1
|
Henke DM, Renwick A, Zoeller JR, Meena JK, Neill NJ, Bowling EA, Meerbrey KL, Westbrook TF, Simon LM. Bio-primed machine learning to enhance discovery of relevant biomarkers. NPJ Precis Oncol 2025; 9:39. [PMID: 39915634 PMCID: PMC11802771 DOI: 10.1038/s41698-025-00825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Precision medicine relies on identifying reliable biomarkers for gene dependencies to tailor individualized therapeutic strategies. The advent of high-throughput technologies presents unprecedented opportunities to explore molecular disease mechanisms but also challenges due to high dimensionality and collinearity among features. Traditional statistical methods often fall short in this context, necessitating novel computational approaches that harness the full potential of big data in bioinformatics. Here, we introduce a novel machine learning approach extending the Least Absolute Shrinkage and Selection Operator (LASSO) regression framework to incorporate biological knowledge, such as protein-protein interaction databases, into the regularization process. This bio-primed approach prioritizes variables that are both statistically significant and biologically relevant. Applying our method to multiple dependency datasets, we identified biomarkers which traditional methods overlooked. Our biologically informed LASSO method effectively identifies relevant biomarkers from high-dimensional collinear data, bridging the gap between statistical rigor and biological insight. This method holds promise for advancing personalized medicine by uncovering novel therapeutic targets and understanding the complex interplay of genetic and molecular factors in disease.
Collapse
Affiliation(s)
- David M Henke
- Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Joseph R Zoeller
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jitendra K Meena
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas J Neill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth A Bowling
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kristen L Meerbrey
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lukas M Simon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Cheng C, Zhang K, Lu M, Zhang Y, Wang T, Zhang Y. RPF2 and CARM1 cooperate to enhance colorectal cancer metastasis via the AKT/GSK-3β signaling pathway. Exp Cell Res 2025; 444:114374. [PMID: 39674359 DOI: 10.1016/j.yexcr.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
RPF2 plays a crucial role in promoting epithelial-mesenchymal transition (EMT) and regulating metastasis in colorectal cancer (CRC). By analyzing data from the TCGA and GEO databases, we observed significantly elevated RPF2 expression in CRC, which correlated with EMT markers. Further investigations using stable RPF2 overexpression and knockdown cell lines demonstrated that RPF2 facilitates EMT activation through the AKT/GSK-3β signaling pathway. Notably, CARM1 was identified as a key downstream effector of RPF2. Selective inhibition of CARM1 effectively suppressed the activation of the AKT/GSK-3β pathway and EMT induced by RPF2 overexpression. Both in vitro and in vivo experiments confirmed that RPF2 expression levels positively correlate with the metastatic potential of CRC cells. Moreover, treatment with a CARM1 inhibitor significantly reduced the invasive and migratory capabilities of RPF2-overexpressing cells. These findings suggest that RPF2 drives CRC metastasis by modulating EMT via the AKT/GSK-3β pathway, with CARM1 serving as a critical mediator, offering potential therapeutic targets for CRC.
Collapse
Affiliation(s)
- Cong Cheng
- Department of General Surgery, Changshu No. 1 People's Hospital, Changshu, Jiangsu, 215500, China.
| | - KeMing Zhang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214043, China.
| | - MaCheng Lu
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214043, China
| | - Yuan Zhang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214043, China
| | - Tong Wang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214043, China.
| | - Ye Zhang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214043, China.
| |
Collapse
|
3
|
An Y, Xia Y, Wang Z, Jin GZ, Shang M. Clinical significance of ribosome production factor 2 homolog in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2024; 48:102289. [PMID: 38307254 DOI: 10.1016/j.clinre.2024.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Dysregulation of ribosome biogenesis increases the risk of cancer. RPF2 (ribosome production factor 2 homolog), a member of the BRIX family, is involved in ribosome biogenesis. However, the biological functions of RPF2 in HCC remain unclear. This study aims to evaluate the function of RPF2 and its clinical significance in HCC. We collected 45 pairs of HCC/adjacent samples and 291 HCC samples. These samples were used to perform immunohistochemical analysis and western blot. Six cell lines were used to perform western blot, and two of cell lines, SMCC-7721 and SNU449, were subjected to CCK-8, wound healing and transwell assays. Immunofluorescence staining was executed in SMCC-7721 cells. The protein levels of RPF2 were higher in HCC tissues than in adjacent tissues. Immunofluorescence staining showed that the RPF2 protein was located in the nucleuses, especially the nucleolus. Furthermore, the immunohistochemical analysis showed that high expression levels of nuclear RPF2 correlated with poor prognosis, vascular invasion, liver cirrhosis and tumor size. Cell experiments showed that overexpression of RPF2 promoted cell proliferation, migration and invasion, while knockdown of RPF2 tended to show the opposite effect. This is the first report that RPF2 is involved in HCC progression. The levels of RPF2 were significantly high in HCC tumors and had a side effect on prognosis in HCC patients. RPF2 has the potential to be a useful marker for HCC.
