1
|
Karakaidos P, Rampias T. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel) 2020; 10:life10090173. [PMID: 32878185 PMCID: PMC7555762 DOI: 10.3390/life10090173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, mitochondria originated in an α-proteobacterial endosymbiont. Although these organelles harbor their own genome, the large majority of genes, originally encoded in the endosymbiont, were either lost or transferred to the nucleus. As a consequence, mitochondria have become semi-autonomous and most of their processes require the import of nuclear-encoded components to be functional. Therefore, the mitochondrial-specific translation has evolved to be coordinated by mitonuclear interactions to respond to the energetic demands of the cell, acquiring unique and mosaic features. However, mitochondrial-DNA-encoded genes are essential for the assembly of the respiratory chain complexes. Impaired mitochondrial function due to oxidative damage and mutations has been associated with numerous human pathologies, the aging process, and cancer. In this review, we highlight the unique features of mitochondrial protein synthesis and provide a comprehensive insight into the mitonuclear crosstalk and its co-evolution, as well as the vulnerabilities of the animal mitochondrial genome.
Collapse
|
2
|
Pfab M, Kielkowski P, Krafczyk R, Volkwein W, Sieber SA, Lassak J, Jung K. Synthetic post-translational modifications of elongation factor P using the ligase EpmA. FEBS J 2020; 288:663-677. [PMID: 32337775 DOI: 10.1111/febs.15346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Canonically, tRNA synthetases charge tRNA. However, the lysyl-tRNA synthetase paralog EpmA catalyzes the attachment of (R)-β-lysine to the ε-amino group of lysine 34 of the translation elongation factor P (EF-P) in Escherichia coli. This modification is essential for EF-P-mediated translational rescue of ribosomes stalled at consecutive prolines. In this study, we determined the kinetics of EpmA and its variant EpmA_A298G to catalyze the post-translational modification of K34 in EF-P with eight noncanonical substrates. In addition, acetylated EF-P was generated using an amber suppression system. The impact of these synthetically modified EF-P variants on in vitro translation of a polyproline-containing NanoLuc luciferase reporter was analyzed. Our results show that natural (R)-β-lysylation was more effective in rescuing stalled ribosomes than any other synthetic modification tested. Thus, our work not only provides new biochemical insights into the function of EF-P, but also opens a new route to post-translationally modify proteins using EpmA.
Collapse
Affiliation(s)
- Miriam Pfab
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Pavel Kielkowski
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Ralph Krafczyk
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Wolfram Volkwein
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Stephan A Sieber
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
3
|
Hilander T, Zhou XL, Konovalova S, Zhang FP, Euro L, Chilov D, Poutanen M, Chihade J, Wang ED, Tyynismaa H. Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria. Nucleic Acids Res 2019; 46:849-860. [PMID: 29228266 PMCID: PMC5778596 DOI: 10.1093/nar/gkx1231] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Accuracy of protein synthesis is enabled by the selection of amino acids for tRNA charging by aminoacyl-tRNA synthetases (ARSs), and further enhanced by the proofreading functions of some of these enzymes for eliminating tRNAs mischarged with noncognate amino acids. Mouse models of editing-defective cytoplasmic alanyl-tRNA synthetase (AlaRS) have previously demonstrated the importance of proofreading for cytoplasmic protein synthesis, with embryonic lethal and progressive neurodegeneration phenotypes. Mammalian mitochondria import their own set of nuclear-encoded ARSs for translating critical polypeptides of the oxidative phosphorylation system, but the importance of editing by the mitochondrial ARSs for mitochondrial proteostasis has not been known. We demonstrate here that the human mitochondrial AlaRS is capable of editing mischarged tRNAs in vitro, and that loss of the proofreading activity causes embryonic lethality in mice. These results indicate that tRNA proofreading is essential in mammalian mitochondria, and cannot be overcome by other quality control mechanisms.
