1
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
2
|
Murali R, Pace LA, Sanford RA, Ward LM, Lynes MM, Hatzenpichler R, Lingappa UF, Fischer WW, Gennis RB, Hemp J. Diversity and evolution of nitric oxide reduction in bacteria and archaea. Proc Natl Acad Sci U S A 2024; 121:e2316422121. [PMID: 38900790 PMCID: PMC11214002 DOI: 10.1073/pnas.2316422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.
Collapse
Affiliation(s)
- Ranjani Murali
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL61801
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV89154
| | - Laura A. Pace
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL61801
- meliora.bio, Salt Lake City, UT84103
| | - Robert A. Sanford
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - L. M. Ward
- Department of Geosciences, Smith College, Northampton, MA01063
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Mackenzie M. Lynes
- Department of Chemistry and Biochemistry, Thermal Biology Institute, Montana State University, Bozeman, MT59717
- Center for Biofilm Enginering, Montana State University, Bozeman, MT59717
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Thermal Biology Institute, Montana State University, Bozeman, MT59717
- Center for Biofilm Enginering, Montana State University, Bozeman, MT59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717
| | - Usha F. Lingappa
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Woodward W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - James Hemp
- meliora.bio, Salt Lake City, UT84103
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
4
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:antiox11102061. [PMID: 36290783 PMCID: PMC9598460 DOI: 10.3390/antiox11102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Over hundreds of years, humans have faced multiple pandemics and have overcome many of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a general sense of uncertainty among everyone. Although several risk profiles, such as the severity of the disease, infection rate, and treatment strategy, have been investigated, new variants from different parts of the world put humans at risk and require multiple strategies simultaneously to control the spread. Understanding the entire system with respect to the commonly involved or essential mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any treatment for COVID-19 may alter the redox profile, which can be an effective complementary method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication. Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities. However, access to these components as support elements against COVID-19 is limited. Therefore, understanding redox-derived species and their nodes as a common interactome in the system will facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire system during COVID-19 infection, including how redox-based molecules impact the accessibility of SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable approach, we discuss the current challenges in redox-based treatment options for COVID-19.
Collapse
|
6
|
Acetylation of NarL K188 and K192 is involved in regulating Escherichia coli anaerobic nitrate respiration. Appl Microbiol Biotechnol 2022; 106:7209-7221. [PMID: 36178515 DOI: 10.1007/s00253-022-12185-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
As a facultative anaerobe, Escherichia coli can activate various respiratory chains during anaerobic growth, among which the mode of anaerobic respiration with nitrate allows good energy conservation. NarL is one of the regulatory proteins in the Nar two-component system that regulates anaerobic respiration in E. coli. Previous studies have shown that NarL activates downstream gene regulation through phosphorylation. However, there are few studies on other protein translational modifications that influence the regulatory function of NarL. Herein, we demonstrate that acetylation modification exists on K188 and K192, the two lysine residues involved in contacting to DNA, and the degree of acetylation has significant effects on DNA-binding abilities, thus affecting the anaerobic growth of E. coli. In addition, NarL is mainly regulated by acetyl phosphate, but not by peptidyl-lysine N-acetyltransferase. These results indicate that non-enzymatic acetylation of NarL by AcP is one of the important mechanisms for the nitrate anaerobic respiratory pathway in response to environmental changes, which extends the idea of the mechanism underlying the response of intestinal flora to changes in the intestinal environment. KEY POINTS: • Acetylation was found in NarL, which was mainly mediated by AcP. • Non-enzymatic acetylation at K188 and K192 affects NarL binding ability. • Acetylation of NarL K188 and K192 regulates anaerobic nitrate growth of E. coli.
Collapse
|
7
|
The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications. Antioxidants (Basel) 2022; 11:antiox11071222. [PMID: 35883712 PMCID: PMC9311577 DOI: 10.3390/antiox11071222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide was once considered to be of marginal interest to the biological sciences and medicine; however, there is now wide recognition, but not yet a comprehensive understanding, of its functions and effects. NO is a reactive, toxic free radical with numerous biological targets, especially metal ions. However, NO and its reaction products also play key roles as reductant and oxidant in biological redox processes, in signal transduction, immunity and infection, as well as other roles. Consequently, it can be sensed, metabolized and modified in biological systems. Here, we present a brief overview of the chemistry and biology of NO—in particular, its origins in geological time and in contemporary biology, its toxic consequences and its critical biological functions. Given that NO, with its intrinsic reactivity, appeared in the early Earth’s atmosphere before the evolution of complex lifeforms, we speculate that the potential for toxicity preceded biological function. To examine this hypothesis, we consider the nature of non-biological and biological targets of NO, the evolution of biological mechanisms for NO detoxification, and how living organisms generate this multifunctional gas.
Collapse
|
8
|
A Narrative Review on Oral and Periodontal Bacteria Microbiota Photobiomodulation, through Visible and Near-Infrared Light: From the Origins to Modern Therapies. Int J Mol Sci 2022; 23:ijms23031372. [PMID: 35163296 PMCID: PMC8836253 DOI: 10.3390/ijms23031372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Photobiomodulation (PBM) consists of a photon energy transfer to the cell, employing non-ionizing light sources belonging to the visible and infrared spectrum. PBM acts on some intrinsic properties of molecules, energizing them through specific light wavelengths. During the evolution of life, semiconducting minerals were energized by sun radiation. The molecules that followed became photoacceptors and were expressed into the first proto-cells and prokaryote membranes. Afterward, the components of the mitochondria electron transport chain influenced the eukaryotic cell physiology. Therefore, although many organisms have not utilized light as an energy source, many of the molecules involved in their physiology have retained their primordial photoacceptive properties. Thus, in this review, we discuss how PBM can affect the oral microbiota through photo-energization and the non-thermal effect of light on photoacceptors (i.e., cytochromes, flavins, and iron-proteins). Sometimes, the interaction of photons with pigments of an endogenous nature is followed by thermal or photodynamic-like effects. However, the preliminary data do not allow determining reliable therapies but stress the need for further knowledge on light-bacteria interactions and microbiota management in the health and illness of patients through PBM.
