1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Udaondo Z, Schilder KA, Blesa ARM, Tena-Garitaonaindia M, Mangana JC, Daddaoua A. Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks. Int J Mol Sci 2025; 26:4677. [PMID: 40429820 DOI: 10.3390/ijms26104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidin, 18008 Granada, Spain
| | - Kelsey Aguirre Schilder
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Ana Rosa Márquez Blesa
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - José Canto Mangana
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Pharmacy Services, A.S. Hospital de Poniente de Almería, 04700 El Ejido, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (IBS), 18014 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|
3
|
Ahator SD, Wenzl K, Hegstad K, Lentz CS, Johannessen M. Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems 2024; 9:e0013024. [PMID: 38470253 PMCID: PMC11019936 DOI: 10.1128/msystems.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predominant methicillin-resistant S. aureus strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, in vitro infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from Bacillus subtilis and the modeled structures of the four NarL TCSs in S. aureus, we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in S. aureus, shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Karoline Wenzl
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Paul S, Olymon K, Martinez GS, Sarkar S, Yella VR, Kumar A. MLDSPP: Bacterial Promoter Prediction Tool Using DNA Structural Properties with Machine Learning and Explainable AI. J Chem Inf Model 2024; 64:2705-2719. [PMID: 38258978 DOI: 10.1021/acs.jcim.3c02017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Bacterial promoters play a crucial role in gene expression by serving as docking sites for the transcription initiation machinery. However, accurately identifying promoter regions in bacterial genomes remains a challenge due to their diverse architecture and variations. In this study, we propose MLDSPP (Machine Learning and Duplex Stability based Promoter prediction in Prokaryotes), a machine learning-based promoter prediction tool, to comprehensively screen bacterial promoter regions in 12 diverse genomes. We leveraged biologically relevant and informative DNA structural properties, such as DNA duplex stability and base stacking, and state-of-the-art machine learning (ML) strategies to gain insights into promoter characteristics. We evaluated several machine learning models, including Support Vector Machines, Random Forests, and XGBoost, and assessed their performance using accuracy, precision, recall, specificity, F1 score, and MCC metrics. Our findings reveal that XGBoost outperformed other models and current state-of-the-art promoter prediction tools, namely Sigma70pred and iPromoter2L, achieving F1-scores >95% in most systems. Significantly, the use of one-hot encoding for representing nucleotide sequences complements these structural features, enhancing our XGBoost model's predictive capabilities. To address the challenge of model interpretability, we incorporated explainable AI techniques using Shapley values. This enhancement allows for a better understanding and interpretation of the predictions of our model. In conclusion, our study presents MLDSPP as a novel, generic tool for predicting promoter regions in bacteria, utilizing original downstream sequences as nonpromoter controls. This tool has the potential to significantly advance the field of bacterial genomics and contribute to our understanding of gene regulation in diverse bacterial systems.
Collapse
Affiliation(s)
- Subhojit Paul
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Gustavo Sganzerla Martinez
- Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
- Pediatrics, Izaak Walton Killam (IWK) Health Center, Canadian Center for Vaccinology (CCfV), Halifax, Nova Scotia B3H 4H7, Canada
| | - Sharmilee Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur 522302, Andhra Pradesh, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
5
|
Chaves-Olarte E, Meza-Torres J, Herrera-Rodríguez F, Lizano-González E, Suárez-Esquivel M, Baker KS, Rivas-Solano O, Ruiz-Villalobos N, Villalta-Romero F, Cheng HP, Walker GC, Cloeckaert A, Thomson NR, Frisan T, Moreno E, Guzmán-Verri C. A sensor histidine kinase from a plant-endosymbiont bacterium restores the virulence of a mammalian intracellular pathogen. Microb Pathog 2023; 185:106442. [PMID: 37944675 PMCID: PMC10740080 DOI: 10.1016/j.micpath.2023.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/22/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Alphaproteobacteria include organisms living in close association with plants or animals. This interaction relies partly on orthologous two-component regulatory systems (TCS), with sensor and regulator proteins modulating the expression of conserved genes related to symbiosis/virulence. We assessed the ability of the exoS+Sm gene, encoding a sensor protein from the plant endosymbiont Sinorhizobium meliloti to substitute its orthologous bvrS in the related animal/human pathogen Brucella abortus. ExoS phosphorylated the B. abortus regulator BvrR in vitro and in cultured bacteria, showing conserved biological function. Production of ExoS in a B. abortus bvrS mutant reestablished replication in host cells and the capacity to infect mice. Bacterial outer membrane properties, the production of the type IV secretion system VirB, and its transcriptional regulators VjbR and BvrR were restored as compared to parental B. abortus. These results indicate that conserved traits of orthologous TCS from bacteria living in and sensing different environments are sufficient to achieve phenotypic plasticity and support bacterial survival. The knowledge of bacterial genetic networks regulating host interactions allows for an understanding of the subtle differences between symbiosis and parasitism. Rewiring these networks could provide new alternatives to control and prevent bacterial infection.
Collapse
Affiliation(s)
- Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Jazmín Meza-Torres
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabiola Herrera-Rodríguez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Lizano-González
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Kate S Baker
- Parasites and Microbes from Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Olga Rivas-Solano
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Nazareth Ruiz-Villalobos
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Fabián Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Hai-Ping Cheng
- Biological Sciences Department, Lehman College, The City University of New York, New York, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nicholas R Thomson
- Parasites and Microbes from Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Caterina Guzmán-Verri
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
6
|
Sankhe GD, Raja R, Singh DP, Bheemireddy S, Rana S, Athira PJ, Dixit NM, Saini DK. Sequestration of histidine kinases by non-cognate response regulators establishes a threshold level of stimulation for bacterial two-component signaling. Nat Commun 2023; 14:4483. [PMID: 37491529 PMCID: PMC10368727 DOI: 10.1038/s41467-023-40095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs. We study five TCSs of Mycobacterium tuberculosis and find, for all of them, non-cognate RRs that show higher affinity than cognate RRs for HK~Ps. Indeed, in vitro assays show that HK~Ps preferentially bind higher affinity non-cognate RRs and get sequestered. Mathematical modelling indicates that this sequestration would introduce a 'threshold' stimulus strength for eliciting responses, thereby preventing responses to weak signals. Finally, we construct tunable expression systems in Mycobacterium bovis BCG to show that higher affinity non-cognate RRs suppress responses in vivo.