Collapse
Affiliation(s)
- Taru Hilander
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| | - Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Dmitri Chilov
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| | - Joseph Chihade
- Department of Chemistry, Carleton College, Northfield, MN 55057, USA
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
4
|
Sarkar J, Martinis SA. Amino-acid-dependent shift in tRNA synthetase editing mechanisms. J Am Chem Soc 2011; 133:18510-3. [PMID: 22017352 DOI: 10.1021/ja2048122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many aminoacyl-tRNA synthetases prevent mistranslation by relying upon proofreading activities at multiple stages of the aminoacylation reaction. In leucyl-tRNA synthetase (LeuRS), editing activities that precede or are subsequent to tRNA charging have been identified. Although both are operational, either the pre- or post-transfer editing activity can predominate. Yeast cytoplasmic LeuRS (ycLeuRS) misactivates structurally similar noncognate amino acids including isoleucine and methionine. We show that ycLeuRS has a robust post-transfer editing activity that efficiently clears tRNA(Leu) mischarged with isoleucine. In comparison, the enzyme's post-transfer hydrolytic activity against tRNA(Leu) mischarged with methionine is weak. Rather, methionyl-adenylate is cleared robustly via an enzyme-mediated pre-transfer editing activity. We hypothesize that, similar to E. coli LeuRS, ycLeuRS has coexisting functional pre- and post-transfer editing activities. In the case of ycLeuRS, a shift between the two editing pathways is triggered by the identity of the noncognate amino acid.
Collapse
Affiliation(s)
- Jaya Sarkar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 419 Roger Adams Laboratory, Box B-4, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
5
|
Li L, Boniecki MT, Jaffe JD, Imai BS, Yau PM, Luthey-Schulten ZA, Martinis SA. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Proc Natl Acad Sci U S A 2011; 108:9378-83. [PMID: 21606343 PMCID: PMC3111296 DOI: 10.1073/pnas.1016460108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma parasites escape host immune responses via mechanisms that depend on remarkable phenotypic plasticity. Identification of these mechanisms is of great current interest. The aminoacyl-tRNA synthetases (AARSs) attach amino acids to their cognate tRNAs, but occasionally make errors that substitute closely similar amino acids. AARS editing pathways clear errors to avoid mistranslation during protein synthesis. We show here that AARSs in Mycoplasma parasites have point mutations and deletions in their respective editing domains. The deleterious effect on editing was confirmed with a specific example studied in vitro. In vivo mistranslation was determined by mass spectrometric analysis of proteins produced in the parasite. These mistranslations are uniform cases where the predicted closely similar amino acid replaced the correct one. Thus, natural AARS editing-domain mutations in Mycoplasma parasites cause mistranslation. We raise the possibility that these mutations evolved as a mechanism for antigen diversity to escape host defense systems.
Collapse
Affiliation(s)
- Li Li
- Center for Biophysics and Computational Biology
| | | | - Jacob D. Jaffe
- Proteomics Platform, The Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - Brian S. Imai
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801; and
| | - Peter M. Yau
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801; and
| | | | - Susan A. Martinis
- Center for Biophysics and Computational Biology
- Department of Biochemistry
- Department of Chemistry
| |
Collapse
|
6
|
Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J Biol Chem 2010; 285:23799-809. [PMID: 20498377 DOI: 10.1074/jbc.m110.133553] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
7
|
Tan M, Zhu B, Zhou XL, He R, Chen X, Eriani G, Wang ED. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase. J Biol Chem 2010; 285:3235-44. [PMID: 19940155 PMCID: PMC2823433 DOI: 10.1074/jbc.m109.060616] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/20/2009] [Indexed: 11/06/2022] Open
Abstract
To prevent genetic code ambiguity due to misincorporation of amino acids into proteins, aminoacyl-tRNA synthetases have evolved editing activities to eliminate intermediate or final non-cognate products. In this work we studied the different editing pathways of class Ia leucyl-tRNA synthetase (LeuRS). Different mutations and experimental conditions were used to decipher the editing mechanism, including the recently developed compound AN2690 that targets the post-transfer editing site of LeuRS. The study emphasizes the crucial importance of tRNA for the pre- and post-transfer editing catalysis. Both reactions have comparable efficiencies in prokaryotic Aquifex aeolicus and Escherichia coli LeuRSs, although the E. coli enzyme favors post-transfer editing, whereas the A. aeolicus enzyme favors pre-transfer editing. Our results also indicate that the entry of the CCA-acceptor end of tRNA in the editing domain is strictly required for tRNA-dependent pre-transfer editing. Surprisingly, this editing reaction was resistant to AN2690, which inactivates the enzyme by forming a covalent adduct with tRNA(Leu) in the post-transfer editing site. Taken together, these data suggest that the binding of tRNA in the post-transfer editing conformation confers to the enzyme the capacity for pre-transfer editing catalysis, regardless of its capacity to catalyze post-transfer editing.
Collapse
Affiliation(s)
- Min Tan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Bin Zhu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Xiao-Long Zhou
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Ran He
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Xin Chen
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| |
Collapse
|
8
|
Martinis SA, Boniecki MT. The balance between pre- and post-transfer editing in tRNA synthetases. FEBS Lett 2009; 584:455-9. [PMID: 19941860 DOI: 10.1016/j.febslet.2009.11.071] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.