Collapse
Affiliation(s)
- Yan An
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yechen Xia
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhengyang Wang
- Department of Oncology, Zhecheng People's Hospital, Henan, PR China
| | - Guang-Zhi Jin
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China.
| | - Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Choi I, Jeon Y, Pai HS. Brix protein APPAN plays a role in ribosomal RNA processing in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111721. [PMID: 37146691 DOI: 10.1016/j.plantsci.2023.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Arabidopsis APPAN is a Brix family protein that is homologous to yeast Ssf1/Ssf2 and PPan in higher eukaryotes. A previous study, mostly based on physiological experiments, revealed that APPAN plays an essential role in female gametogenesis in plants. Here, we investigated cellular functions of APPAN, which could be the molecular basis for developmental defects in snail1/appan mutants. Virus-induced gene silencing (VIGS) of APPAN in Arabidopsis resulted in abnormal shoot apices, leading to defective inflorescences and malformed flowers and leaves. APPAN is localized in the nucleolus and co-sedimented mainly with 60S ribosome subunit. RNA gel blot analyses showed overaccumulation of processing intermediates, particularly 35S and P-A3, and the sequences were confirmed by circular RT-PCR. These results suggested that silencing of APPAN causes defective pre-rRNA processing. Metabolic rRNA labeling showed that APPAN depletion mainly reduced 25S rRNA synthesis. Consistently, based on the ribosome profiling, the levels of 60S/80S ribosomes were significantly reduced. Finally, APPAN deficiency caused nucleolar stress with abnormal nucleolar morphology and translocation of nucleolar proteins into the nucleoplasm. Collectively, these results suggest that APPAN plays a crucial role in plant rRNA processing and ribosome biogenesis, and its depletion disrupts plant growth and development.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea.
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea; Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
5
|
Identification of BXDC2 as a Key Downstream Effector of the Androgen Receptor in Modulating Cisplatin Sensitivity in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13050975. [PMID: 33652650 PMCID: PMC7956795 DOI: 10.3390/cancers13050975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary It remains unclear why chemotherapy is often ineffective in patients with bladder cancer. Meanwhile, we previously reported that male sex hormones (i.e., androgens) could considerably reduce the efficacy of cisplatin, an anti-cancer drug used as the first-line treatment against advanced bladder cancer. The present study aimed to investigate how androgen receptor signaling, which is activated by binding of androgenic hormones, modulates sensitivity to cisplatin treatment in bladder cancer, using cell line models and surgical specimens. We found that the expression levels of the androgen receptor and a molecule (BXDC2) were inversely correlated and that loss of BXDC2 was associated with cisplatin resistance. We thus provide evidence to suggest an underlying molecular mechanism responsible for androgen receptor-induced chemoresistance in bladder cancer. Abstract Underlying mechanisms for resistance to cisplatin-based chemotherapy in bladder cancer patients are largely unknown, although androgen receptor (AR) activity, as well as extracellular signal-regulated kinase (ERK) signaling, has been indicated to correlate with chemosensitivity. We also previously showed ERK activation by androgen treatment in AR-positive bladder cancer cells. Because our DNA microarray analysis in control vs. AR-knockdown bladder cancer lines identified BXDC2 as a potential downstream target of AR, we herein assessed its functional role in cisplatin sensitivity, using bladder cancer lines and surgical specimens. BXDC2 protein expression was considerably downregulated in AR-positive or cisplatin-resistant cells. BXDC2-knockdown sublines were significantly more resistant to cisplatin, compared with respective controls. Without cisplatin treatment, BXDC2-knockdown resulted in significant increases/decreases in cell proliferation/apoptosis, respectively. An ERK activator was also found to reduce BXDC2 expression. Immunohistochemistry showed downregulation of BXDC2 expression in tumor (vs. non-neoplastic urothelium), higher grade/stage tumor (vs. lower grade/stage), and AR-positive tumor (vs. AR-negative). Patients with BXDC2-positive/AR-negative muscle-invasive bladder cancer had a significantly lower risk of disease-specific mortality, compared to those with a BXDC2-negative/AR-positive tumor. Additionally, in those undergoing cisplatin-based chemotherapy, BXDC2 positivity alone (p = 0.083) or together with AR negativity (p = 0.047) was associated with favorable response. We identified BXDC2 as a key molecule in enhancing cisplatin sensitivity. AR-ERK activation may thus be associated with chemoresistance via downregulating BXDC2 expression in bladder cancer.