Collapse
Affiliation(s)
- Gaurav D Sankhe
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Devendra Pratap Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bengaluru, India
| | - P J Athira
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Narendra M Dixit
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
7
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
8
|
Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol 2023; 11:1178680. [PMID: 37122866 PMCID: PMC10133563 DOI: 10.3389/fbioe.2023.1178680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Toxic heavy metal accumulation is one of anthropogenic environmental pollutions, which poses risks to human health and ecological systems. Conventional heavy metal remediation approaches rely on expensive chemical and physical processes leading to the formation and release of other toxic waste products. Instead, microbial bioremediation has gained interest as a promising and cost-effective alternative to conventional methods, but the genetic complexity of microorganisms and the lack of appropriate genetic engineering technologies have impeded the development of bioremediating microorganisms. Recently, the emerging synthetic biology opened a new avenue for microbial bioremediation research and development by addressing the challenges and providing novel tools for constructing bacteria with enhanced capabilities: rapid detection and degradation of heavy metals while enhanced tolerance to toxic heavy metals. Moreover, synthetic biology also offers new technologies to meet biosafety regulations since genetically modified microorganisms may disrupt natural ecosystems. In this review, we introduce the use of microorganisms developed based on synthetic biology technologies for the detection and detoxification of heavy metals. Additionally, this review explores the technical strategies developed to overcome the biosafety requirements associated with the use of genetically modified microorganisms.
Collapse
Affiliation(s)
| | | | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
9
|
BfmRS encodes a regulatory system involved in light signal transduction modulating motility and desiccation tolerance in the human pathogen Acinetobacter baumannii. Sci Rep 2023; 13:175. [PMID: 36604484 PMCID: PMC9814549 DOI: 10.1038/s41598-022-26314-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that Acinetobacter baumannii as well as other relevant clinical bacterial pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, perceive and respond to light at 37 °C, the normal temperature in mammal hosts. In this work, we present evidence indicating that the two-component system BfmRS transduces a light signal in A. baumannii at this temperature, showing selective involvement of the BfmR and BfmS components depending on the specific cellular process. In fact, both BfmR and BfmS participate in modulation of motility by light, while only BfmR is involved in light regulation of desiccation tolerance in this microorganism. Neither BfmR nor BfmS contain a photoreceptor domain and then most likely, the system is sensing light indirectly. Intriguingly, this system inhibits blsA expression at 37 °C, suggesting antagonistic functioning of both signaling systems. Furthermore, we present evidence indicating that the phosphorylatable form of BfmR represses motility. Overall, we provide experimental evidence on a new biological function of this multifaceted system that broadens our understanding of A. baumannii's physiology and responses to light.
Collapse
|
10
|
Abstract
Transcription factors (TFs) regulate transcription by binding to the specific sequences at the promoter region. However, the mechanisms and functions of TFs binding within the coding sequences (CDS) remain largely elusive in prokaryotes. To this end, we collected 409 data sets for bacterial TFs, including 104 chromatin immunoprecipitation sequencing (ChIP-seq) assays and 305 data sets from the systematic evolution of ligands by exponential enrichment (SELEX) in seven model bacteria. Interestingly, these TFs displayed the same binding capabilities for both coding and intergenic regions. Subsequent biochemical and genetic experiments demonstrated that several TFs bound to the coding regions and regulated the transcription of the binding or adjacent genes. Strand-specific RNA sequencing revealed that these CDS-binding TFs regulated the activity of the cryptic promoters, resulting in the altered transcription of the corresponding antisense RNA. TF RhpR hindered the transcriptional elongation of a subgenic transcript within a CDS. A ChIP-seq and Ribo-seq coanalysis revealed that RhpR influenced the translational efficiency of binding genes. Taken together, the present study reveals three regulatory mechanisms of CDS-bound TFs within individual genes, operons, and antisense RNAs, which demonstrate the variability of the regulatory mechanisms of TFs and expand upon the complexity of bacterial transcriptomes.
Collapse
|
11
|
Oliveira LT, Alves LA, Harth-Chu EN, Nomura R, Nakano K, Mattos-Graner RO. VicRK and CovR polymorphisms in Streptococcus mutans strains associated with cardiovascular infections. J Med Microbiol 2021; 70. [PMID: 34939562 DOI: 10.1099/jmm.0.001457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. Streptococcus mutans, a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections.Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR.Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes.Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159.Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains.Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.
Collapse
Affiliation(s)
- Letícia T Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
12
|
Acinetobacter baumannii regulates its stress responses via the BfmRS two-component regulatory system. J Bacteriol 2021; 204:e0049421. [PMID: 34871031 DOI: 10.1128/jb.00494-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and in the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system, BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pili/fimbriae production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. Importance Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism's ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the γ-proteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii.
Collapse
|
13
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
15
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
16
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
17
|
The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus. J Bacteriol 2021; 203:e0019921. [PMID: 34124942 DOI: 10.1128/jb.00199-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-component signaling systems (TCSs) are comprised of a sensory histidine kinase and a response regulator protein. In response to environmental changes, sensor kinases directly phosphorylate their cognate response regulator to affect gene expression. Bacteria typically express multiple TCSs that are insulated from one another and regulate distinct physiological processes. There are examples of cross-regulation between TCSs, but this phenomenon remains relatively unexplored. We have identified regulatory links between the ChvG-ChvI (ChvGI) and NtrY-NtrX (NtrYX) TCSs, which control important and often overlapping processes in alphaproteobacteria, including maintenance of the cell envelope. Deletion of chvG and chvI in Caulobacter crescentus limited growth in defined medium, and a selection for genetic suppressors of this growth phenotype uncovered interactions among chvGI, ntrYX, and ntrZ, which encodes a previously uncharacterized periplasmic protein. Significant overlap in the experimentally defined ChvI and NtrX transcriptional regulons provided support for the observed genetic connections between ntrYX and chvGI. Moreover, we present evidence that the growth defect of strains lacking chvGI is influenced by the phosphorylation state of NtrX and, to some extent, by levels of the TonB-dependent receptor ChvT. Measurements of NtrX phosphorylation in vivo indicated that NtrZ is an upstream regulator of NtrY and that NtrY primarily functions as an NtrX phosphatase. We propose a model in which NtrZ functions in the periplasm to inhibit NtrY phosphatase activity; regulation of phosphorylated NtrX levels by NtrZ and NtrY provides a mechanism to modulate and balance expression of the NtrX and ChvI regulons under different growth conditions. IMPORTANCE TCSs enable bacteria to regulate gene expression in response to physiochemical changes in their environment. The ChvGI and NtrYX TCSs regulate diverse pathways associated with pathogenesis, growth, and cell envelope function in many alphaproteobacteria. We used Caulobacter crescentus as a model to investigate regulatory connections between ChvGI and NtrYX. Our work defined the ChvI transcriptional regulon in C. crescentus and revealed a genetic interaction between ChvGI and NtrYX, whereby modulation of NtrYX signaling affects the survival of cells lacking ChvGI. In addition, we identified NtrZ as a periplasmic inhibitor of NtrY phosphatase activity in vivo. Our work establishes C. crescentus as an excellent model to investigate multilevel regulatory connections between ChvGI and NtrYX in alphaproteobacteria.