Collapse
Affiliation(s)
- Susan A Martinis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 419 Roger Adams Laboratory, Box B-4, 600 S. Mathews Ave., Urbana, IL 61801, United States.
| | | |
Collapse
|
9
|
CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase. Proc Natl Acad Sci U S A 2008; 105:19223-8. [PMID: 19020078 DOI: 10.1073/pnas.0809336105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mistranslation is toxic to bacterial and mammalian cells and can lead to neurodegeneration in the mouse. Mistranslation is caused by the attachment of the wrong amino acid to a specific tRNA. Many aminoacyl-tRNA synthetases have an editing activity that deacylates the mischarged amino acid before capture by the elongation factor and transport to the ribosome. For class I tRNA synthetases, the editing activity is encoded by the CP1 domain, which is distinct from the active site for aminoacylation. What is not clear is whether the enzymes also have an editing activity that is separable from CP1. A point mutation in CP1 of class I leucyl-tRNA synthetase inactivates deacylase activity and produces misacylated tRNA. In contrast, although deletion of the entire CP1 domain also disabled the deacylase activity, the deletion-bearing enzyme produced no mischarged tRNA. Further investigation showed that a second tRNA-dependent activity prevented misacylation and is intrinsic to the active site for aminoacylation.
Collapse
|
10
|
Schimmel P. An editing activity that prevents mistranslation and connection to disease. J Biol Chem 2008; 283:28777-82. [PMID: 18640977 DOI: 10.1074/jbc.x800007200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul Schimmel
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
11
|
Splan KE, Musier-Forsyth K, Boniecki MT, Martinis SA. In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity. Methods 2008; 44:119-28. [PMID: 18241793 PMCID: PMC2270698 DOI: 10.1016/j.ymeth.2007.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/29/2007] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, Macalester College, St. Paul, MN 55105, USA
| | | | | | | |
Collapse
|
12
|
Splan KE, Ignatov ME, Musier-Forsyth K. Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase. J Biol Chem 2008; 283:7128-34. [PMID: 18180290 DOI: 10.1074/jbc.m709902200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. To prevent errors in protein synthesis, many synthetases have evolved editing pathways by which misactivated amino acids (pre-transfer editing) and misacylated tRNAs (post-transfer editing) are hydrolyzed. Previous studies have shown that class II prolyl-tRNA synthetase (ProRS) possesses both pre- and post-transfer editing functions against noncognate alanine. To assess the relative contributions of pre- and post-transfer editing, presented herein are kinetic studies of an Escherichia coli ProRS mutant in which post-transfer editing is selectively inactivated, effectively isolating the pre-transfer editing pathway. When post-transfer editing is abolished, substantial levels of alanine mischarging are observed under saturating amino acid conditions, indicating that pre-transfer editing alone cannot prevent the formation of Ala-tRNA Pro. Steady-state kinetic parameters for aminoacylation measured under these conditions reveal that the preference for proline over alanine is 2000-fold, which is well within the regime where editing is required. Simultaneous measurement of AMP and Ala-tRNA Pro formation in the presence of tRNA Pro suggested that misactivated alanine is efficiently transferred to tRNA to form the mischarged product. In the absence of tRNA, enzyme-catalyzed Ala-AMP hydrolysis is the dominant form of editing, with "selective release" of noncognate adenylate from the active site constituting a minor pathway. Studies with human and Methanococcus jannaschii ProRS, which lack a post-transfer editing domain, suggest that enzymatic pre-transfer editing occurs within the aminoacylation active site. Taken together, the results reported herein illustrate how both pre- and post-transfer editing pathways work in concert to ensure accurate aminoacylation by ProRS.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
13
|
Rock FL, Mao W, Yaremchuk A, Tukalo M, Crépin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MRK. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 2007; 316:1759-61. [PMID: 17588934 DOI: 10.1126/science.1142189] [Citation(s) in RCA: 494] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNA(Leu)-AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2'- and 3'-oxygen atoms of tRNA's3'-terminal adenosine. The trapping of enzyme-bound tRNA(Leu) in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNA(Leu) and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.