Collapse
|
9
|
Evolutionary Aspects of the Oxido-Reductive Network of Methylglyoxal. J Mol Evol 2021; 89:618-638. [PMID: 34718825 DOI: 10.1007/s00239-021-10031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
In the chemoautotrophic theory for the origin of life, offered as an alternative to broth theory, the archaic reductive citric acid cycle operating without enzymes is in the center. The non-enzymatic (methyl)glyoxalase pathway has been suggested to be the anaplerotic route for the reductive citric acid cycle. In the recent years, much has been learned about methylglyoxal, but its importance in the metabolic machinery is still uncovered. If methylglyoxal had been essential participant of the early stage of evolution, then it is a legitimate question whether it might have played a role in the early oxido-reduction network, too. Therefore, an oxido-reduction network of methylglyoxal that might have functioned under ancient circumstances without enzymes was constructed and analyzed by virtue of group contribution method. Taking methylglyoxal as input material, it turned out that the evolutionary value of reactions and biomolecules were not similar. Glycerol, glycerate, and tartonate, the output components, were conserved to different degrees. Although the tartonate route was similarly favorable from energetic point of view, its intermediates are almost not present in extant biochemistry. The presence of two carboxyl or aldehyde groups, or their combination in tricarbons of the constructed network seemed disadvantageous for selection, and the inductive effect, resulting in an asymmetry in electron cloud of chemicals, might have been important. The evolutionary role for cysteine, H2S, and formaldehyde in the emergence of high-energy bonds in the form of thioesters and in Fe-S cluster formation as well as in imidazole synthesis was shown to bridge the gap between prebiotic chemistry and contemporary biochemistry. Overall, the ideas developed here represent an approach fitting to chemoautotrophic origin of life and implying to the role of methylglyoxal in triose formation. The proposed network is expected to have an impact upon how one may think of prebiological chemical processes on methylglyoxal, too. Finally, along the evolutionary time line, the network functioning without enzymes is situated between the formation of simple organic compounds and primeval cells, being closer to the former and well preceding the last common metabolic ancestor developed after primitive cells emerged.
Collapse
|
10
|
Degli Esposti M, Moya-Beltrán A, Quatrini R, Hederstedt L. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:664216. [PMID: 34211444 PMCID: PMC8239418 DOI: 10.3389/fmicb.2021.664216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Respiration is a major trait shaping the biology of many environments. Cytochrome oxidase containing heme A (COX) is a common terminal oxidase in aerobic bacteria and is the only one in mammalian mitochondria. The synthesis of heme A is catalyzed by heme A synthase (CtaA/Cox15), an enzyme that most likely coevolved with COX. The evolutionary origin of COX in bacteria has remained unknown. Using extensive sequence and phylogenetic analysis, we show that the ancestral type of heme A synthases is present in iron-oxidizing Proteobacteria such as Acidithiobacillus spp. These bacteria also contain a deep branching form of the major COX subunit (COX1) and an ancestral variant of CtaG, a protein that is specifically required for COX biogenesis. Our work thus suggests that the ancestors of extant iron-oxidizers were the first to evolve COX. Consistent with this conclusion, acidophilic iron-oxidizing prokaryotes lived on emerged land around the time for which there is the earliest geochemical evidence of aerobic respiration on earth. Hence, ecological niches of iron oxidation have apparently promoted the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Esposti MD. On the evolution of cytochrome oxidases consuming oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148304. [PMID: 32890468 DOI: 10.1016/j.bbabio.2020.148304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
This review examines the current state of the art on the evolution of the families of Heme Copper Oxygen reductases (HCO) that oxidize cytochrome c and reduce oxygen to water, chiefly cytochrome oxidase, COX. COX is present in many bacterial and most eukaryotic lineages, but its origin has remained elusive. After examining previous proposals for COX evolution, the review summarizes recent insights suggesting that COX enzymes might have evolved in soil dwelling, probably iron-oxidizing bacteria which lived on emerged land over two billion years ago. These bacteria were the likely ancestors of extant acidophilic iron-oxidizers such as Acidithiobacillus spp., which belong to basal lineages of the phylum Proteobacteria. Proteobacteria may thus be considered the originators of COX, which was then laterally transferred to other prokaryotes. The taxonomy of bacteria is presented in relation to the current distribution of COX and C family oxidases, from which COX may have evolved.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences UNAM, Ave. Universidad 701, Cuernavaca, CP 62130, Morelos, Mexico.
| |
Collapse
|
12
|
Neubeck A, Freund F. Sulfur Chemistry May Have Paved the Way for Evolution of Antioxidants. ASTROBIOLOGY 2020; 20:670-675. [PMID: 31880469 PMCID: PMC7232690 DOI: 10.1089/ast.2019.2156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The first organisms on the young Earth, just 1-1.5 billion years old, were likely chemolithoautotrophic anaerobes, thriving in an anoxic world rich in water, CO2, and N2. It is generally assumed that, until the accumulation of O2 in the atmosphere, life was exempted from the oxidative stress that reactive oxygen species (ROS) impose on hydrocarbon-based life. Therefore, it is perplexing to note that life on the early Earth already carried antioxidants such as superoxide dismutase enzymes, catalase, and peroxiredoxins, the function of which is to counteract all forms of ROS, including H2O2. Phylogenetic investigations suggest that the presence of these enzymes in the last universal common ancestor, far predating the great oxygenation event (GOE) sometime between 2.3 and 2.7 billion years ago, is thought to be due to the appearance of oxygen-producing microorganisms and the subsequent need to respond to the appearance of ROS. Since the metabolic enzymes that counteract ROS have been found in all domains of life, they are considered of primitive origin. Two questions arise: (1) Could there be a nonbiological source of ROS that predates the oxygenic microbial activity? (2) Could sulfur, the homologue of oxygen, have played that role? Reactive sulfur species (RSS) may have triggered the evolution of antioxidants such that the ROS antioxidants started out as "antisulfur" enzymes developed to cope with, and take advantage of, various forms of RSS that were abundantly present on the early Earth.