Collapse
|
18
|
Multamäki E, Nanekar R, Morozov D, Lievonen T, Golonka D, Wahlgren WY, Stucki-Buchli B, Rossi J, Hytönen VP, Westenhoff S, Ihalainen JA, Möglich A, Takala H. Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling. Nat Commun 2021; 12:4394. [PMID: 34285211 PMCID: PMC8292422 DOI: 10.1038/s41467-021-24676-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
Collapse
Affiliation(s)
- Elina Multamäki
- grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Rahul Nanekar
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Dmitry Morozov
- grid.9681.60000 0001 1013 7965Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Topias Lievonen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - David Golonka
- grid.7384.80000 0004 0467 6972Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Weixiao Yuan Wahlgren
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Brigitte Stucki-Buchli
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jari Rossi
- grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Vesa P. Hytönen
- grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland ,grid.511163.10000 0004 0518 4910Fimlab Laboratories, Tampere, Finland
| | - Sebastian Westenhoff
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A. Ihalainen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Andreas Möglich
- grid.7384.80000 0004 0467 6972Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Heikki Takala
- grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland ,grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
19
|
Chen H, Wang M, Li M, Lian C, Zhou L, Zhang X, Zhang H, Zhong Z, Wang H, Cao L, Li C. A glimpse of deep-sea adaptation in chemosynthetic holobionts: Depressurization causes DNA fragmentation and cell death of methanotrophic endosymbionts rather than their deep-sea Bathymodiolinae host. Mol Ecol 2021; 30:2298-2312. [PMID: 33774874 DOI: 10.1111/mec.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Bathymodiolinae mussels are typical species in deep-sea cold seeps and hydrothermal vents and an ideal model for investigating chemosynthetic symbiosis and the influence of high hydrostatic pressure on deep-sea organisms. Herein, the potential influence of depressurization on DNA fragmentation and cell death in Bathymodiolinae hosts and their methanotrophic symbionts were surveyed using isobaric and unpressurized samples. As a hallmark of cell death, massive DNA fragmentation was observed in methanotrophic symbionts from unpressurized Bathymodiolinae while several endonucleases and restriction enzymes were upregulated. Additionally, genes involved in DNA repair, glucose/methane metabolism as well as two-component regulatory system were also differentially expressed in depressurized symbionts. DNA fragmentation and programmed cell death, however, were rarely detected in the host bacteriocytes owing to the orchestrated upregulation of inhibitor of apoptosis genes and downregulation of caspase genes. Meanwhile, diverse host immune recognition receptors were promoted during depressurization, probably enabling the regain of symbionts. When the holobionts were subjected to a prolonged acclimation at atmospheric pressure, alternations in both the DNA fragmentation and the expression atlas of aforesaid genes were continuously observed in symbionts, demonstrating the persistent influence of depressurization. Contrarily, the host cells demonstrated certain tolerance against depressurization stress as expression level of some immune-related genes returned to the basal level in isobaric samples. Altogether, the present study illustrates the distinct stress responses of Bathymodiolinae hosts and their methanotrophic symbionts against depressurization, which could provide further insight into the deep-sea adaptation of Bathymodiolinae holobionts while highlighting the necessity of using isobaric sampling methods in deep-sea research.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mengna Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Lian
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Cao Q, Yang N, Wang Y, Xu C, Zhang X, Fan K, Chen F, Liang H, Zhang Y, Deng X, Feng Y, Yang CG, Wu M, Bae T, Lan L. Mutation-induced remodeling of the BfmRS two-component system in Pseudomonas aeruginosa clinical isolates. Sci Signal 2020; 13:13/656/eaaz1529. [PMID: 33144518 DOI: 10.1126/scisignal.aaz1529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic mutations are a primary driving force behind the adaptive evolution of bacterial pathogens. Multiple clinical isolates of Pseudomonas aeruginosa, an important human pathogen, have naturally evolved one or more missense mutations in bfmS, which encodes the sensor histidine kinase of the BfmRS two-component system (TCS). A mutant BfmS protein containing both the L181P and E376Q substitutions increased the phosphorylation and thus the transcriptional regulatory activity of its cognate downstream response regulator, BfmR. This reduced acute virulence and enhanced biofilm formation, both of which are phenotypic changes associated with a chronic infection state. The increased phosphorylation of BfmR was due, at least in part, to the cross-phosphorylation of BfmR by GtrS, a noncognate sensor kinase. Other spontaneous missense mutations in bfmS, such as A42E/G347D, T242R, and R393H, also caused a similar remodeling of the BfmRS TCS in P. aeruginosa This study highlights the plasticity of TCSs mediated by spontaneous mutations and suggests that mutation-induced activation of BfmRS may contribute to host adaptation by P. aeruginosa during chronic infections.
Collapse
Affiliation(s)
- Qiao Cao
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nana Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenchen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feifei Chen
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi'an 710127, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Youjun Feng
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | - Lefu Lan
- College of Life Science, Northwest University, Xi'an 710127, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| |
Collapse
|
21
|
Qiao L, Li X, Ke X, Chu J. A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Saccharopolyspora erythraea (S. erythraea) is a Gram-positive bacterium widely used for the production of erythromycin, a potent macrolide antibiotic. However, the mechanism behind erythromycin production is poorly understood. In the high erythromycin-producer strain S. erythraea HL3168 E3, the level of copper ions positively correlates with erythromycin production. To explain this correlation, we performed a genome-based comparison between the wild-type strain NRRL23338 and the mutant strain HL3168 E3, and further characterized the identified gene(s) by targeted genome editing, mRNA transcript analysis, and functional analysis.
Results
The response regulator of the two-component system (TCS) encoded by the gene SACE_0101 in S. erythraea showed high similarity with CopR of TCS CopRS in Streptomyces coelicolor, which is involved in the regulation of copper metabolism. The deletion of SACE_0101 was beneficial for erythromycin synthesis most likely by causing changes in the intracellular copper homeostasis, leading to enhanced erythromycin production. In addition, Cu2+ supplementation and gene expression analysis suggested that SACE_0101 may be involved in the regulation of copper homeostasis and erythromycin production.
