clear signs that the viral NS2B/NS3 protease cleaved the transgene, thereby releasing Mx protein into the cytoplasm, as was confirmed by the detection of eGFP expression in infected cells. The present study represents proof of the concept that virus infection can be used to induce apoptosis in infected mosquito cells.
Collapse
Affiliation(s)
- Danilo O Carvalho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Andre L Costa-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Petersen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Micael Santana de Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaella S Ioshino
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel C S Marques
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Ken E Olson
- Center for Vector-Borne Infectious Diseases (CVID), Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1685, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Margareth L Capurro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications. Naturwissenschaften 2016; 103:64. [DOI: 10.1007/s00114-016-1391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022]
|
4
|
Damasceno JD, Beverley SM, Tosi LRO. A transposon-based tool for transformation and mutagenesis in trypanosomatid protozoa. Methods Mol Biol 2015; 1201:235-245. [PMID: 25388118 PMCID: PMC4287265 DOI: 10.1007/978-1-4939-1438-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of transposable elements to mobilize across genomes and affect the expression of genes makes them exceptional tools for genetic manipulation methodologies. Several transposon-based systems have been modified and incorporated into shuttle mutagenesis approaches in a variety of organisms. We have found that the Mos1 element, a DNA transposon from Drosophila mauritiana, is suitable and readily adaptable to a variety of strategies to the study of trypanosomatid parasitic protozoa. Trypanosomatids are the causative agents of a wide range of neglected diseases in underdeveloped regions of the globe. In this chapter we describe the basic elements and the available protocols for the in vitro use of Mos1 derivatives in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
5
|
Trubitsyna M, Morris ER, Finnegan DJ, Richardson JM. Biochemical characterization and comparison of two closely related active mariner transposases. Biochemistry 2014; 53:682-9. [PMID: 24404958 PMCID: PMC3922039 DOI: 10.1021/bi401193w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
![]()
Most DNA transposons move from one
genomic location to another
by a cut-and-paste mechanism and are useful tools for genomic manipulations.
Short inverted repeat (IR) DNA sequences marking each end of the transposon
are recognized by a DNA transposase (encoded by the transposon itself).
This enzyme cleaves the transposon ends and integrates them at a new
genomic location. We report here a comparison of the biophysical and
biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own
IR sequences, as well as cross-recognition of their inverted repeat
sequences. We found that, like Mos1, untagged recombinant Mboumar-9
transposase is a dimer and forms a stable complex with inverted repeat
DNA in the presence of Mg2+ ions. Mboumar-9 transposase
cleaves its inverted repeat DNA in the manner observed for Mos1 transposase.
There was minimal cross-recognition of IR sequences between Mos1 and
Mboumar-9 transposases, despite these enzymes having 68% identical
amino acid sequences. Transposases sharing common biophysical and
biochemical properties, but retaining recognition specificity toward
their own IR, are a promising platform for the design of chimeric
transposases with predicted and improved sequence recognition.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- School of Biological Sciences, University of Edinburgh , The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
6
|
Steel JJ, Franz AWE, Sanchez-Vargas I, Olson KE, Geiss BJ. Subgenomic reporter RNA system for detection of alphavirus infection in mosquitoes. PLoS One 2013; 8:e84930. [PMID: 24367703 PMCID: PMC3868651 DOI: 10.1371/journal.pone.0084930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/29/2013] [Indexed: 01/01/2023] Open
Abstract
Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.
Collapse
Affiliation(s)
- J. Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Irma Sanchez-Vargas
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ken E. Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
8
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
9
|
Abstract
The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.
Collapse
|
10
|
Warren IA, Fowler K, Smith H. Germline transformation of the stalk-eyed fly, Teleopsis dalmanni. BMC Mol Biol 2010; 11:86. [PMID: 21080934 PMCID: PMC2999598 DOI: 10.1186/1471-2199-11-86] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stalk-eyed flies of the family Diopsidae have proven to be an excellent model organism for studying the evolution of ornamental sexual traits. In diopsid flies the eyes and antennae are borne at the end of lateral head projections called 'eye-stalks'. Eyespan, the distance between the eyes, and the degree of sexual dimorphism in eyespan vary considerably between species and several sexually dimorphic species show sexual selection through female mate preference for males with exaggerated eyespan. Relatively little is known about the molecular genetic basis of intra- or inter-species variation in eyespan, eye-stalk development or growth regulation in diopsids. Molecular approaches including comparative developmental analyses, EST screening and QTL mapping have identified potential candidate loci for eyespan regulation in the model species Teleopsis dalmanni. Functional analyses of these genes to confirm and fully characterise their roles in eye-stalk growth require the development of techniques such as germline transformation to manipulate gene activity in vivo. RESULTS We used in vivo excision assays to identify transposon vector systems with the activity required to mediate transgenesis in T. dalmanni. Mariner based vectors showed no detectable excision while both Minos and piggyBac were active in stalk-eyed fly embryos. Germline transformation with an overall efficiency of 4% was achieved using a Minos based vector and the 3xP3-EGFP marker construct. Chromosomal insertion of constructs was confirmed by Southern blot analysis. Both autosomal and X-linked inserts were recovered. A homozygous stock, established from one of the X-linked inserts, has maintained stable expression for eight generations. CONCLUSIONS We have performed stable germline transformation of a stalk-eyed fly, T. dalmanni. This is the first transgenic protocol to be developed in an insect species that exhibits an exaggerated male sexual trait. Transgenesis will enable the development of a range of techniques for analysing gene function in this species and so provide insight into the mechanisms underlying the development of a morphological trait subject to sexual selection. Our X-linked insertion line will permit the sex of live larvae to be determined. This will greatly facilitate the identification of genes which are differentially expressed during eye-stalk development in males and females.