Collapse
Affiliation(s)
- Anna Neubeck
- Department of Palaeobiology, Uppsala University, Uppsala, Sweden
- Address correspondence to: Anna Neubeck, Department of Palaeobiology, Uppsala University, Geocentrum, Villavägen 16, SE-752 36 Uppsala, Sweden
| | - Friedemann Freund
- Space Biosciences Research (Code SCR), NASA Ames Research Center, Mountain View, California
- SETI Institute, Carl Sagan Center, Mountain View, California
| |
Collapse
|
13
|
Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 2019; 140:61-73. [PMID: 30862543 DOI: 10.1016/j.freeradbiomed.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
One of the former definitions of "obligate anaerobiosis" was based on three main criteria: 1) it occurs in organisms, so-called obligate anaerobes, which live in environments without oxygen (O2), 2) O2-dependent (aerobic) respiration, and 3) antioxidant enzymes are absent in obligate anaerobes. In contrast, aerobes need O2 in order to grow and develop properly. Obligate (or strict) anaerobes belong to prokaryotic microorganisms from two domains, Bacteria and Archaea. A closer look at anaerobiosis covers a wide range of microorganisms that permanently or in a time-dependent manner tolerate different concentrations of O2 in their habitats. On this basis they can be classified as obligate/facultative anaerobes, microaerophiles and nanaerobes. Paradoxically, O2 tolerance in strict anaerobes is usually, as in aerobes, associated with the activity of the antioxidant response system, which involves different antioxidant enzymes responsible for removing excess reactive oxygen species (ROS). In our opinion, the traditional definition of "obligate anaerobiosis" loses its original sense. Strict anaerobiosis should only be restricted to the occurrence of O2-independent pathways involved in energy generation. For that reason, a term better than "obligate anaerobes" would be O2/ROS tolerant anaerobes, where the role of the O2/ROS detoxification system is separated from O2-independent metabolic pathways that supply energy. Ubiquitous key antioxidant enzymes like superoxide dismutase (SOD) and superoxide reductase (SOR) in contemporary obligate anaerobes might suggest that their origin is ancient, maybe even the beginning of the evolution of life on Earth. It cannot be ruled out that c. 3.5 Gyr ago, local microquantities of O2/ROS played a role in the evolution of the last universal common ancestor (LUCA) of all modern organisms. On the basis of data in the literature, the hypothesis that LUCA could be an O2/ROS tolerant anaerobe is discussed together with the question of the abiotic sources of O2/ROS and/or the early evolution of cyanobacteria that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Monika Kula
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
14
|
Balsera M, Buchanan BB. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic Biol Med 2019; 140:28-35. [PMID: 30862542 DOI: 10.1016/j.freeradbiomed.2019.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Thioredoxins (Trxs) are low-molecular-weight proteins that participate in the reduction of target enzymes. Trxs contain a redox-active disulfide bond, in the form of a WCGPC amino acid sequence motif, that enables them to perform dithiol-disulfide exchange reactions with oxidized protein substrates. Widely distributed across the three domains of life, Trxs form an evolutionarily conserved family of ancient origin. Thioredoxin reductases (TRs) are enzymes that reduce Trxs. According to their evolutionary history, TRs have diverged, thereby leading to the emergence of variants of the enzyme that in combination with different types of Trxs meet the needs of the cell. In addition to participating in the regulation of metabolism and defense against oxidative stress, Trxs respond to environmental signals-an ability that developed early in evolution. Redox regulation of proteins targeted by Trx is accomplished with a pair of redox-active cysteines located in strategic positions on the polypeptide chain to enable reversible oxidative changes that result in structural and functional modifications target proteins. In this review, we present a general overview of the thioredoxin system and describe recent structural studies on the diversity of its components.
Collapse
Affiliation(s)
- Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| | - Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, Berkeley, 94720 CA, USA.
| |
Collapse
|
15
|
Degli Esposti M, Mentel M, Martin W, Sousa FL. Oxygen Reductases in Alphaproteobacterial Genomes: Physiological Evolution From Low to High Oxygen Environments. Front Microbiol 2019; 10:499. [PMID: 30936856 PMCID: PMC6431628 DOI: 10.3389/fmicb.2019.00499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Oxygen reducing terminal oxidases differ with respect to their subunit composition, heme groups, operon structure, and affinity for O2. Six families of terminal oxidases are currently recognized, all of which occur in alphaproteobacterial genomes, two of which are also present in mitochondria. Many alphaproteobacteria encode several different terminal oxidases, likely reflecting ecological versatility with respect to oxygen levels. Terminal oxidase evolution likely started with the advent of O2 roughly 2.4 billion years ago and terminal oxidases diversified in the Proterozoic, during which oxygen levels remained low, around the Pasteur point (ca. 2 μM O2). Among the alphaproteobacterial genomes surveyed, those from members of the Rhodospirillaceae reveal the greatest diversity in oxygen reductases. Some harbor all six terminal oxidase types, in addition to many soluble enzymes typical of anaerobic fermentations in mitochondria and hydrogenosomes of eukaryotes. Recent data have it that O2 levels increased to current values (21% v/v or ca. 250 μM) only about 430 million years ago. Ecological adaptation brought forth different lineages of alphaproteobacteria and different lineages of eukaryotes that have undergone evolutionary specialization to high oxygen, low oxygen, and anaerobic habitats. Some have remained facultative anaerobes that are able to generate ATP with or without the help of oxygen and represent physiological links to the ancient proteobacterial lineage at the origin of mitochondria and eukaryotes. Our analysis reveals that the genomes of alphaproteobacteria appear to retain signatures of ancient transitions in aerobic metabolism, findings that are relevant to mitochondrial evolution in eukaryotes as well.