Conclusions
The mutation of SACE_0101 gene increased the yield of erythromycin, especially upon the addition of copper ions. Therefore, the two-component system gene SACE_0101 plays a crucial role in regulating copper homeostasis and erythromycin synthesis in S. erythraea.
Collapse
|
22
|
Ni H, Xiong Z, Mohsin A, Guo M, Petkovic H, Chu J, Zhuang Y. Study on a two-component signal transduction system RimA1A2 that negatively regulates oxytetracycline biosynthesis in Streptomyces rimosus M4018. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Ni H, Mohsin A, Guo M, Chu J, Zhuang Y. Two-component system AfrQ1Q2 involved in oxytetracycline biosynthesis of Streptomyces rimosus M4018 in a medium-dependent manner. J Biosci Bioeng 2019; 129:140-145. [PMID: 31564502 DOI: 10.1016/j.jbiosc.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
Regulation of secondary metabolism involves complex interactions of both pathway-specific regulators and global regulators, which may trigger or repress the expression of genes involved in antibiotic biosynthesis. Similarly, many of these global regulatory proteins belong to two-component systems. In this study, a new two-component system (TCS) AfrQ1Q2 homologous to AfsQ1Q2 of Streptomyces coelicolor was acquired from the genome sequence of Streptomyces rimosus M4018 by using bioinformatics analysis. RT-PCR results showed co-transcription of afrQ1 (RR) and afrQ2 (HK) in S. rimosus. Consequently, the significant enhancement in oxytetracycline (OTC) yield in afrQ1-disrupted mutant was observed when cultivated in the defined minimal medium (MM) with glycine as the sole nitrogen source. In order to further investigate the regulation mechanism of AfrQ1Q2 in OTC production, the transcriptional levels of five biosynthesis and regulation related genes such as oxyB, otrB, otcG, otcR and otrC were tested by qRT-PCR, which indicated a significantly up-regulatory trend in the afrQ1-disrupted mutant. Meanwhile, a down-regulatory trend of each gene was tested in the complementary mutant as compared to wild type M4018. Moreover, these selected five genes were positively correlated with OTC production. Conclusively, these findings suggested that the TCS AfrQ1Q2 could be one of the global regulators, which negatively regulates OTC production via activating pathway specific regulators in S. rimosus M4018.
Collapse
Affiliation(s)
- Hui Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Shanghai Biological Manufacturing Technology Innovation Center, Shanghai 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Shanghai Biological Manufacturing Technology Innovation Center, Shanghai 200237, People's Republic of China.
| |
Collapse
|
24
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
25
|
Fu J, Qin R, Zong G, Zhong C, Zhang P, Kang N, Qi X, Cao G. The two-component system CepRS regulates the cephamycin C biosynthesis in Streptomyces clavuligerus F613-1. AMB Express 2019; 9:118. [PMID: 31352530 PMCID: PMC6661058 DOI: 10.1186/s13568-019-0844-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
During industrial fermentation, Streptomyces clavuligerus F613-1 simultaneously produces primary product clavulanic acid (CA) and cephamycin C. The cephamycin C biosynthetic gene cluster and pathway have been basically elucidated and the CcaR positive regulator was found to control the cephamycin genes expression. However, additional mechanisms of regulation cannot be excluded. The BB341_RS13780/13785 gene pair in S. clavuligerus F613-1 (annotated as SCLAV_2960/2959 in S. clavuligerus ATCC27064) encodes a bacterial two-component system (TCS) and were designated as CepRS (for cephamycin regulator/sensor). CepRS significantly affects cephamycin C production but only slightly affects CA production. To further understand the regulation of cephamycin C biosynthesis, the cepRS genes were deleted from S. clavuligerus F613-1. The deletion mutant resulted in decreased cephamycin C production but had no phenotypic effects. Real-time quantitative polymerase chain reaction analysis revealed that CepRS regulates the expression of most genes involved in cephamycin C biosynthesis, with electrophoretic mobility shift assays showing that CepR interacts with the cefD-cmcI intergenic region. These results demonstrate that the CepR response regulator serves as a transcriptional activator of cephamycin C biosynthesis, which may provide an approach for metabolic engineering methods for CA production by S. clavuligerus F613-1 in future.
Collapse
|
26
|
Fu J, Qin R, Zong G, Liu C, Kang N, Zhong C, Cao G. The CagRS Two-Component System Regulates Clavulanic Acid Metabolism via Multiple Pathways in Streptomyces clavuligerus F613-1. Front Microbiol 2019; 10:244. [PMID: 30837970 PMCID: PMC6382702 DOI: 10.3389/fmicb.2019.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Streptomyces clavuligerus F613-1 produces a clinically important β-lactamase inhibitor, clavulanic acid (CA). Although the biosynthesis pathway of CA has essentially been elucidated, the global regulatory mechanisms of CA biosynthesis remain unclear. The paired genes cagS and cagR, which are annotated, respectively, as orf22 and orf23 in S. clavuligerus ATCC 27064, encode a bacterial two-component regulatory system (TCS) and were found next to the CA biosynthetic gene cluster of S. clavuligerus F613-1. To further elucidate the regulatory mechanism of CA biosynthesis, the CagRS TCS was deleted from S. clavuligerus F613-1. Deletion of cagRS resulted in decreased production of CA, but the strain phenotype was not otherwise affected. Both transcriptome and ChIP-seq data revealed that, in addition to CA biosynthesis, the CagRS TCS mainly regulates genes involved in primary metabolism, such as glyceraldehyde 3-phosphate (G3P) metabolism and arginine biosynthesis. Notably, both G3P and arginine are precursors of CA. Electrophoretic mobility shift assays demonstrated that the response regulator CagR could bind to the intergenic regions of argG, argC, oat1, oat2, ceaS1, and claR in vitro, suggesting that CagR can directly regulate genes involved in arginine and CA biosynthesis. This study indicated that CagRS is a pleiotropic regulator that can directly affect the biosynthesis of CA and indirectly affect CA production by regulating the metabolism of arginine and G3P. Our findings provide new insights into the regulation of CA biosynthetic pathways and provide an innovative approach for future metabolic engineering efforts for CA production in S. clavuligerus.