Collapse
Affiliation(s)
- Ian A Warren
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | | | | |
Collapse
|
11
|
Smith RC, Atkinson PW. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti. Genetica 2010; 139:7-22. [PMID: 20596755 PMCID: PMC3030943 DOI: 10.1007/s10709-010-9459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 04/09/2010] [Indexed: 11/29/2022]
Abstract
The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti.
Collapse
Affiliation(s)
- Ryan C Smith
- Graduate Program in Cell, Molecular, Developmental Biology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
12
|
Lampe DJ. Bacterial genetic methods to explore the biology of mariner transposons. Genetica 2009; 138:499-508. [PMID: 19711186 DOI: 10.1007/s10709-009-9401-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Mariners are small DNA mediated transposons of eukaryotes that fortuitously function in bacteria. Using bacterial genetics, it is possible to study a variety of properties of mariners, including transpositional ability, dominant-negative regulation, overexpresson inhibition, and the function of cis-acting sequences like the inverted terminal repeats. In conjunction with biochemical techniques, the structure of the transposase can be elucidated and the activity of the elements can be improved for genetic tool use. Finally, it is possible to uncover functional transposase genes directly from genomes given a suitable bacterial genetic screen.
Collapse
Affiliation(s)
- David J Lampe
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15116, USA.
| |
Collapse
|
13
|
Abstract
Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species.
Collapse
Affiliation(s)
- Xiao-Guang Chen
- Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, People's Republic of China
| | | | | |
Collapse
|
14
|
Sethuraman N, Fraser MJ, Eggleston P, O’Brochta DA. Post-integration stability of piggyBac in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:941-51. [PMID: 17681233 PMCID: PMC1986768 DOI: 10.1016/j.ibmb.2007.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/19/2007] [Accepted: 05/01/2007] [Indexed: 05/10/2023]
Abstract
The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable.
Collapse
Affiliation(s)
- Nagaraja Sethuraman
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | - Malcolm J. Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - David. A O’Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
- Corresponding Author: Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, 240-314-6343 office, 240-314-6255 fax,
| |
Collapse
|
15
|
Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LRO. Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 2006; 134:511-22. [PMID: 17169165 DOI: 10.1017/s0031182006001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/06/2022]
Abstract
Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.
Collapse
Affiliation(s)
- F M Squina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
16
|
Pledger DW, Coates CJ. Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1199-207. [PMID: 16102425 DOI: 10.1016/j.ibmb.2005.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/23/2005] [Accepted: 06/10/2005] [Indexed: 05/04/2023]
Abstract
The development of genetic strategies to control the spread of mosquito-borne diseases through the use of class II transposons has been hampered by suboptimal rates of transformation and the absence of post-integration mobility for all transposons evaluated to date. Two Mos1 mariner transposase mutants were produced by the site-directed mutagenesis of amino acids, E137 and E264, to K and R, respectively. The effects of these mutations on the transpositional activities of Mos1-derived transposon constructs were evaluated by interplasmid transposition assays in Escherichia coli and Aedes aegypti. The transpositional activities of two Mos1 transposons, one with imperfect wild type inverted terminal repeats (ITRs) and another that contained two perfectly matched 3' ITRs, were increased when the mutant transposases were supplied in trans in E. coli. The use of the perfect repeat transposon with wild type transposase did not result in an increase in transposition frequency in Ae. aegypti. However, an improvement in the integrity of the transposition process did occur, as evidenced by a lower rate of recombination events in which the transgene was transferred. An increase in the transpositional activity of the perfect repeat transposon was observed in the mosquito in the presence of either mutant transposase, and in the case of the E264R transposase, the observed increase in transposition frequency was also accompanied by a further improvement in the integrity of transposition. We discuss the possible contributions of these mutant residues to the transposition of the perfect repeat Mos1 transposon, the implications of these results with respect to the molecular evolution of Mos1, and the potential uses of the perfect repeat transposon and mutant transposases for the improvement of Mos1 mediated germ line transformation of Ae. aegypti.