Collapse
Affiliation(s)
| | - Marek Mentel
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - William Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Liu T, Chen D, Li X, Li F. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions. FEMS Microbiol Ecol 2019; 95:5371120. [DOI: 10.1093/femsec/fiz030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/06/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tongxu Liu
- Guangzhou Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, P. R. China
| | - Dandan Chen
- Guangzhou Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, P. R. China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaomin Li
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Fangbai Li
- Guangzhou Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, P. R. China
| |
Collapse
|
17
|
Kasai S, Mimura J, Ozaki T, Itoh K. Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease. Front Vet Sci 2018; 5:242. [PMID: 30364139 PMCID: PMC6191506 DOI: 10.3389/fvets.2018.00242] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Iron has played an important role in energy production since the beginning of life, as iron-catalyzed redox reactions are required for energy production. Oxygen, a highly efficient electron acceptor with high reduction potential, facilitates highly efficient energy production in eukaryotic cells. However, the increasing atmospheric oxygen concentration produces new threats to the organism, as oxygen reacts with iron and produces reactive oxygen species unless its levels are strictly regulated. As the size of multicellular organisms increases, these organisms must transport oxygen to the peripheral tissues and begin to employ red blood cells containing hemoglobin. This system is potentially a double-edged sword, as hemoglobin autoxidation occurs at a certain speed and releases free iron into the cytoplasm. Nrf2 belongs to the CNC transcription factor family, in which NF-E2p45 is the founding member. NF-E2p45 was first identified as a transcription factor that binds to the erythroid gene regulatory element NF-E2 located in the promoter region of the heme biosynthetic porphobilinogen deaminase gene. Human Nrf2 was also identified as a transcription factor that binds to the regulatory region of the β-globin gene. Despite these original findings, NF-E2p45 and Nrf2 knockout mice exhibit few erythroid phenotypes. Nrf2 regulates the expression of a wide range of antioxidant and detoxification enzymes. In this review article, we describe and discuss the roles of Nrf2 in various iron-mediated bioreactions and its possible coevolution with iron and oxygen.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Ozaki
- Department of Biological Science, Iwate University, Morioka, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
18
|
Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018; 20:745-754. [PMID: 29950572 PMCID: PMC6541229 DOI: 10.1038/s41556-018-0124-1] [Citation(s) in RCA: 1100] [Impact Index Per Article: 157.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.
Collapse
Affiliation(s)
- Jessica B Spinelli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT, Moore W, Schwieterman EW, Shkolnik EL, Smith HB. Exoplanet Biosignatures: Future Directions. ASTROBIOLOGY 2018; 18:779-824. [PMID: 29938538 PMCID: PMC6016573 DOI: 10.1089/ast.2017.1738] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Collapse
Affiliation(s)
- Sara I. Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
- Blue Marble Space Institute of Science, Seattle, Washington
| | - William Bains
- EAPS (Earth, Atmospheric and Planetary Science), MIT, Cambridge, Massachusetts
- Rufus Scientific Ltd., Royston, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sebastian Danielache
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Earth Life Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shawn Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
| | - Betul Kacar
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- NASA Astrobiology Institute, Reliving the Past Team, University of Montana, Missoula, Montana
- Department of Molecular and Cell Biology, University of Arizona, Tucson, Arizona
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - Adrian Lenardic
- Department of Earth Science, Rice University, Houston, Texas
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
| | - William Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
- National Institute of Aerospace, Hampton, Virginia
| | - Edward W. Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
| | - Evgenya L. Shkolnik
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
20
|
Taverne YJ, Merkus D, Bogers AJ, Halliwell B, Duncker DJ, Lyons TW. Reactive Oxygen Species: Radical Factors in the Evolution of Animal Life: A molecular timescale from Earth's earliest history to the rise of complex life. Bioessays 2018; 40. [PMID: 29411901 DOI: 10.1002/bies.201700158] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Indexed: 12/27/2022]
Abstract
Introduction of O2 to Earth's early biosphere stimulated remarkable evolutionary adaptations, and a wide range of electron acceptors allowed diverse, energy-yielding metabolic pathways. Enzymatic reduction of O2 yielded a several-fold increase in energy production, enabling evolution of multi-cellular animal life. However, utilization of O2 also presented major challenges as O2 and many of its derived reactive oxygen species (ROS) are highly toxic, possibly impeding multicellular evolution after the Great Oxidation Event. Remarkably, ROS, and especially hydrogen peroxide, seem to play a major part in early diversification and further development of cellular respiration and other oxygenic pathways, thus becoming an intricate part of evolution of complex life. Hence, although harnessing of chemical and thermo-dynamic properties of O2 for aerobic metabolism is generally considered to be an evolutionary milestone, the ability to use ROS for cell signaling and regulation may have been the first true breakthrough in development of complex life.
Collapse
Affiliation(s)
- Yannick J Taverne
- Department of Cardiothoracic Surgery Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040 - Room BD-559 3000 CA Rotterdam, Rotterdam, The Netherlands.,Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Ad J Bogers
- Department of Cardiothoracic Surgery Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040 - Room BD-559 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Barry Halliwell
- Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, MD 7, 8 Medical Drive Singapore 117597 Singapore, Singapore
| | - Dirk J Duncker
- Division of Experimental Cardiology Department of Cardiology Cardiovascular Research Institute COEUR Erasmus MC University Medical Centre Rotterdam, P.O. box 2040, Room 2369, 3000 CA Rotterdam, Rotterdam, The Netherlands
| | - Timothy W Lyons
- Department of Earth Sciences University of California, University of California, Riverside, 900 University Ave. Riverside, 92521 California, California, USA
| |
Collapse
|
21
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|
22
|
Santana MM, Gonzalez JM, Cruz C. Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis. Front Microbiol 2017; 8:1947. [PMID: 29067010 PMCID: PMC5641340 DOI: 10.3389/fmicb.2017.01947] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023] Open
Abstract