Collapse
Affiliation(s)
- Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Ronghuo Qin
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ni Kang
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
27
|
Regulation of Streptomyces Chitinases by Two-Component Signal Transduction Systems and their Post Translational Modifications: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
28
|
RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1. J Bacteriol 2018; 200:JB.00205-18. [PMID: 29760208 DOI: 10.1128/jb.00205-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen of humans, particularly those with cystic fibrosis. As a global regulator, RpoN controls a group of virulence-related factors and quorum-sensing (QS) genes in P. aeruginosa To gain further insights into the direct targets of RpoN in vivo, the present study focused on identifying the direct targets of RpoN regulation in QS and the type VI secretion system (T6SS). We performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) that identified 1,068 binding sites of RpoN, mostly including metabolic genes, a group of genes in QS (lasI, rhlI, and pqsR) and the T6SS (hcpA and hcpB). The direct targets of RpoN have been verified by electrophoretic mobility shifts assays (EMSA), lux reporter assay, reverse transcription-quantitative PCR, and phenotypic detection. The ΔrpoN::Tc mutant resulted in the reduced production of pyocyanin, motility, and proteolytic activity. However, the production of rhamnolipids and biofilm formation were higher in the ΔrpoN::Tc mutant than in the wild type. In summary, the results indicated that RpoN had direct and profound effects on QS and the T6SS.IMPORTANCE As a global regulator, RpoN controls a wide range of biological pathways, including virulence in P. aeruginosa PAO1. This work shows that RpoN plays critical and global roles in the regulation of bacterial pathogenicity and fitness. ChIP-seq provided a useful database to characterize additional functions and targets of RpoN in the future. The functional characterization of RpoN-mediated regulation will improve the current understanding of the regulatory network of quorum sensing and virulence in P. aeruginosa and other bacteria.
Collapse
|
29
|
Monakhova MV, Penkina AI, Pavlova AV, Lyaschuk AM, Kucherenko VV, Alexeevski AV, Lunin VG, Friedhoff P, Klug G, Oretskaya TS, Kubareva EA. Endonuclease Activity of MutL Protein of the Rhodobacter sphaeroides Mismatch Repair System. BIOCHEMISTRY. BIOKHIMIIA 2018; 83:281-293. [PMID: 29625547 DOI: 10.1134/s0006297918030082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have purified the MutL protein from Rhodobacter sphaeroides mismatch repair system (rsMutL) for the first time. rsMutL demonstrated endonuclease activity in vitro, as predicted by bioinformatics analysis. Based on the alignment of 1483 sequences of bacterial MutL homologs with presumed endonuclease activity, conserved functional motifs and amino acid residues in the rsMutL sequence were identified: five motifs comprising the catalytic site responsible for DNA cleavage were found in the C-terminal domain; seven conserved motifs involved in ATP binding and hydrolysis and specific to the GHKL family of ATPases were found in the N-terminal domain. rsMutL demonstrated the highest activity in the presence of Mn2+. The extent of plasmid DNA hydrolysis declined in the row Mn2+ > Co2+ > Mg2+ > Cd2+; Ni2+ and Ca2+ did not activate rsMutL. Divalent zinc ions inhibited rsMutL endonuclease activity in the presence of Mn2+ excess. ATP also suppressed plasmid DNA hydrolysis by rsMutL. Analysis of amino acid sequences and biochemical properties of five studied bacterial MutL homologs with endonuclease activity revealed that rsMutL resembles the MutL proteins from Neisseria gonorrhoeae and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- M V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gupta V, Jain K, Garg R, Malik A, Gulati P, Bhatnagar R. Characterization of a two component system, Bas1213-1214, important for oxidative stress in Bacillus anthracis. J Cell Biochem 2018. [PMID: 29537101 DOI: 10.1002/jcb.26751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microbial colonization is an outcome of appropriate sensing and regulation of its gene expression. Bacillus anthracis adapts and thrives in its environment through complex regulatory mechanisms, among them, the two component systems (TCS). Many bacteria respond to the oxygen fluctuations via TCS. In the present work, a previously uncharacterized TCS, Bas1213-1214, of B. anthracis with a probable role in oxygen sensing has been characterized as a functional TCS. A substantial increase in the expression of Bas1213 was observed during the stationary growth phase, in presence of bicarbonate ions, and under oxidative stress thereby speculating the role of Bas1213 in toxin production and adaptive responses. Electrophoretic mobility shift assay (EMSA) and ANS assay highlighted autoregulation of the system. Identification of Bas1213 regulon further suggested its regulatory function in metabolism and adaptive responses. A marked reduction in sporulation was observed on overexpression of Bas1213 in B. anthracis which can be correlated with the augmented expression of sporulation kinase D. Additionally, Bas1213 was shown to regulate catalase, and ABC transporter (mntH) further implicating its essential role during oxidative stress. Finally, crucial residues involved in the DNA binding activity of Bas1213 were also identified. This study reports that the role of Bas1213-1214 in the regulation of metabolism and adaptive responses during oxidative stress. Both sporulation and response to environmental oxygen are important for the maintenance of B. anthracis lifecycle, therefore, characterization of Bas1213-1214 provides a step closer toward understanding the regulatory network governing in B. anthracis.
Collapse
Affiliation(s)
- Vatika Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kanika Jain
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajni Garg
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Cui C, Yang C, Song S, Fu S, Sun X, Yang L, He F, Zhang LH, Zhang Y, Deng Y. A novel two-component system modulates quorum sensing and pathogenicity in Burkholderia cenocepacia. Mol Microbiol 2018; 108:32-44. [PMID: 29363827 DOI: 10.1111/mmi.13915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/11/2018] [Accepted: 01/21/2018] [Indexed: 01/01/2023]
Abstract
Quorum sensing (QS) is widely utilized by bacterial pathogens to regulate biological functions and pathogenicity. Recent evidence has shown that QS is subject to regulatory cascades, especially two-component systems that often respond to environmental stimulation. At least two different types of QS systems regulate pathogenesis in Burkholderia cenocepacia. However, it remains unclear how this bacterial pathogen controls these QS systems. Here, we demonstrate a novel two-component system RqpSR (Regulating Quorum sensing and Pathogenicity), which plays an important role in modulating QS and pathogenesis in B. cenocepacia. We demonstrate strong protein-protein binding affinity between RqpS and RqpR. Mutations in rqpS and rqpR exerted overlapping effects on B. cenocepacia transcriptomes and phenotypes, including motility, biofilm formation and virulence. In trans expression of rqpR rescued the defective phenotypes in the rqpS mutant. RqpR controls target gene expression by direct binding to DNA promoters, including the cis-2-dodecenoic acid (BDSF) and N-acylhomoserine lactone (AHL) signal synthase gene promoters. These findings suggest that the RqpSR system strongly modulates physiology by forming a complicated hierarchy with QS systems. This type of two-component system appears to be widely distributed and coexists with the BDSF QS system in various bacterial species.