Collapse
|
6
|
Choi I, Jeon Y, Yoo Y, Cho HS, Pai HS. The in vivo functions of ARPF2 and ARRS1 in ribosomal RNA processing and ribosome biogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2596-2611. [PMID: 32275312 DOI: 10.1093/jxb/eraa019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Yeast Rpf2 plays a critical role in the incorporation of 5S rRNA into pre-ribosomes by forming a binary complex with Rrs1. The protein characteristics and overexpression phenotypes of Arabidopsis Ribosome Production Factor 2 (ARPF2) and Arabidopsis Regulator of Ribosome Synthesis 1 (ARRS1) have been previously studied. Here, we analyze loss-of-function phenotypes of ARPF2 and ARRS1 using virus-induced gene silencing to determine their functions in pre-rRNA processing and ribosome biogenesis. ARPF2 silencing in Arabidopsis led to pleiotropic developmental defects. RNA gel blot analysis and circular reverse transcription-PCR revealed that ARPF2 depletion delayed pre-rRNA processing, resulting in the accumulation of multiple processing intermediates. ARPF2 fractionated primarily with the 60S ribosomal subunit. Metabolic rRNA labeling and ribosome profiling suggested that ARPF2 deficiency mainly affected 25S rRNA synthesis and 60S ribosome biogenesis. ARPF2 and ARRS1 formed the complex that interacted with the 60S ribosomal proteins RPL5 and RPL11. ARRS1 silencing resulted in growth defects, accumulation of processing intermediates, and ribosome profiling similar to those of ARPF2-silenced plants. Moreover, depletion of ARPF2 and ARRS1 caused nucleolar stress. ARPF2-deficient plants excessively accumulated anthocyanin and reactive oxygen species. Collectively, these results suggest that the ARPF2-ARRS1 complex plays a crucial role in plant growth and development by modulating ribosome biogenesis.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Youngki Yoo
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| |
Collapse
|
7
|
Trypanosoma brucei Homologue of Regulator of Ribosome Synthesis 1 (Rrs1) Has Direct Interactions with Essential Trypanosome-Specific Proteins. mSphere 2019; 4:4/4/e00453-19. [PMID: 31391282 PMCID: PMC6686231 DOI: 10.1128/msphere.00453-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development. Studies in eukaryotic ribosome biogenesis have largely been performed in yeast, where they have described a highly complex process involving numerous protein and RNA components. Due to the complexity and crucial nature of this process, a number of checkpoints are necessary to ensure that only properly assembled ribosomes are released into the cytoplasm. Assembly of the 5S ribonucleoprotein (RNP) complex is one of these checkpoints for late-stage 60S subunit maturation. Studies in Saccharomyces cerevisiae have identified the 5S rRNA and four proteins, L5, L11, Rpf2, and Rrs1, as comprising the ribosome-associated 5S RNP. Work from our laboratory has shown that in the eukaryotic pathogen Trypanosoma brucei, the 5S RNP includes trypanosome-specific proteins P34/P37, as well as homologues of L5, Rpf2, and 5S rRNA. In this study, we examine a homologue of Rrs1 and identify it as an additional member of the T. brucei 5S RNP. Using RNA interference, we show that TbRrs1 is essential for the survival of T. brucei and has an important role in ribosome subunit formation and, together with TbRpf2, plays a role in 25/28S and 5.8S rRNA processing. We further show that TbRrs1 is a member of the T. brucei 5S RNP through the identification of novel direct interactions with P34/P37 and 5S rRNA as well as with TbL5 and TbRpf2. These unique characteristics of TbRrs1 highlight the importance of studying ribosome biogenesis in the context of diverse organisms and identify interactions that could be targeted for future drug development. IMPORTANCETrypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development.
Collapse
|
8
|
Maekawa S, Ueda Y, Yanagisawa S. Overexpression of a Brix Domain-Containing Ribosome Biogenesis Factor ARPF2 and its Interactor ARRS1 Causes Morphological Changes and Lifespan Extension in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1177. [PMID: 30210511 PMCID: PMC6120060 DOI: 10.3389/fpls.2018.01177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 05/23/2023]
Abstract
The Brix domain is a conserved domain in several proteins involved in ribosome biogenesis in yeast and animals. In the Arabidopsis genome, six Brix domain-containing proteins are encoded; however, their molecular functions have not been fully characterized, as yet. Here we report the functional analysis of a Brix domain-containing protein, ARPF2, which is homologous to yeast Rpf2 that plays an essential role in ribosome biogenesis as a component of the 5S ribonucleoprotein particle. By phenotypic characterization of arpf2 mutants, histochemical GUS staining, and analysis using green fluorescence protein, we show that ARPF2 is an essential and ubiquitously expressed gene encoding a nucleolar protein. Co-immunoprecipitation and split-GFP-based bimolecular fluorescence complementation assays revealed that ARPF2 interacts with a protein named ARRS1, which is homologous to yeast Rrs1 that forms a complex with Rpf2 in yeast. Furthermore, the result of RNA immunoprecipitation assay indicated that ARPF2 interacts with 5S ribosomal RNA (rRNA) or the precursor of 5S rRNA, as well as with the internal transcribed spacer 2 in the precursors of 25S rRNA. Most intriguingly, we found that the overexpression of ARPF2 and ARRS1 leads to characteristic phenotypes, including short stem, abnormal leaf morphology, and long lifespan, in Arabidopsis. These results suggest that the function of Brix domain-containing ARPF2 protein in ribosome biogenesis is intimately associated with the growth and development in plants.