Many publications highlight the importance of nitric oxide (NO) in plant–bacteria interactions, either in the promotion of health and plant growth or in pathogenesis. However, the role of NO in the signaling between bacteria and plants and in the fate of their interaction, as well as the reconstruction of their interactive evolution, remains largely unknown. Despite the complexity of the evolution of life on Earth, we explore the hypothesis that denitrification and aerobic respiration were responsible for local NO accumulation, which triggered primordial antagonistic biotic interactions, namely the first phytopathogenic interactions. N-oxides, including NO, could globally accumulate via lightning synthesis in the early anoxic ocean and constitute pools for the evolution of denitrification, considered an early step of the biological nitrogen cycle. Interestingly, a common evolution may be proposed for components of denitrification and aerobic respiration pathways, namely for NO and oxygen reductases, a theory compatible with the presence of low amounts of oxygen before the great oxygenation event (GOE), which was generated by Cyanobacteria. During GOE, the increase in oxygen caused the decrease of Earth’s temperature and the consequent increase of oxygen dissolution and availability, making aerobic respiration an increasingly dominant trait of the expanding mesophilic lifestyle. Horizontal gene transfer was certainly important in the joint expansion of mesophily and aerobic respiration. First denitrification steps lead to NO formation through nitrite reductase activity, and NO may further accumulate when oxygen binds NO reductase, resulting in denitrification blockage. The consequent transient NO surplus in an oxic niche could have been a key factor for a successful outcome of an early denitrifying prokaryote able to scavenge oxygen by NO/oxygen reductase or by an independent heterotrophic aerobic respiration pathway. In fact, NO surplus could result in toxicity causing “the first disease” in oxygen-producing Cyanobacteria. We inspected in bacteria the presence of sequences similar to the NO-producing nitrite reductase nirS gene of Thermus thermophilus, an extreme thermophilic aerobe of the Thermus/Deinococcus group, which constitutes an ancient lineage related to Cyanobacteria. In silico analysis revealed the relationship between the presence of nirS genes and phytopathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Margarida M Santana
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Cristina Cruz
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Ślesak I, Ślesak H, Kruk J. RubisCO Early Oxygenase Activity: A Kinetic and Evolutionary Perspective. Bioessays 2017; 39. [PMID: 28976010 DOI: 10.1002/bies.201700071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/10/2017] [Indexed: 11/09/2022]
Abstract
RubisCO (D-ribulose 1,5-bisphosphate carboxylase/oxygenase) is Earth's main enzyme responsible for CO2 fixation via carboxylation of ribulose-1,5-bisphosphate (RuBP) into organic matter. Besides the carboxylation reaction, RubisCO also catalyzes the oxygenation of RuBP by O2 , which is probably as old as its carboxylation properties. Based on molecular phylogeny, the occurrence of the reactive oxygen species (ROS)-removing system and kinetic properties of different RubisCO forms, we postulated that RubisCO oxygenase activity appeared in local microoxic areas, yet before the appearance of oxygenic photosynthesis. Here, in reviewing the literature, we present a novel hypothesis: the RubisCO early oxygenase activity hypothesis. This hypothesis may be compared with the exaptation hypothesis, according to which latent RubisCO oxygenase properties emerged later during the oxygenation of the Earth's atmosphere. The reconstruction of ancestral RubisCO forms using ancestral sequence reconstruction (ASR) techniques, as a promising way for testing of RubisCO early oxygenase activity hypothesis, is presented.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków 30-239, Poland
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, Kraków 30-387, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
24
|
Bhagi-Damodaran A, Michael MA, Zhu Q, Reed J, Sandoval BA, Mirts EN, Chakraborty S, Moënne-Loccoz P, Zhang Y, Lu Y. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases. Nat Chem 2017; 9:257-263. [PMID: 28221360 PMCID: PMC5321616 DOI: 10.1038/nchem.2643] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023]
Abstract
Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.
Collapse
Affiliation(s)
| | - Matthew A. Michael
- Department of Biomedical Engineering, Chemistry, and
Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Qianhong Zhu
- Division of Environmental & Biomolecular Systems, Institute
of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park
Road, Portland, OR, USA
| | - Julian Reed
- Department of Biochemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
| | - Braddock A. Sandoval
- Department of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
| | - Evan N. Mirts
- Center for Biophysics and Quantitative Biology, University
of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saumen Chakraborty
- Department of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
| | - Pierre Moënne-Loccoz
- Division of Environmental & Biomolecular Systems, Institute
of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park
Road, Portland, OR, USA
| | - Yong Zhang
- Department of Biomedical Engineering, Chemistry, and
Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University
of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
25
|
Sun C, Taguchi AT, Vermaas JV, Beal NJ, O'Malley PJ, Tajkhorshid E, Gennis RB, Dikanov SA. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo 3 from Escherichia coli. Biochemistry 2016; 55:5714-5725. [PMID: 27622672 DOI: 10.1021/acs.biochem.6b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.
Collapse
Affiliation(s)
- Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Josh V Vermaas
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nathan J Beal
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Ślesak I, Ślesak H, Zimak-Piekarczyk P, Rozpądek P. Enzymatic Antioxidant Systems in Early Anaerobes: Theoretical Considerations. ASTROBIOLOGY 2016; 16:348-58. [PMID: 27176812 PMCID: PMC4876498 DOI: 10.1089/ast.2015.1328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/01/2015] [Indexed: 05/14/2023]
Abstract
UNLABELLED It is widely accepted that cyanobacteria-dependent oxygen that was released into Earth's atmosphere ca. 2.5 billion years ago sparked the evolution of the aerobic metabolism and the antioxidant system. In modern aerobes, enzymes such as superoxide dismutases (SODs), peroxiredoxins (PXs), and catalases (CATs) constitute the core of the enzymatic antioxidant system (EAS) directed against reactive oxygen species (ROS). In many anaerobic prokaryotes, the superoxide reductases (SORs) have been identified as the main force in counteracting ROS toxicity. We found that 93% of the analyzed strict anaerobes possess at least one antioxidant enzyme, and 50% have a functional EAS, that is, consisting of at least two antioxidant enzymes: one for superoxide anion radical detoxification and another for hydrogen peroxide decomposition. The results presented here suggest that the last universal common ancestor (LUCA) was not a strict anaerobe. O2 could have been available for the first microorganisms before oxygenic photosynthesis evolved, however, from the intrinsic activity of EAS, not solely from abiotic sources. KEY WORDS Archaea-Atmospheric gases-Evolution-H2O2 resistance-Oxygenic photosynthesis. Astrobiology 16, 348-358.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Kraków, Poland
| | | | - Piotr Rozpądek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell. mBio 2016; 7:e01921-15. [PMID: 26814183 PMCID: PMC4742706 DOI: 10.1128/mbio.01921-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. The respiratory chain has recently moved into the focus for drug development against prokaryotic human pathogens, in particular, for multiresistant strains (P. Murima, J. D. McKinney, and K. Pethe, Chem Biol 21:1423–1432, 2014, http://dx.doi.org/10.1016/j.chembiol.2014.08.020). cbb3-CcO is an essential enzyme for many different pathogenic bacterial species, e.g., Helicobacter pylori, Vibrio cholerae, and Pseudomonas aeruginosa, and represents a promising drug target. In order to develop compounds targeting these proteins, a detailed understanding of the molecular architecture and function is required. Here we identified and characterized a novel subunit, CcoM, in the cbb3-CcO complex and thereby completed the crystal structure of the Cbb3 oxidase from Pseudomonas stutzeri, a bacterium closely related to the human pathogen Pseudomonas aeruginosa.