Collapse
Affiliation(s)
- David W Pledger
- Department of Biology (MSC-158), Texas A&M University, Kingsville, TX 78363, USA
| | | |
Collapse
|
17
|
Barry EG, Witherspoon DJ, Lampe DJ. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics 2004; 166:823-33. [PMID: 15020471 PMCID: PMC1470758 DOI: 10.1534/genetics.166.2.823] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.
Collapse
Affiliation(s)
- Elizabeth G Barry
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
18
|
Tu Z, Coates C. Mosquito transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:631-644. [PMID: 15242704 DOI: 10.1016/j.ibmb.2004.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
The completion of the genome assembly for the African malaria mosquito, Anopheles gambiae, and continuing genomic efforts for the yellow fever mosquito, Aedes aegypti, have allowed the use of bioinformatics tools to identify and characterize a diverse array of transposable elements (TEs) in these and other mosquito genomes. An overview of the types and number of both RNA-mediated and DNA-mediated TEs that are found in mosquito genomes is presented. A number of novel and interesting TEs from these species are discussed in more detail. These findings have significant implications for our understanding of mosquito genome evolution and for future modifications of natural mosquito populations through the use of TE-mediated genetic transformation.
Collapse
Affiliation(s)
- Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
19
|
Kramer MG. Recent advances in transgenic arthropod technology. BULLETIN OF ENTOMOLOGICAL RESEARCH 2004; 94:95-110. [PMID: 15153293 DOI: 10.1079/ber2003290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to insert foreign genes into arthropod genomes has led to a diverse set of potential applications for transgenic arthropods, many of which are designed to advance public health or improve agricultural production. New techniques for expressing foreign genes in arthropods have now been successfully used in at least 18 different genera. However, advances in field biology are lagging far behind those in the laboratory, and considerable work is needed before deployment in nature can be a reality. A mechanism to drive the gene of interest though a natural population must be developed and thoroughly evaluated before any field release, but progress in this area has been limited. Likewise, serious consideration of potential risks associated with deployment in nature has been lacking. This review gives an overview of the most promising techniques for expressing foreign genes in arthropods, considers the potential risks associated with their deployment, and highlights the areas of research that are most urgently needed for the field to advance out of the laboratory and into practice.
Collapse
Affiliation(s)
- M G Kramer
- US Environmental Protection Agency, Office of Science Coordination and Policy, Washington, DC 20460, USA.
| |
Collapse
|
20
|
Barry EG, Witherspoon DJ, Lampe DJ. A Bacterial Genetic Screen Identifies Functional Coding Sequences of the Insect mariner Transposable Element Famar1 Amplified From the Genome of the Earwig, Forficula auricularia. Genetics 2004. [DOI: 10.1093/genetics/166.2.823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Abstract
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.
Collapse
Affiliation(s)
- Elizabeth G Barry
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - David J Witherspoon
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - David J Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| |
Collapse
|
21
|
O'Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW. Gene vector and transposable element behavior in mosquitoes. J Exp Biol 2003; 206:3823-34. [PMID: 14506218 DOI: 10.1242/jeb.00638] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe development of efficient germ-line transformation technologies for mosquitoes has increased the ability of entomologists to find, isolate and analyze genes. The utility of the currently available systems will be determined by a number of factors including the behavior of the gene vectors during the initial integration event and their behavior after chromosomal integration. Post-integration behavior will determine whether the transposable elements being employed currently as primary gene vectors will be useful as gene-tagging and enhancer-trapping agents. The post-integration behavior of existing insect vectors has not been extensively examined. Mos1 is useful as a primary germ-line transformation vector in insects but is inefficiently remobilized in Drosophila melanogaster and Aedes aegypti. Hermes transforms D. melanogaster efficiently and can be remobilized in this species. This element is also useful for creating transgenic A. aegypti, but its mode of integration in mosquitoes results in the insertion of flanking plasmid DNA. Hermes can be remobilized in the soma of A. aegypti and transposes using a common cut-and-paste mechanism; however, the element does not remobilize in the germ line. piggyBac can be used to create transgenic mosquitoes and occasionally integrates using a mechanism other than a simple cut-and-paste mechanism. Preliminary data suggest that remobilization is infrequent. Minos also functions in mosquitoes and, like the other gene vectors,appears to remobilize inefficiently following integration. These results have implications for future gene vector development efforts and applications.