Collapse
Affiliation(s)
- Fernando L Rock
- Anacor Pharmaceuticals, Incorporated, 1060 East Meadow Circle, Palo Alto, CA 94303, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Williams AM, Martinis SA. Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Proc Natl Acad Sci U S A 2006; 103:3586-91. [PMID: 16505383 PMCID: PMC1383500 DOI: 10.1073/pnas.0507362103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases establish the genetic code by matching each amino acid with its cognate tRNA. Aminoacylation errors lead to genetic code ambiguity and statistical proteins. Some synthetases have editing activities that clear the wrong amino acid (aa) by hydrolysis of either of two substrates: misactivated aminoacyl-adenylates ("pretransfer" of aa to tRNA) or misacylated aa-tRNA ("posttransfer"). Whereas posttransfer editing can be directly measured, pretransfer editing is difficult to demonstrate, because adenylates are inherently labile and transient, and activity occurs against a background of posttransfer editing. Herein, different mutations in Escherichia coli leucyl-tRNA synthetase are combined to unmask the pretransfer pathway. The mutant enzymes completely lack posttransfer editing but prevent misacylations by clearing misactivated adenylates. We hypothesize that these mutations isolate a pretransfer translocation step that moves misactivated adenylates from the activation site for editing. The results highlight how evolution redundantly created two distinct pathways to prevent genetic code ambiguity.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Code
- Kinetics
- Leucine-tRNA Ligase/chemistry
- Leucine-tRNA Ligase/genetics
- Leucine-tRNA Ligase/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Structure, Tertiary
- RNA Editing
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Amy M. Williams
- Department of Biology and Biochemistry, 369 Science and Research Building II, University of Houston, Houston, TX 77204-5001
| | - Susan A. Martinis
- Department of Biology and Biochemistry, 369 Science and Research Building II, University of Houston, Houston, TX 77204-5001
- *To whom correspondence should be sent at the present address:
Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, Box B4, 600 South Mathews Avenue, Urbana, IL 61801. E-mail:
| |
Collapse
|
15
|
Du X, Wang ED. Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing. Nucleic Acids Res 2003; 31:2865-72. [PMID: 12771213 PMCID: PMC156717 DOI: 10.1093/nar/gkg382] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To ensure the fidelity of protein biosynthesis, aminoacyl-tRNA synthetases (aaRSs) must recognize the tRNA identity elements of their cognate tRNAs and discriminate their cognate amino acids from structurally similar ones through a proofreading (editing) reaction. For a better understanding of these processes, we investigated the role of tRNA(Leu) tertiary structure in the aminoacylation and editing reactions catalyzed by leucyl-tRNA synthetase (LeuRS). We constructed a series of Escherichia coli tRNA(Leu) mutated transcripts with alterations of the nucleotides involved in tertiary interactions. Our results revealed that any disturbance of the tertiary interaction between the tRNA(Leu) D- and TpsiC-loops affected both its aminoacylation ability and its ability to stimulate the editing reaction. Moreover, we found that the various tertiary interactions between the D- and TpsiC-loops (G18:U55, G19:C56 and U54:A58) functioned differently within the aminoacylation and editing reactions. In these two reactions, the role of base pair 19:56 was closely correlated and dependent on the hydrogen bond number. In contrast, U54:A58 was more important in aminoacylation than in editing. Taken together, our results suggest that the elbow region of tRNA formed by the tertiary interactions between the D- and TpsiC-loops affects the interactions between tRNA and aaRS effectively both in aminoacylation and in editing.
Collapse
MESH Headings
- Acylation
- Adenosine Triphosphate/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Hydrogen Bonding
- Isoleucine/metabolism
- Leucine/metabolism
- Leucine-tRNA Ligase/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Xing Du
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | |
Collapse
|
16
|
Beebe K, Ribas De Pouplana L, Schimmel P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J 2003; 22:668-75. [PMID: 12554667 PMCID: PMC140749 DOI: 10.1093/emboj/cdg065] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 12/03/2002] [Accepted: 12/05/2002] [Indexed: 11/14/2022] Open
Abstract
Editing of misactivated amino acids by class I tRNA synthetases is encoded by a specialized internal domain specific to class I enzymes. In contrast, little is known about editing activities of the structurally distinct class II enzymes. Here we show that the class II alanyl-tRNA synthetase (AlaRS) has a specialized internal domain that appears weakly related to an appended domain of threonyl-tRNA synthetase (ThrRS), but is unrelated to that found in class I enzymes. Editing of misactivated glycine or serine was shown to require a tRNA cofactor. Specific mutations in the aforementioned domain disrupt editing and lead to production of mischarged tRNA. This class-specific editing domain was found to be essential for cell growth, in the presence of elevated concentrations of glycine or serine. In contrast to ThrRS, where the editing domain is not found in all three kingdoms of living organisms, it was incorporated early into AlaRSs and is present throughout evolution. Thus, tRNA-dependent editing by AlaRS may have been critical for making the genetic code sufficiently accurate to generate the tree of life.