Collapse
|
28
|
Klatt JM, Meyer S, Häusler S, Macalady JL, de Beer D, Polerecky L. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. ISME JOURNAL 2015; 10:921-33. [PMID: 26405833 DOI: 10.1038/ismej.2015.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/25/2022]
Abstract
We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 μm). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (>45 μM) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater.
Collapse
Affiliation(s)
- Judith M Klatt
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Steffi Meyer
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Stefan Häusler
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Dirk de Beer
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lubos Polerecky
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat Commun 2015; 6:7415. [PMID: 26077864 PMCID: PMC4490365 DOI: 10.1038/ncomms8415] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/07/2015] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders. The protein DJ-1 is known to have antioxidant effects in cells. Here, the authors reveal that DJ-1 has a role in coupling mitochondrial respiration in skeletal muscles of mice, and show that absence of DJ-1 increases energy expenditure and protects mice from diet-induced obesity.
Collapse
|
30
|
Abstract
Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- *Corresponding author: E-mail:
| |
Collapse
|
31
|
Ducluzeau AL, Schoepp-Cothenet B, van Lis R, Baymann F, Russell MJ, Nitschke W. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective. J R Soc Interface 2015; 11:20140196. [PMID: 24968694 DOI: 10.1098/rsif.2014.0196] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes.
Collapse
Affiliation(s)
- Anne-Lise Ducluzeau
- Beadle Center, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588-0660, USA
| | - Barbara Schoepp-Cothenet
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| | - Robert van Lis
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| | - Michael J Russell
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA
| | - Wolfgang Nitschke
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| |
Collapse
|
32
|
Francis BR. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells. Life (Basel) 2015; 5:467-505. [PMID: 25679748 PMCID: PMC4390864 DOI: 10.3390/life5010467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
33
|
Sharma V, Wikström M. A structural and functional perspective on the evolution of the heme-copper oxidases. FEBS Lett 2014; 588:3787-92. [PMID: 25261254 DOI: 10.1016/j.febslet.2014.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/15/2022]
Abstract
The heme-copper oxidases (HCOs) catalyze the reduction of O2 to water, and couple the free energy to proton pumping across the membrane. HCOs are divided into three sub-classes, A, B and C, whose order of emergence in evolution has been controversial. Here we have analyzed recent structural and functional data on HCOs and their homologues, the nitric oxide reductases (NORs). We suggest that the C-type oxidases are ancient enzymes that emerged from the NORs. In contrast, the A-type oxidases are the most advanced from both structural and functional viewpoints, which we interpret as evidence for having evolved later.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland.
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
34
|
Pei J, Li W, Kinch LN, Grishin NV. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families. Protein Sci 2014; 23:1220-34. [PMID: 24931479 DOI: 10.1002/pro.2503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 01/04/2023]
Abstract
The heme-copper oxidase (HCO) superfamily includes HCOs in aerobic respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices (TMHs) arranged in three-fold rotational pseudosymmetry, with six conserved histidines for heme and metal binding. Using sensitive sequence similarity searches, we detected a number of novel HCO/NOR homologs and named them HCO Homology (HCOH) proteins. Several HCOH families possess only four TMHs that exhibit the most pronounced similarity to the last four TMHs (TMHs 9-12) of HCOs/NORs. Encoded by independent genes, four-TMH HCOH proteins represent a single evolutionary unit (EU) that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1-4, TMHs 5-8, and TMHs 9-12. Single-EU HCOH proteins could form homotrimers or heterotrimers to maintain the general structure and ligand-binding sites defined by the HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 12-TMHs and three EUs. Most three-EU HCOH proteins possess two conserved histidines and could bind a single heme. Limited experimental studies and genomic context analysis suggest that many HCOH proteins could function in the denitrification pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) proteins. Gene duplication, fusion, and fission likely play important roles in the evolution of HCOs/NORs and HCOH proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
35
|
Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1407-27. [PMID: 23871937 PMCID: PMC3839093 DOI: 10.1016/j.bbabio.2013.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/30/2022]
Abstract
This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On the one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Daria V Dibrova
- School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia; Institute of Mitoengineering, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
36
|
Hasan SS, Cramer WA. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure. Philos Trans R Soc Lond B Biol Sci 2013; 367:3406-11. [PMID: 23148267 DOI: 10.1098/rstb.2012.0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b(6)f and the yeast bc(1) complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b(6)f complex overlap four sites in the Chlamydomonas reinhardtii algal b(6)f complex and four in the yeast bc(1) complex. The proposed lipid functions include: (i) interfacial-interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron-sulphur protein (ISP), and four small subunits in the boundary 'picket fence'); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a 'latch' to photosystem I provided by the β-carotene chain protruding through the 'picket fence'; (v) presence of a lipid and chlorophyll a chlorin ring in b(6)f in place of the eighth helix in the bc(1) cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b(6)f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
37
|
Azzouzi A, Steunou AS, Durand A, Khalfaoui-Hassani B, Bourbon ML, Astier C, Bollivar DW, Ouchane S. Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu⁺-ATPase mutant copA⁻ of Rubrivivax gelatinosus. Mol Microbiol 2013; 88:339-51. [PMID: 23448658 DOI: 10.1111/mmi.12188] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2013] [Indexed: 01/25/2023]
Abstract
Two genes encoding structurally similar Copper P1B -type ATPases can be identified in several genomes. Notwithstanding the high sequence and structural similarities these ATPases held, it has been suggested that they fulfil distinct physiological roles. In deed, we have shown that the Cu(+) -ATPase CtpA is required only for the activity of cuproproteins in the purple bacterium Rubrivivax gelatinosus; herein, we show that CopA is not directly required for cytochrome c oxidase but is vital for copper tolerance. Interestingly, excess copper in the copA(-) mutant resulted in a substantial decrease of the cytochrome c oxidase and the photosystem under microaerobic and anaerobic conditions together with the extrusion of coproporphyrin III. The data indicated that copper targeted the tetrapyrrole biosynthesis pathway at the level of the coproporphyrinogen III oxidase HemN and thereby affects the oxidase and the photosystem. This is the first in vivo demonstration that copper, like oxygen, affects tetrapyrrole biosynthesis presumably at the level of the SAM and [4Fe-4S] containing HemN enzyme. In light of these results and similar findings in Escherichia coli, the potential role of copper ions in the evolution of [4Fe-4S] enzymes and the Cu(+) -ATPases is discussed.