Collapse
|
9
|
Flis A, Sulpice R, Seaton DD, Ivakov AA, Liput M, Abel C, Millar AJ, Stitt M. Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:1955-81. [PMID: 27075884 DOI: 10.1111/pce.12754] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 05/06/2023]
Abstract
Plants use the circadian clock to sense photoperiod length. Seasonal responses like flowering are triggered at a critical photoperiod when a light-sensitive clock output coincides with light or darkness. However, many metabolic processes, like starch turnover, and growth respond progressively to photoperiod duration. We first tested the photoperiod response of 10 core clock genes and two output genes. qRT-PCR analyses of transcript abundance under 6, 8, 12 and 18 h photoperiods revealed 1-4 h earlier peak times under short photoperiods and detailed changes like rising PRR7 expression before dawn. Clock models recapitulated most of these changes. We explored the consequences for global gene expression by performing transcript profiling in 4, 6, 8, 12 and 18 h photoperiods. There were major changes in transcript abundance at dawn, which were as large as those between dawn and dusk in a given photoperiod. Contributing factors included altered timing of the clock relative to dawn, light signalling and changes in carbon availability at night as a result of clock-dependent regulation of starch degradation. Their interaction facilitates coordinated transcriptional regulation of key processes like starch turnover, anthocyanin, flavonoid and glucosinolate biosynthesis and protein synthesis and underpins the response of metabolism and growth to photoperiod.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 475, Canberra, Australian Capital Territory, 2601, Australia
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, NUIG, Galway, Ireland
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alexander A Ivakov
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 475, Canberra, Australian Capital Territory, 2601, Australia
| | - Magda Liput
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
| |
Collapse
|
10
|
Ko HR, Chang YS, Park WS, Ahn JY. Opposing roles of the two isoforms of ErbB3 binding protein 1 in human cancer cells. Int J Cancer 2016; 139:1202-8. [DOI: 10.1002/ijc.30165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology; Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine; Suwon Korea
| | - Yun Sil Chang
- Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Won Soon Park
- Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology; Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine; Suwon Korea
| |
Collapse
|
11
|
The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment. Methods Mol Biol 2016; 1415:477-506. [PMID: 27115649 DOI: 10.1007/978-1-4939-3572-7_25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
12
|
Kharde S, Calviño FR, Gumiero A, Wild K, Sinning I. The structure of Rpf2-Rrs1 explains its role in ribosome biogenesis. Nucleic Acids Res 2015; 43:7083-95. [PMID: 26117542 PMCID: PMC4538828 DOI: 10.1093/nar/gkv640] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/07/2015] [Indexed: 12/02/2022] Open
Abstract
The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation.
Collapse
Affiliation(s)
- Satyavati Kharde
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Fabiola R Calviño
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Andrea Gumiero
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
13
|
Asano N, Kato K, Nakamura A, Komoda K, Tanaka I, Yao M. Structural and functional analysis of the Rpf2-Rrs1 complex in ribosome biogenesis. Nucleic Acids Res 2015; 43:4746-57. [PMID: 25855814 PMCID: PMC4482071 DOI: 10.1093/nar/gkv305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022] Open
Abstract
Proteins Rpf2 and Rrs1 are required for 60S ribosomal subunit maturation. These proteins are necessary for the recruitment of three ribosomal components (5S ribosomal RNA [rRNA], RpL5 and RpL11) to the 90S ribosome precursor and subsequent 27SB pre-rRNA processing. Here we present the crystal structure of the Aspergillus nidulans (An) Rpf2-Rrs1 core complex. The core complex contains the tightly interlocked N-terminal domains of Rpf2 and Rrs1. The Rpf2 N-terminal domain includes a Brix domain characterized by similar N- and C-terminal architecture. The long α-helix of Rrs1 joins the C-terminal half of the Brix domain as if it were part of a single molecule. The conserved proline-rich linker connecting the N- and C-terminal domains of Rrs1 wrap around the side of Rpf2 and anchor the C-terminal domain of Rrs1 to a specific site on Rpf2. In addition, gel shift analysis revealed that the Rpf2-Rrs1 complex binds directly to 5S rRNA. Further analysis of Rpf2-Rrs1 mutants demonstrated that Saccharomyces cerevisiae Rpf2 R236 (corresponds to R238 of AnRpf2) plays a significant role in this binding. Based on these studies and previous reports, we have proposed a model for ribosomal component recruitment to the 90S ribosome precursor.