Collapse
Affiliation(s)
- Kirk Beebe
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Beckman Center, BCC379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
17
|
Larkin DC, Williams AM, Martinis SA, Fox GE. Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules. Nucleic Acids Res 2002; 30:2103-13. [PMID: 12000830 PMCID: PMC115294 DOI: 10.1093/nar/30.10.2103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli leucyl-tRNA synthetase (LeuRS) aminoacylates up to six different class II tRNA(leu) molecules. Each has a distinct anticodon and varied nucleotides in other regions of the tRNA. Attempts to construct a minihelix RNA that can be aminoacylated with leucine have been unsuccessful. Herein, we describe the smallest tRNA(leu) analog that has been aminoacylated to a significant extent to date. A series of tRNA(leu) analogs with various domains and combinations of domains deleted was constructed. The minimal RNA that was efficiently aminoacylated with LeuRS was one in which the anticodon stem-loop and variable arm stem-loop, but neither the D-arm nor T-arm, were deleted. Aminoacylation of this minimal RNA was abolished when the discriminator base A73 was replaced with C73 or when putative tertiary interactions between the D-loop and T-loop were disrupted, suggesting that these identity elements are still functioning in the minimized RNA. The various constructs that were significantly aminoacylated were also tested for amino acid editing by the synthetase. The anticodon and variable stem-loop domains were also dispensable for hydrolysis of the charged tRNA(leu) mimics. These results suggest that LeuRS may rely on identity elements in overlapping domains of the tRNA for both its aminoacylation and editing activities.
Collapse
Affiliation(s)
- Deana C Larkin
- Department of Biology and Biochemistry, 369 Science and Research Building II, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- T L Hendrickson
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Abstract
Aminoacyl-tRNAs are key components in protein synthesis. They are formed directly by correct acylation of tRNA (by aminoacyl-tRNA synthetases) or indirectly by tRNA-dependent transformation of misacylated tRNAs. The accuracy of aminoacyl-tRNA synthesis is enhanced by a number of further protein-RNA or protein-protein interactions, some of which are restricted to Archaea, and might reflect adaptation mechanisms to diverse conditions.
Collapse
Affiliation(s)
- M Ibba
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
20
|
Hager AJ, Pollard JD, Szostak JW. Ribozymes: aiming at RNA replication and protein synthesis. CHEMISTRY & BIOLOGY 1996; 3:717-25. [PMID: 8939686 DOI: 10.1016/s1074-5521(96)90246-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The RNA world hypothesis is founded on the idea of an RNA replicase, or self-replicating RNA molecule, and presupposes the later emergence of ribozymes capable of catalyzing the synthesis of peptides. The recent demonstrations of ribozyme-catalyzed template-directed primer extension, and of ribozyme-catalyzed amide bond synthesis, confirm the plausibility of the RNA world, and highlight the steps that remain to be demonstrated in the laboratory.
Collapse
Affiliation(s)
- A J Hager
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
21
|
Amino acid activation and polymerization at modular multienzymes in nonribosomal peptide biosynthesis. Amino Acids 1996; 10:201-27. [DOI: 10.1007/bf00807324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1995] [Accepted: 11/20/1995] [Indexed: 10/26/2022]
|
22
|
Schmidt E, Schimmel P. Residues in a class I tRNA synthetase which determine selectivity of amino acid recognition in the context of tRNA. Biochemistry 1995; 34:11204-10. [PMID: 7669778 DOI: 10.1021/bi00035a028] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Certain aminoacyl-tRNA synthetases discriminate between closely similar amino acids by hydrolytic editing reactions in the presence of their cognate tRNA. An example is the class I isoleucyl-tRNA synthetase. We recently showed that a mutation which eliminates discrimination between isoleucine (Ile) and valine (Val) in the initial amino acid binding and activation steps had little effect on the hydrolytic editing of activated valine in the presence of isoleucine tRNA (tRNA(Ile)). The results showed that initial amino acid binding and discrimination are functionally independent of tRNA-dependent amino acid discrimination. In this work, we cross-linked (to isoleucyl-tRNA synthetase) a reactive analog of valine misacylated onto tRNA(Ile). Mutation of specific residues within a peptide segment identified by the cross-linking analysis severely affected discrimination of Val-tRNA(Ile) versus Ile-tRNA(Ile). The mutationally sensitive residues are part of an insertion into the catalytic domain and are themselves completely conserved among all known prokaryotic and eukaryotic sequences of the enzyme.
Collapse
Affiliation(s)
- E Schmidt
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|