Collapse
Affiliation(s)
- Asma Azzouzi
- CNRS, CGM, UPR 3404, Université Paris Sud, 1 Ave. de la Terrasse Gif sur Yvette, F-91198, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
39
|
Hong Enriquez RP, Do TN. Bioavailability of metal ions and evolutionary adaptation. Life (Basel) 2012; 2:274-85. [PMID: 25371266 PMCID: PMC4187156 DOI: 10.3390/life2040274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/16/2022] Open
Abstract
The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.
Collapse
Affiliation(s)
| | - Trang N Do
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34151 Trieste, Italy.
| |
Collapse
|
40
|
Ouyang H, Han H, Roh JH, Hemp J, Hosler JP, Gennis RB. Functional importance of a pair of conserved glutamic acid residues and of Ca(2+) binding in the cbb(3)-type oxygen reductases from Rhodobacter sphaeroides and Vibrio cholerae. Biochemistry 2012; 51:7290-6. [PMID: 22913716 DOI: 10.1021/bi3006847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cbb(3)-type cytochrome c oxidases are members of the family of heme-copper proton pumping respiratory oxygen reductases. The structure of the cbb(3)-type oxidase from Pseudomonas stutzeri reveals that, in addition to the six redox-active metal centers (two b-type hemes, three c-type hemes, and Cu(B)), the enzyme also contains at least one Ca(2+). The calcium bridges two propionate carboxyls at the interface between the low-spin heme b and the active-site heme b(3) and, in addition, is ligated to a serine in subunit CcoO and by a glutamate in subunit CcoN. The glutamate that is ligated to Ca(2+) is one of a pair of glutamic acid residues that has previously been suggested to be part of a proton exit pathway for pumped protons. In this work, mutations of these glutamates are investigated in the cbb(3)-type oxidases from Vibrio cholerae and Rhodobacter sphaeroides. Metal analysis shows that each of these wild-type enzymes contains Ca(2+). Mutations of the glutamate expected to ligate the Ca(2+) in each of these enzymes (E126 in V. cholerae and E180 in R. sphaeroides) result in a loss of activity as well as a loss of Ca(2+). Mutations of the nearby glutamate (E129 in V. cholerae and E183 in R. sphaeroides) also resulted in a loss of oxidase activity and a loss of Ca(2+). It is concluded that the Ca(2+) is essential for assembly of the fully functional enzyme and that neither of the glutamates is likely to be part of a pathway for pumped protons within the cbb(3)-type oxygen reductases. A more likely role for these glutamates is the maintenance of the structural integrity of the active conformation of the enzyme.
Collapse
Affiliation(s)
- Hanlin Ouyang
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | | | | | | | | | | |
Collapse
|
41
|
Slesak I, Slesak H, Kruk J. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways. ASTROBIOLOGY 2012; 12:775-84. [PMID: 22970865 PMCID: PMC3440028 DOI: 10.1089/ast.2011.0704] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.
Collapse
Affiliation(s)
- Ireneusz Slesak
- Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | | | | |
Collapse
|
42
|
Stamati K, Mudera V, Cheema U. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng 2011; 2:2041731411432365. [PMID: 22292107 PMCID: PMC3258841 DOI: 10.1177/2041731411432365] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxygen is one of the critically defining elements resulting in the existence of eukaryotic life on this planet. The rise and fall of this element can be tracked through time and corresponds with the evolution of diverse life forms, development of efficient energy production (oxidative phosphorylation) in single cell organisms, the evolution of multicellular organisms and the regulation of complex cell phenotypes. By understanding these events, we can plot the effect of oxygen on evolution and its direct influence on different forms of life today, from the whole organism to specific cells within multicellular organisms. In the emerging field of tissue engineering, understanding the role of different levels of oxygen for normal cell function as well as control of complex signalling cascades is paramount to effectively build 3D tissues in vitro and their subsequent survival when implanted.
Collapse
|
43
|
Sousa FL, Alves RJ, Ribeiro MA, Pereira-Leal JB, Teixeira M, Pereira MM. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:629-37. [PMID: 22001780 DOI: 10.1016/j.bbabio.2011.09.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/13/2011] [Accepted: 09/29/2011] [Indexed: 11/24/2022]
Abstract
Heme-copper oxygen reductases (HCO) reduce O(2) to water being the last enzymatic complexes of most aerobic respiratory chains. These enzymes promote energy conservation coupling the catalytic reaction to charge separation and charge translocation across the prokaryotic cytoplasmatic or mitochondrial membrane. In this way they contribute to the establishment and maintenance of the transmembrane difference of electrochemical potential, which is vital for solute/nutrient cell import, synthesis of ATP and motility. The HCO enzymes most probably share with the nitric oxide reductases, NORs, a common ancestor. We have proposed the classification of HCOs into three different types, A, B and C; based on the constituents of their proton channels (Pereira, Santana and Teixeira (2001) Biochim Biophys Acta, 1505, 185-208). This classification was recently challenged by the suggestion of other different types of HCOs. Using an enlarged sampling we performed an exhaustive bioinformatic reanalysis of HCOs family. Our results strengthened our previously proposed classification and showed no need for the existence of more divisions. Now, we analyze the taxonomic distribution of HCOs and NORs and the congruence of their sequence trees with the 16S rRNA tree. We observed that HCOs are widely distributed in the two prokaryotic domains and that the different types of enzymes are not confined to a specific taxonomic group or environmental niche.