Collapse
Affiliation(s)
- Nozomi Asano
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akiyoshi Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Komoda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Datt M, Sharma A. Novel and unique domains in aminoacyl-tRNA synthetases from human fungal pathogens Aspergillus niger, Candida albicans and Cryptococcus neoformans. BMC Genomics 2014; 15:1069. [PMID: 25479903 PMCID: PMC4301749 DOI: 10.1186/1471-2164-15-1069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022] Open
Abstract
Background Some species of fungi can cause serious human diseases, particularly to immuno-compromised individuals. Opportunistic fungal infections are a leading cause of mortality, and present an emerging challenge that requires development of new and effective therapeutics. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of cellular protein translation machinery and can be targeted for discovery of novel anti-fungal agents. Results Validation of aaRSs as potential drug targets in pathogenic microbes prompted us to investigate the genomic distribution of aaRSs within three fungi that infect humans – A. niger, C. albicans and C. neoformans. Hidden Markov Models were built for aaRSs and related proteins to search for homologues in these fungal genomes. Here, we provide a detailed and comprehensive annotation for 3 fungal genome aaRSs and their associated proteins. We delineate predicted localizations, subdomain architectures and prevalence of unusual motifs within these aaRSs. Several fungal aaRSs have unique domain appendages of unknown function e.g. A. niger AsxRS and C. neoformans TyrRS have additional domains that are absent from human homologs. Conclusions Detailed comparisons of fungal aaRSs with human homologs suggest key differences that could be exploited for specific drug targeting. Our cataloging and structural analyses provide a comprehensive foundation for experimentally dissecting fungal aaRSs that may enable development of new anti-fungal agents. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1069) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amit Sharma
- Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| |
Collapse
|
15
|
Sakyiama J, Zimmer SL, Ciganda M, Williams N, Read LK. Ribosome biogenesis requires a highly diverged XRN family 5'->3' exoribonuclease for rRNA processing in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:1419-1431. [PMID: 23974437 PMCID: PMC3854532 DOI: 10.1261/rna.038547.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/10/2013] [Indexed: 05/30/2023]
Abstract
Although biogenesis of ribosomes is a crucial process in all organisms and is thus well conserved, Trypanosoma brucei ribosome biogenesis, of which maturation of rRNAs is an early step, has multiple points of divergence. Our aim was to determine whether in the processing of the pre-rRNA precursor molecule, 5'→3' exoribonuclease activity in addition to endonucleolytic cleavage is necessary in T. brucei as in other organisms. Our approach initiated with the bioinformatic identification of a putative 5'→3' exoribonuclease, XRNE, which is highly diverged from the XRN2/Rat1 enzyme responsible for rRNA processing in other organisms. Tagging this protein in vivo allowed us to classify XRNE as nucleolar by indirect immunofluorescence and identify by copurification interacting proteins, many of which were ribosomal proteins, ribosome biogenesis proteins, and/or RNA processing proteins. To determine whether XRNE plays a role in ribosome biogenesis in procyclic form cells, we inducibly depleted the protein by RNA interference. This resulted in the generation of aberrant preprocessed 18S rRNA and 5' extended 5.8S rRNA, implicating XRNE in rRNA processing. Polysome profiles of XRNE-depleted cells demonstrated abnormal features including an increase in ribosome small subunit abundance, a decrease in large subunit abundance, and defects in polysome assembly. Furthermore, the 5' extended 5.8S rRNA in XRNE-depleted cells was observed in the large subunit, monosomes, and polysomes in this gradient. Therefore, the function of XRNE in rRNA processing, presumably due to exonucleolytic activity very early in ribosome biogenesis, has consequences that persist throughout all biogenesis stages.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Cell Nucleolus
- Cells, Cultured
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Immunoprecipitation
- Molecular Sequence Data
- Organelle Biogenesis
- Polyribosomes/genetics
- Polyribosomes/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Tandem Mass Spectrometry
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
Collapse
Affiliation(s)
- Joseph Sakyiama
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Martin Ciganda
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Noreen Williams
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| |
Collapse
|
16
|
Shimoji K, Jakovljevic J, Tsuchihashi K, Umeki Y, Wan K, Kawasaki S, Talkish J, Woolford JL, Mizuta K. Ebp2 and Brx1 function cooperatively in 60S ribosomal subunit assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:4574-88. [PMID: 22319211 PMCID: PMC3378894 DOI: 10.1093/nar/gks057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.