Collapse
Affiliation(s)
- Chaoyu Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chunxi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihao Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuna Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiuyun Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Fei He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yinyue Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.,Guangdong Innovative Research Team of Sociomicrobiology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
32
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
33
|
Gao B, Chi L, Tu P, Bian X, Thomas J, Ru H, Lu K. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicol Lett 2017; 283:52-57. [PMID: 29097220 DOI: 10.1016/j.toxlet.2017.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/15/2017] [Accepted: 10/29/2017] [Indexed: 12/23/2022]
Abstract
The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion.
Collapse
Affiliation(s)
- Bei Gao
- NIH West Coast Metabolomics Center, University of California, Davis, CA 95616, United States; Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, 30602, Georgia; Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jesse Thomas
- Department of Environmental Health Science, University of Georgia, Athens, 30602, Georgia
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol 2017; 8:1878. [PMID: 29067003 PMCID: PMC5641358 DOI: 10.3389/fmicb.2017.01878] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.
Collapse
Affiliation(s)
- Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed B. Jamal
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed S. Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Biochemistry Group, Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Paulo V. S. D. Carvalho
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sintia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Thiago L. P. Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Chen JC, Chang CF, Hsu DW, Shu JC, Chen HY, Chen CY, Lu CY, Chen CC. Temporal regulation of σ B by partner-switching mechanism at a distinct growth stage in Bacillus cereus. Int J Med Microbiol 2017; 307:521-532. [PMID: 28919098 DOI: 10.1016/j.ijmm.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 12/01/2022] Open
Abstract
The alternative transcription factor σB in Bacillus cereus governs the transcription of a number of genes that confer protection against general stress. This transcription factor is regulated by protein-protein interactions among RsbV, RsbW, σB, RsbY, RsbM and RsbK, all encoded in the sigB cluster. Among these regulatory proteins, RsbV, RsbW and σB comprise a partner-switching mechanism. Under normal conditions, σB remains inactive by associating with anti-sigma factor RsbW, which prevents σB from binding to the core RNA polymerase. During environmental stress, RsbK activates RsbY to hydrolyze phosphorylated RsbV, and the dephosphorylated RsbV then sequesters RsbW to liberate σB from RsbW. Although the σB partner-switching module is thought to be the core mechanism for σB regulation, the actual protein-protein interactions among these three proteins in the cell remain to be investigated. In the current study, we show that RsbW and RsbV form a long-lived complex under transient stress treatment, resulting in high persistent expression of RsbV, RsbW and σB from mid-log phase to stationary phase. Full sequestration of RsbW by excess RsbV and increased RsbW:RsbV complex stability afforded by cellular ADP contribute to the prolonged activation of σB. Interestingly, the high expression levels of RsbV, RsbW and σB were dramatically decreased beginning from the transition stage to the stationary phase. Thus, protein interactions among σB partner-switching components are required for the continued induction of σB during environmental stress in the log phase and significant down-regulation of σB is observed in the stationary phase. Our data show that σB is temporally regulated in B. cereus.
Collapse
Affiliation(s)
- Jung-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Chuan-Fu Chang
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan County 333, Taiwan
| | - Hong-Yi Chen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan County 333, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan.
| |
Collapse
|
36
|
|
37
|
Breland EJ, Eberly AR, Hadjifrangiskou M. An Overview of Two-Component Signal Transduction Systems Implicated in Extra-Intestinal Pathogenic E. coli Infections. Front Cell Infect Microbiol 2017; 7:162. [PMID: 28536675 PMCID: PMC5422438 DOI: 10.3389/fcimb.2017.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Extra-intestinal pathogenic E. coli (ExPEC) infections are common in mammals and birds. The predominant ExPEC types are avian pathogenic E. coli (APEC), neonatal meningitis causing E. coli/meningitis associated E. coli (NMEC/MAEC), and uropathogenic E. coli (UPEC). Many reviews have described current knowledge on ExPEC infection strategies and virulence factors, especially for UPEC. However, surprisingly little has been reported on the regulatory modules that have been identified as critical in ExPEC pathogenesis. Two-component systems (TCSs) comprise the predominant method by which bacteria respond to changing environments and play significant roles in modulating bacterial fitness in diverse niches. Recent studies have highlighted the potential of manipulating signal transduction systems as a means to chemically re-wire bacterial pathogens, thereby reducing selective pressure and avoiding the emergence of antibiotic resistance. This review begins by providing a brief introduction to characterized infection strategies and common virulence factors among APEC, NMEC, and UPEC and continues with a comprehensive overview of two-component signal transduction networks that have been shown to influence ExPEC pathogenesis.
Collapse
Affiliation(s)
- Erin J Breland
- Department of Pharmacology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA.,Department of Urology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
38
|
Lv Z, Zhao D, Chang J, Liu H, Wang X, Zheng J, Huang R, Lin Z, Shang Y, Ye L, Wu Y, Han S, Qu D. Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis. Front Microbiol 2017; 8:549. [PMID: 28408903 PMCID: PMC5374206 DOI: 10.3389/fmicb.2017.00549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal biofilm agents. Based on the findings that compound 5, targeting the histidine kinase domain of S. epidermidis YycG, possessed bactericidal activity against staphylococci, 39 derivatives of compound 5 with intact thiazolopyrimidinone core structures were newly designed, 7 derivatives were further screened to explore their anti-bacterial and anti-biofilm activities. The seven derivatives strongly inhibited the growth of S. epidermidis and Staphylococcus aureus in the minimal inhibitory concentration range of 1.56–6.25 μM. All the derivatives reduced the proportion of viable cells in mature biofilms. They all displayed low cytotoxicity on mammalian cells and were not hemolytic to human erythrocytes. The biofilm inhibition activities of four derivatives (H5-32, H5-33, H5-34, and H5-35) were further investigated under shearing forces, they all led to significant decreases in the biofilm formation of S. epidermidis. These results were suggestive that the seven derivatives of compound 5 have the potential to be developed into agents for eradicating biofilm-associated infections.