Collapse
Affiliation(s)
- David A O'Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742-4450, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Atkinson PW, James AA. Germline transformants spreading out to many insect species. ADVANCES IN GENETICS 2002; 47:49-86. [PMID: 12000097 DOI: 10.1016/s0065-2660(02)47002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The past 5 years have witnessed significant advances in our ability to introduce genes into the genomes of insects of medical and agricultural importance. A number of transposable elements now exist that are proving to be sufficiently robust to allow genetic transformation of species within three orders of insects. In particular all of these transposable elements can be used genetically to transform mosquitoes. These developments, together with the use of suitable genes as genetic markers, have enabled several genes and promoters to be transferred between insect species and their effects on the phenotype of the transgenic insect determined. Within a very short period of time, insights into the function of insect promoters in homologous and heterologous insect species are being gained. Furthermore, strategies aimed at ameliorating the harmful effects of pest insects, such as their ability to vector human pathogens, are now being tested in the pest insects themselves. We review the progress that has been made in the development of transgenic technology in pest insect species and conclude that the repertoire of transposable element-based genetic tools, long available to Drosophila geneticists, can now be applied to other insect species. In addition, it is likely that these developments will lead to the generation of pest insects that display a significantly reduced ability to transmit pathogens in the near future.
Collapse
Affiliation(s)
- Peter W Atkinson
- Department of Entomology, University of California, Riverside 92521, USA
| | | |
Collapse
|
23
|
James AA. Engineering mosquito resistance to malaria parasites: the avian malaria model. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1317-1323. [PMID: 12225922 DOI: 10.1016/s0965-1748(02)00094-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genetic approaches to controlling the transmission of mosquito-borne diseases are being developed to augment the available chemical control practices and environmental manipulation methods. Much progress has been made in laboratory-based research that seeks to develop antipathogen or antivector effector genes and methods for genetically manipulating host vector strains. Research is summarized here in the development of a malaria-resistant phenotype using as a model system the avian parasite, Plasmodium gallinaceum, and the mosquito, Aedes aegypti. Robust transformation technology based on a number of transposable elements, the identification of promoter regions derived from endogenous mosquito genes, and the development of single-chain antibodies as effector genes have made it possible to produce malaria-resistant mosquitoes. Future challenges include discovery of methods for spreading antiparasite genes through mosquito populations, determining the threshold levels below which parasite intensities of infection must be held, and defining the circumstances in which a genetic control strategy would be employed in the field.
Collapse
Affiliation(s)
- A A James
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 BioSci II, Irvine, CA 92697-3900, USA.
| |
Collapse
|
24
|
Kapetanaki MG, Loukeris TG, Livadaras I, Savakis C. High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase. Nucleic Acids Res 2002; 30:3333-40. [PMID: 12140317 PMCID: PMC137079 DOI: 10.1093/nar/gkf455] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One of the most frequently encountered problems in transposon-mediated transgenesis is low transformation frequency, often resulting from difficulty in expressing from injected plasmid DNA constructs adequate levels of transposase in embryos. Capped RNA corresponding to the spliced transcript of the Minos transposable element has been synthesized in vitro and shown to be an effective source of transposase protein for Minos transposon mobilization. Transposase produced by this mRNA is shown to catalyze excision of a Minos transposon from plasmid DNA in Medfly embryos. When injected into Drosophila or Medfly embryos, transposase mRNA leads to a several-fold increase in transformation efficiencies compared with injected plasmids expressing transposase. Also, frequent mobilization of a Minos transposon from the X chromosome into autosomes was demonstrated after injections of Minos transposase mRNA into pre-blastoderm Drosophila embryos. The high rates of transposition achieved with transposase mRNA suggest that this is a powerful system for genetic applications in Drosophila and other insects.
Collapse
Affiliation(s)
- Maria G Kapetanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1527, Vassilika Vouton, Heraklion-Crete 71110, Greece
| | | | | | | |
Collapse
|
25
|
Adelman ZN, Jasinskiene N, James AA. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol 2002; 121:1-10. [PMID: 11985858 DOI: 10.1016/s0166-6851(02)00028-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.
Collapse
Affiliation(s)
- Zachary N Adelman
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
26
|
Atkinson PW, Pinkerton AC, O'Brochta DA. Genetic transformation systems in insects. ANNUAL REVIEW OF ENTOMOLOGY 2001; 46:317-346. [PMID: 11112172 DOI: 10.1146/annurev.ento.46.1.317] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The past 5 years have witnessed the emergence of techniques that permit the stable genetic transformation of a number of non-drosophilid insect species. These transposable-element-based strategies, together with virus-based techniques that allow the expression of genes to be quickly examined in insects, provide insect scientists with a first generation of genetic tools that can begin to be harnessed to further increase our understanding of gene function and regulation in insects. We review and compare the characteristics of these gene transfer systems and conclude that, although significant progress has been made, these systems still do not meet the requirements of robust genetic tools. We also review risk assessment issues arising from the generation and probable release of genetically engineered insects.
Collapse
Affiliation(s)
- P W Atkinson
- Department of Entomology, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|