Collapse
Affiliation(s)
- Kaori Shimoji
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jelena Jakovljevic
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kanako Tsuchihashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yuka Umeki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kun Wan
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzuka Kawasaki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jason Talkish
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John L. Woolford
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +81 824 247 923; Fax: +81 824 247 923;
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- *To whom correspondence should be addressed. Tel: +81 824 247 923; Fax: +81 824 247 923;
| |
Collapse
|
17
|
Pescadillo homologue 1 and Peter Pan function during Xenopus laevis pronephros development. Biol Cell 2011; 103:483-98. [PMID: 21770895 DOI: 10.1042/bc20110032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION pes1 (pescadillo homologue 1) and ppan (Peter Pan) are multifunctional proteins involved in ribosome biogenesis, cell proliferation, apoptosis, cell migration and regulation of gene expression. Both proteins are required for early neural development in Xenopus laevis, as previously demonstrated. RESULTS We show that the expression of both genes in the developing pronephros depends on wnt4 and fzd3 (frizzled homologue 3) function. Loss of pes1 or ppan by MO (morpholino oligonucleotide)-based knockdown approaches resulted in strong malformations during pronephric tubule formation. Defects were already notable during specification of pronephric progenitor cells, as shown by lhx1 expression. Moreover, we demonstrated that Xenopus pes1 and ppan interact physically and functionally and that pes1 and ppan can cross-rescue the loss of function phenotype of one another. Interference with rRNA synthesis, however, did not result in a similar early pronephros phenotype. CONCLUSION These results demonstrate that pes1 and ppan are required for Xenopus pronephros development and indicate that their function in the pronephros is independent of their role in ribosome biosynthesis.
Collapse
|
18
|
Bugner V, Tecza A, Gessert S, Kühl M. Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis. Development 2011; 138:2369-78. [PMID: 21558383 DOI: 10.1242/dev.060160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Xenopus oocyte possesses a large maternal store of ribosomes, thereby uncoupling early development from the de novo ribosome biosynthesis required for cell growth. Brix domain-containing proteins, such as Peter Pan (PPan), are essential for eukaryotic ribosome biogenesis. In this study, we demonstrate that PPan is expressed maternally as well as in the eye and cranial neural crest cells (NCCs) during early Xenopus laevis development. Depletion of PPan and interference with rRNA processing using antisense morpholino oligonucleotides resulted in eye and cranial cartilage malformations. Loss of PPan, but not interference with rRNA processing, led to an early downregulation of specific marker genes of the eye, including Rx1 and Pax6, and of NCCs, such as Twist, Slug and FoxD3. We found that PPan protein is localized in the nucleoli and mitochondria and that loss of PPan results in increased apoptosis. These findings indicate a novel function of PPan that is independent of its role in ribosome biogenesis.
Collapse
Affiliation(s)
- Verena Bugner
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
19
|
A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. EUKARYOTIC CELL 2011; 10:1062-70. [PMID: 21642506 DOI: 10.1128/ec.00007-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae.
Collapse
|
20
|
Morris TJ, Vickers M, Gluckman P, Gilmour S, Affara N. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits. PLoS One 2009; 4:e7271. [PMID: 19787071 PMCID: PMC2749934 DOI: 10.1371/journal.pone.0007271] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 08/05/2009] [Indexed: 12/14/2022] Open
Abstract
A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old) in which nutritional status had been manipulated in utero by maternal undernutrition (UN) were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD) (8 offspring/group). The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated). Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution of a phenotype similar to that of the metabolic syndrome.
Collapse
Affiliation(s)
- Tiffany J Morris
- Department of Pathology, University of Cambridge, Cambridge, England.
| | | | | | | | | |
Collapse
|
21
|
Zhang Y, Lu Y, Zhou H, Lee M, Liu Z, Hassel BA, Hamburger AW. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1) deficient mice. BMC Cell Biol 2008; 9:69. [PMID: 19094237 PMCID: PMC2648959 DOI: 10.1186/1471-2121-9-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022] Open
Abstract
Background The ErbB3 binding protein-1 (Ebp1) belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4) gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.
Collapse
Affiliation(s)
- Yuexing Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hirano Y, Ishii K, Kumeta M, Furukawa K, Takeyasu K, Horigome T. Proteomic and targeted analytical identification of BXDC1 and EBNA1BP2 as dynamic scaffold proteins in the nucleolus. Genes Cells 2008; 14:155-66. [PMID: 19170763 DOI: 10.1111/j.1365-2443.2008.01262.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nuclear matrix has classically been assumed to be a solid structure coherently aligning nuclear components, but its real nature remains obscure. We separated the proteins in a ribonucleoprotein-containing nuclear matrix fraction of HeLa cells by reversed-phase HPLC followed by SDS-PAGE, and identified 83 proteins through peptide mass fingerprint (PMF) analysis. Many nucleolar proteins, classical nuclear matrix proteins, RNA binding proteins, cytoskeletal proteins and five uncharacterized proteins were identified in this fraction. Four of the latter proteins were localized to the cell nucleus, BXDC1 and EBNA1BP2 being especially localized to the nucleolus. Fluorescence recovery after photobleaching and RNAi knockdown analyses suggested that BXDC1 and EBNA1BP2 function in a dynamic scaffold for ribosome biogenesis.