Collapse
Affiliation(s)
- Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Dan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan UniversityShanghai, China
| | - Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen UniversityShenzhen, China
| | - Renzheng Huang
- Department of Gastroenterology, Zhongshan Hospital of Fudan UniversityShanghai, China
| | - Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| |
Collapse
|
39
|
Yuan F, Tan C, Liu Z, Yang K, Zhou D, Liu W, Duan Z, Guo R, Chen H, Tian Y, Bei W. The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Microb Pathog 2017; 104:137-145. [DOI: 10.1016/j.micpath.2016.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/03/2016] [Accepted: 12/31/2016] [Indexed: 11/29/2022]
|
40
|
Schindel HS, Bauer CE. The RegA regulon exhibits variability in response to altered growth conditions and differs markedly between Rhodobacter species. Microb Genom 2016; 2:e000081. [PMID: 28348828 PMCID: PMC5359404 DOI: 10.1099/mgen.0.000081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
The RegB/RegA two-component system from Rhodobacter capsulatus regulates global changes in gene expression in response to alterations in oxygen levels. Studies have shown that RegB/RegA controls many energy-generating and energy-utilizing systems such as photosynthesis, nitrogen fixation, carbon fixation, hydrogen utilization, respiration, electron transport and denitrification. In this report, we utilized RNA-seq and ChIP-seq to analyse the breadth of genes indirectly and directly regulated by RegA. A comparison of mRNA transcript levels in wild type cells relative to a RegA deletion strain shows that there are 257 differentially expressed genes under photosynthetic defined minimal growth medium conditions and 591 differentially expressed genes when grown photosynthetically in a complex rich medium. ChIP-seq analysis also identified 61 unique RegA binding sites with a well-conserved recognition sequence, 33 of which exhibit changes in neighbouring gene expression. These transcriptome results define new members of the RegA regulon including genes involved in iron transport and motility. These results also reveal that the set of genes that are regulated by RegA are growth medium specific. Similar analyses under dark aerobic conditions where RegA is thought not to be phosphorylated by RegB reveal 40 genes that are differentially expressed in minimal medium and 20 in rich medium. Finally, a comparison of the R. capsulatus RegA regulon with the orthologous PrrA regulon in Rhodobacter sphaeroides shows that the number of photosystem genes regulated by RegA and PrrA are similar but that the identity of genes regulated by RegA and PrrA beyond those involved in photosynthesis are quite distinct.
Collapse
Affiliation(s)
- Heidi S. Schindel
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| | - Carl E. Bauer
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| |
Collapse
|
41
|
Diomandé SE, Doublet B, Vasaï F, Guinebretière MH, Broussolle V, Brillard J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 2016; 363:fnw174. [PMID: 27435329 DOI: 10.1093/femsle/fnw174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Brillard
- SQPOV, INRA, Univ. Avignon, 84000 Avignon, France DGIMI, INRA, Univ. Montpellier, 34095 Montpellier, France
| |
Collapse
|
42
|
Cheung JK, Wisniewski JA, Adams VM, Quinsey NS, Rood JI. Analysis of the virulence-associated RevSR two-component signal transduction system of Clostridium perfringens. Int J Med Microbiol 2016; 306:429-42. [PMID: 27267179 DOI: 10.1016/j.ijmm.2016.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 11/15/2022] Open
Abstract
Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that causes human gas gangrene (clostridial myonecrosis) and food poisoning. Early studies showed that virulence was regulated by the VirSR two-component signal transduction system. However, our identification of the RevR orphan response regulator indicated that more than one system was involved in controlling virulence. To further characterize this virulence-associated regulator, gel mobility shift experiments, coupled with DNase I footprinting, were used to identify the RevR DNA binding sequence. Bioinformatics analysis suggested that an orphan sensor histidine kinase, CPE1757 (renamed RevS), was the cognate sensor of RevR. Interaction between RevS and RevR was demonstrated by use of a bacterial two-hybrid system and validated by protein-protein interaction studies using biolayer interferometry. To assess the involvement of RevS in virulence regulation, the revS gene was inactivated by Targetron insertion. When isogenic wild-type, revS and complemented revS strains were tested in a mouse myonecrosis model, the revS mutant was found to be attenuated in virulence, which was similar to the attenuation observed previously with the revR mutant. However, transcriptional analysis of selected RevR-regulated genes in the revS mutant revealed a different pattern of expression to a revR mutant, suggesting that the RevSR system is more complex than originally thought. Taken together, the results have led to the identification and characterization of the two essential parts of a new regulatory network that is involved in the regulation of virulence in C. perfringens.
Collapse
Affiliation(s)
- Jackie K Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica A Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki M Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Noelene S Quinsey
- Protein Production Unit, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
43
|
Agrawal R, Sahoo BK, Saini DK. Cross-talk and specificity in two-component signal transduction pathways. Future Microbiol 2016; 11:685-97. [PMID: 27159035 DOI: 10.2217/fmb-2016-0001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Bikash Kumar Sahoo
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
44
|
Park AK, Lee JH, Chi YM, Park H. Structural characterization of the full-length response regulator spr1814 in complex with a phosphate analogue reveals a novel conformational plasticity of the linker region. Biochem Biophys Res Commun 2016; 473:625-9. [PMID: 27038544 DOI: 10.1016/j.bbrc.2016.03.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 01/04/2023]
Abstract
Spr1814 of Streptococcus pneumoniae is a response regulator (RR) that belongs to the NarL/FixJ subfamily and has a four-helix helix-turn-helix DNA-binding domain. Here, the X-ray crystal structure of the full-length spr1814 in complex with a phosphate analogue beryllium fluoride (BeF3(-)) was determined at 2.0 Å. This allows for a structural comparison with the previously reported full-length unphosphorylated spr1814. The phosphorylation of conserved aspartic acid residue of N-terminal receiver domain triggers a structural perturbation at the α4-β5-α5 interface, leading to the domain reorganization of spr1814, and this is achieved by a rotational change in the C-terminal DNA-binding domain.
Collapse
Affiliation(s)
- Ae Kyung Park
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, South Korea; Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon 406-840, South Korea
| | - Jeong Hye Lee
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, South Korea
| | - Young Min Chi
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, South Korea.
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon 406-840, South Korea.