Collapse
Affiliation(s)
- Filipa L Sousa
- Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int J Mol Sci 2011; 12:6469-501. [PMID: 22072900 PMCID: PMC3210991 DOI: 10.3390/ijms12106469] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing “omics”-based, diagnostic tests to help influence therapies.
Collapse
|
45
|
Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol 2011; 155:104-17. [DOI: 10.1016/j.jbiotec.2010.12.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
|
46
|
Monitoring enzyme expression of a branched respiratory chain of corynebacterium glutamicum using an EGFP reporter gene. J Bioenerg Biomembr 2011; 43:257-66. [DOI: 10.1007/s10863-011-9355-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 04/11/2011] [Indexed: 11/25/2022]
|
47
|
Haqq-Misra J, Kasting JF, Lee S. Availability of O(2) and H(2)O(2) on pre-photosynthetic Earth. ASTROBIOLOGY 2011; 11:293-302. [PMID: 21545266 PMCID: PMC3097080 DOI: 10.1089/ast.2010.0572] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05 nM, which corresponds to a partial pressure for O(2) of about 4 × 10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.
Collapse
Affiliation(s)
- Jacob Haqq-Misra
- Department of Meteorology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
48
|
Kabashima Y, Sakamoto J. Purification and biochemical properties of a cytochrome bc complex from the aerobic hyperthermophilic archaeon Aeropyrum pernix. BMC Microbiol 2011; 11:52. [PMID: 21396131 PMCID: PMC3062577 DOI: 10.1186/1471-2180-11-52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background The bioenergetics of Archaea with respect to the evolution of electron transfer systems is very interesting. In contrast to terminal oxidases, a canonical bc1 complex has not yet been isolated from Archaea. In particular, c-type cytochromes have been reported only for a limited number of species. Results Here, we isolated a c-type cytochrome-containing enzyme complex from the membranes of the hyperthermophilic archaeon, Aeropyrum pernix, grown aerobically. The redox spectrum of the isolated c-type cytochrome showed a characteristic α-band peak at 553 nm corresponding to heme C. The pyridine hemochrome spectrum also revealed the presence of heme B. In non-denaturing polyacrylamide gel electrophoresis, the cytochrome migrated as a single band with an apparent molecular mass of 80 kDa, and successive SDS-PAGE separated the 80-kDa band into 3 polypeptides with apparent molecular masses of 40, 30, and 25 kDa. The results of mass spectrometry indicated that the 25-kDa band corresponded to the hypothetical cytochrome c subunit encoded by the ORF APE_1719.1. In addition, the c-type cytochrome-containing polypeptide complex exhibited menaquinone: yeast cytochrome c oxidoreductase activities. Conclusion In conclusion, we showed that A. pernix, a hyperthemophilic archaeon, has a "full" bc complex that includes a c-type cytochrome, and to the best of our knowledge, A. pernix is the first archaea from which such a bc complex has been identified. However, an electron donor candidates for cytochrome c oxidase, such as a blue copper protein, have not yet been identified in the whole genome data of this archaeon. We are currently trying to identify an authentic substrate between a bc complex and terminal oxidase.
Collapse
Affiliation(s)
- Yoshiki Kabashima
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | | |
Collapse
|
49
|
Williamson A, Conlan B, Hillier W, Wydrzynski T. The evolution of Photosystem II: insights into the past and future. PHOTOSYNTHESIS RESEARCH 2011; 107:71-86. [PMID: 20512415 DOI: 10.1007/s11120-010-9559-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.
Collapse
Affiliation(s)
- Adele Williamson
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
50
|
Lundin D, Gribaldo S, Torrents E, Sjöberg BM, Poole AM. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. BMC Evol Biol 2010; 10:383. [PMID: 21143941 PMCID: PMC3019208 DOI: 10.1186/1471-2148-10-383] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/10/2010] [Indexed: 11/29/2022] Open
Abstract
Background Ribonucleotide reduction is the only de novo pathway for synthesis of deoxyribonucleotides, the building blocks of DNA. The reaction is catalysed by ribonucleotide reductases (RNRs), an ancient enzyme family comprised of three classes. Each class has distinct operational constraints, and are broadly distributed across organisms from all three domains, though few class I RNRs have been identified in archaeal genomes, and classes II and III likewise appear rare across eukaryotes. In this study, we examine whether this distribution is best explained by presence of all three classes in the Last Universal Common Ancestor (LUCA), or by horizontal gene transfer (HGT) of RNR genes. We also examine to what extent environmental factors may have impacted the distribution of RNR classes. Results Our phylogenies show that the Last Eukaryotic Common Ancestor (LECA) possessed a class I RNR, but that the eukaryotic class I enzymes are not directly descended from class I RNRs in Archaea. Instead, our results indicate that archaeal class I RNR genes have been independently transferred from bacteria on two occasions. While LECA possessed a class I RNR, our trees indicate that this is ultimately bacterial in origin. We also find convincing evidence that eukaryotic class I RNR has been transferred to the Bacteroidetes, providing a stunning example of HGT from eukaryotes back to Bacteria. Based on our phylogenies and available genetic and genomic evidence, class II and III RNRs in eukaryotes also appear to have been transferred from Bacteria, with subsequent within-domain transfer between distantly-related eukaryotes. Under the three-domains hypothesis the RNR present in the last common ancestor of Archaea and eukaryotes appears, through a process of elimination, to have been a dimeric class II RNR, though limited sampling of eukaryotes precludes a firm conclusion as the data may be equally well accounted for by HGT. Conclusions Horizontal gene transfer has clearly played an important role in the evolution of the RNR repertoire of organisms from all three domains of life. Our results clearly show that class I RNRs have spread to Archaea and eukaryotes via transfers from the bacterial domain, indicating that class I likely evolved in the Bacteria. However, against the backdrop of ongoing transfers, it is harder to establish whether class II or III RNRs were present in the LUCA, despite the fact that ribonucleotide reduction is an essential cellular reaction and was pivotal to the transition from RNA to DNA genomes. Instead, a general pattern of ongoing horizontal transmission emerges wherein environmental and enzyme operational constraints, especially the presence or absence of oxygen, are likely to be major determinants of the RNR repertoire of genomes.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|