Collapse
|
23
|
Hsieh YC, Tu PJ, Lee YY, Kuo CC, Lin YC, Wu CF, Lin JJ. The U3 small nucleolar ribonucleoprotein component Imp4p is a telomeric DNA-binding protein. Biochem J 2008; 408:387-93. [PMID: 17803460 PMCID: PMC2267362 DOI: 10.1042/bj20070968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Imp4p is a component of U3 snoRNP (small nucleolar ribonucleoprotein) involved in the maturation of 18S rRNA. We have shown that Imp4p interacts with Cdc13p, a single-stranded telomere-binding protein involved in telomere maintenance. To understand the role of Imp4p in telomeres, we purified recombinant Imp4p protein and tested its binding activity towards telomeric DNA using electrophoretic mobility-shift assays. Our results showed that Imp4p bound specifically to single-stranded telomeric DNA in vitro. The interaction of Imp4p to telomeres in vivo was also demonstrated by chromatin immunoprecipitation experiments. Significantly, the binding of Imp4p to telomeres was not limited to yeast proteins, since the hImp4 (human Imp4) also bound to vertebrate single-stranded telomeric DNA. Thus we conclude that Imp4p is a novel telomeric DNA-binding protein that, in addition to its role in rRNA processing, might participate in telomere function.
Collapse
Affiliation(s)
- Yi-Ching Hsieh
- *Institute of Biopharmaceutical Sciences, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
| | - Pei-Jung Tu
- *Institute of Biopharmaceutical Sciences, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
| | - Ying-Yuan Lee
- *Institute of Biopharmaceutical Sciences, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
| | - Chun-Chen Kuo
- †Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
| | - Yi-Chien Lin
- †Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
| | - Chi-Fang Wu
- *Institute of Biopharmaceutical Sciences, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
| | - Jing-Jer Lin
- *Institute of Biopharmaceutical Sciences, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
- †Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai, 112, Taipei, Taiwan, R.O.C
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Squatrito M, Mancino M, Sala L, Draetta GF. Ebp1 is a dsRNA-binding protein associated with ribosomes that modulates eIF2alpha phosphorylation. Biochem Biophys Res Commun 2006; 344:859-68. [PMID: 16631606 DOI: 10.1016/j.bbrc.2006.03.205] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/25/2006] [Indexed: 10/24/2022]
Abstract
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.
Collapse
Affiliation(s)
- Massimo Squatrito
- European Institute of Oncology, 435 Via Ripamonti, 20141 Milan, Italy.
| | | | | | | |
Collapse
|
25
|
Schneider G, Neuberger G, Wildpaner M, Tian S, Berezovsky I, Eisenhaber F. Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics 2006; 7:164. [PMID: 16551354 PMCID: PMC1435942 DOI: 10.1186/1471-2105-7-164] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 03/21/2006] [Indexed: 11/30/2022] Open
Abstract
Background Manually finding subtle yet statistically significant links to distantly related homologues becomes practically impossible for very populated protein families due to the sheer number of similarity searches to be invoked and analyzed. The unclear evolutionary relationship between classical mammalian lipases and the recently discovered human adipose triglyceride lipase (ATGL; a patatin family member) is an exemplary case for such a problem. Results We describe an unsupervised, sensitive sequence segment collection heuristic suitable for assembling very large protein families. It is based on fan-like expanding, iterative database searches. To prevent inclusion of unrelated hits, additional criteria are introduced: minimal alignment length and overlap with starting sequence segments, finding starting sequences in reciprocal searches, automated filtering for compositional bias and repetitive patterns. This heuristic was implemented as FAMILYSEARCHER in the ANNIE sequence analysis environment and applied to search for protein links between the classical lipase family and the patatin-like group. Conclusion The FAMILYSEARCHER is an efficient tool for tracing distant evolutionary relationships involving large protein families. Although classical lipases and ATGL have no obvious sequence similarity and differ with regard to fold and catalytic mechanism, homology links detected with FAMILYSEARCHER show that they are evolutionarily related. The conserved sequence parts can be narrowed down to an ancestral core module consisting of three β-strands, one α-helix and a turn containing the typical nucleophilic serine. Moreover, this ancestral module also appears in numerous enzymes with various substrate specificities, but that critically rely on nucleophilic attack mechanisms.