| |
Collapse
|
45
|
Schultz D. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay. Bioessays 2016; 38:440-5. [PMID: 26941227 DOI: 10.1002/bies.201500199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phosphorelay of Bacillus subtilis, a kinase cascade that activates master regulator Spo0A ~ P in response to starvation signals, is the core of a large network controlling the cell's decision to differentiate into sporulation and other phenotypes. This article reviews recent advances in understanding the origins and purposes of the complex dynamical behavior of the phosphorelay, which pulses with peaks of activity coordinated with the cell cycle. The transient imbalance in the expression of two critical genes caused by their strategic placement at opposing ends of the chromosome proved to be the key for this pulsed behavior. Feedback control loops in the phosphorelay use these pulses to implement a timer mechanism, which creates several windows of opportunity for phenotypic transitions over multiple generations. This strategy allows the cell to coordinate multiple differentiation programs in a decision process that fosters phenotypic diversity and adapts to current conditions.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Prabhakaran P, Ashraf MA, Aqma WS. Microbial stress response to heavy metals in the environment. RSC Adv 2016. [DOI: 10.1039/c6ra10966g] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heavy metal contamination is a global environmental issue as it poses a significant threat to public health, and exposure to metals above a certain threshold level can cause deleterious effects in all living organisms including microbes.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- School of Biosciences and Biotechnology
- Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
| | - Muhammad Aqeel Ashraf
- Faculty of Science & Natural Resources
- Universiti Malaysia Sabah
- 88400 Kota Kinabalu
- Malaysia
- Department of Environmental Science and Engineering
| | - Wan Syaidatul Aqma
- School of Biosciences and Biotechnology
- Faculty of Science and Technology
- Universiti Kebangsaan Malaysia
- 43600 Bangi
- Malaysia
| |
Collapse
|
47
|
Chen JC, Liu JH, Hsu DW, Shu JC, Chen CY, Chen CC. Methylatable Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates Environmental Stress Response in Bacillus Cereus. PLoS One 2015; 10:e0137952. [PMID: 26379238 PMCID: PMC4574943 DOI: 10.1371/journal.pone.0137952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 02/08/2023] Open
Abstract
σB, an alternative transcription factor, controls the response of the cell to a variety of environmental stresses in Bacillus cereus. Previously, we reported that RsbM negatively regulates σB through the methylation of RsbK, a hybrid sensor kinase, on a signaling helix (S-helix). However, RsbK comprises a C-terminal receiver (REC) domain whose function remains unclear. In this study, deletion of the C-terminal REC domain of RsbK resulted in high constitutive σB expression independent of environmental stimuli. Thus, the REC domain may serve as an inhibitory element. Mutagenic substitution was employed to modify the putative phospho-acceptor residue D827 in the REC domain of RsbK. The expression of RsbKD827N and RsbKD827E exhibited high constitutive σB, indicating that D827, if phosphorylatable, possibly participates in σB regulation. Bacterial two-hybrid analyses demonstrated that RsbK forms a homodimer and the REC domain interacts mainly with the histidine kinase (HK) domain and partly with the S-helix. In particular, co-expression of RsbM strengthens the interaction between the REC domain and the S-helix. Consistently, our structural model predicts a significant interaction between the HK and REC domains of the RsbK intradimer. Here, we demonstrated that coordinated the methylatable S-helix and the REC domain of RsbK is functionally required to modulate σB-mediated stress response in B. cereus and maybe ubiquitous in microorganisms encoded RsbK-type sensor kinases.
Collapse
Affiliation(s)
- Jung-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taichung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2015. [PMID: 26206672 PMCID: PMC4787818 DOI: 10.1093/nar/gkv747] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AlgR is a key transcriptional regulator required for the expression of multiple virulence factors, including type IV pili and alginate in Pseudomonas aeruginosa. However, the regulon and molecular regulatory mechanism of AlgR have yet to be fully elucidated. Here, among 157 loci that were identified by a ChIP-seq assay, we characterized a gene, mucR, which encodes an enzyme that synthesizes the intracellular second messenger cyclic diguanylate (c-di-GMP). A ΔalgR strain produced lesser biofilm than did the wild-type strain, which is consistent with a phenotype controlled by c-di-GMP. AlgR positively regulates mucR via direct binding to its promoter. A ΔalgRΔmucR double mutant produced lesser biofilm than did the single ΔalgR mutant, demonstrating that c-di-GMP is a positive regulator of biofilm formation. AlgR controls the levels of c-di-GMP synthesis via direct regulation of mucR. In addition, the cognate sensor of AlgR, FimS/AlgZ, also plays an important role in P. aeruginosa virulence. Taken together, this study provides new insights into the AlgR regulon and reveals the involvement of c-di-GMP in the mechanism underlying AlgR regulation.
Collapse
Affiliation(s)
- Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Huaping Kang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Miao Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Tianhong Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Xin Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| |
Collapse
|
49
|
Bielecki P, Jensen V, Schulze W, Gödeke J, Strehmel J, Eckweiler D, Nicolai T, Bielecka A, Wille T, Gerlach RG, Häussler S. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res 2015; 43:6413-25. [PMID: 26082498 PMCID: PMC4513871 DOI: 10.1093/nar/gkv599] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/25/2015] [Indexed: 01/08/2023] Open
Abstract
Two-component systems (TCS) serve as stimulus-response coupling mechanisms to allow organisms to adapt to a variety of environmental conditions. The opportunistic pathogen Pseudomonas aeruginosa encodes for more than 100 TCS components. To avoid unwanted cross-talk, signaling cascades are very specific, with one sensor talking to its cognate response regulator (RR). However, cross-regulation may provide means to integrate different environmental stimuli into a harmonized output response. By applying a split luciferase complementation assay, we identified a functional interaction of two RRs of the OmpR/PhoB subfamily, namely PhoB and TctD in P. aeruginosa. Transcriptional profiling, ChIP-seq analysis and a global motif scan uncovered the regulons of the two RRs as well as a quadripartite binding motif in six promoter regions. Phosphate limitation resulted in PhoB-dependent expression of the downstream genes, whereas the presence of TctD counteracted this activation. Thus, the integration of two important environmental signals e.g. phosphate availability and the carbon source are achieved by a titration of the relative amounts of two phosphorylated RRs that inversely regulate a common subset of genes. In conclusion, our results on the PhoB and TctD mediated two-component signal transduction pathways exemplify how P. aeruginosa may exploit cross-regulation to adapt bacterial behavior to complex environments.
Collapse
Affiliation(s)
- Piotr Bielecki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Vanessa Jensen
- Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Wiebke Schulze
- Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Julia Gödeke
- Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Janine Strehmel
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Denitsa Eckweiler
- Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany Department of Molecular Bacteriology; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Agata Bielecka
- Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany Department of Molecular Bacteriology; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Thorsten Wille
- Junior Research Group 3, Robert Koch-Institute, Wernigerode Branch, Burgstrasse 37, 38855 Wernigerode, Germany
| | - Roman G Gerlach
- Junior Research Group 3, Robert Koch-Institute, Wernigerode Branch, Burgstrasse 37, 38855 Wernigerode, Germany
| | - Susanne Häussler
- Institute of Molecular Bacteriology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany Department of Molecular Bacteriology; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| |
Collapse
|
50
|
Maria-Neto S, de Almeida KC, Macedo MLR, Franco OL. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3078-88. [PMID: 25724815 DOI: 10.1016/j.bbamem.2015.02.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 11/27/2022]
Abstract
Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Simone Maria-Neto
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Keyla Caroline de Almeida
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil; S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|