Collapse
Affiliation(s)
- Georg Schneider
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Georg Neuberger
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Michael Wildpaner
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Sun Tian
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Igor Berezovsky
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford str., M-105, 02138 Cambridge, MA, USA
| | - Frank Eisenhaber
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| |
Collapse
|
26
|
Kemmer D, Podowski RM, Arenillas D, Lim J, Hodges E, Roth P, Sonnhammer ELL, Höög C, Wasserman WW. NovelFam3000--uncharacterized human protein domains conserved across model organisms. BMC Genomics 2006; 7:48. [PMID: 16533400 PMCID: PMC1440326 DOI: 10.1186/1471-2164-7-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 03/13/2006] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. DESCRIPTION From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. CONCLUSION Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families.
Collapse
Affiliation(s)
- Danielle Kemmer
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Raf M Podowski
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - David Arenillas
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Jonathan Lim
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Emily Hodges
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Peggy Roth
- Department of Developmental Biology, Stockholm University, Stockholm, Sweden
| | - Erik LL Sonnhammer
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Christer Höög
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Karbstein K, Jonas S, Doudna JA. An essential GTPase promotes assembly of preribosomal RNA processing complexes. Mol Cell 2006; 20:633-43. [PMID: 16307926 DOI: 10.1016/j.molcel.2005.09.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/12/2005] [Accepted: 09/20/2005] [Indexed: 11/26/2022]
Abstract
Ribosome biogenesis in eukaryotes is a highly regulated process involving hundreds of transiently associated proteins and RNAs. Although most of these assembly factors have been genetically linked to specific step(s) in the biogenesis pathway, their biochemical functions are generally unknown. Bms1, an essential protein in yeast, is the only known GTPase required for biosynthesis of the 40S ribosomal subunit and interacts with Rcl1, an essential protein suggested to be an endonuclease. Here, we show thermodynamic coupling in the binding of Bms1 to GTP, Rcl1, and U3 small nucleolar RNA (snoRNA), an essential RNA that base pairs to pre-rRNA. Rcl1 binding to preribosomes is severely limited in yeast cells expressing a Bms1 mutant defective for Rcl1 binding. Additionally, we provide evidence that the C-terminal domain of Bms1 acts as an intramolecular GTPase-activating protein. Together, these data suggest that Bms1 functions as a GTP-regulated switch to deliver Rcl1 to preribosomes, providing molecular insight into preribosome assembly.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
28
|
Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. THE PLANT CELL 2005; 17:3257-81. [PMID: 16299223 PMCID: PMC1315368 DOI: 10.1105/tpc.105.035261] [Citation(s) in RCA: 492] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The diurnal cycle strongly influences many plant metabolic and physiological processes. Arabidopsis thaliana rosettes were harvested six times during 12-h-light/12-h-dark treatments to investigate changes in gene expression using ATH1 arrays. Diagnostic gene sets were identified from published or in-house expression profiles of the response to light, sugar, nitrogen, and water deficit in seedlings and 4 h of darkness or illumination at ambient or compensation point [CO(2)]. Many sugar-responsive genes showed large diurnal expression changes, whose timing matched that of the diurnal changes of sugars. A set of circadian-regulated genes also showed large diurnal changes in expression. Comparison of published results from a free-running cycle with the diurnal changes in Columbia-0 (Col-0) and the starchless phosphoglucomutase (pgm) mutant indicated that sugars modify the expression of up to half of the clock-regulated genes. Principle component analysis identified genes that make large contributions to diurnal changes and confirmed that sugar and circadian regulation are the major inputs in Col-0 but that sugars dominate the response in pgm. Most of the changes in pgm are triggered by low sugar levels during the night rather than high levels in the light, highlighting the importance of responses to low sugar in diurnal gene regulation. We identified a set of candidate regulatory genes that show robust responses to alterations in sugar levels and change markedly during the diurnal cycle.
Collapse
Affiliation(s)
- Oliver E Bläsing
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ng CL, Waterman D, Koonin EV, Antson AA, Ortiz-Lombardía M. Crystal structure of Mil (Mth680): internal duplication and similarity between the Imp4/Brix domain and the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases. EMBO Rep 2005; 6:140-6. [PMID: 15654320 PMCID: PMC1299238 DOI: 10.1038/sj.embor.7400328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/08/2004] [Accepted: 12/03/2004] [Indexed: 11/08/2022] Open
Abstract
Proteins of the Imp4/Brix superfamily are involved in ribosomal RNA processing, an essential function in all cells. We report the first structure of an Imp4/Brix superfamily protein, the Mil (for Methanothermobacter thermautotrophicus Imp4-like) protein (gene product Mth680), from the archaeon M. thermautotrophicus. The amino- and carboxy-terminal halves of Mil show significant structural similarity to one another, suggesting an origin by means of an ancestral duplication. Both halves show the same fold as the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases, with greater conservation seen in the N-terminal half. This structural similarity, together with the charge distribution in Mil, suggests that Imp4/Brix superfamily proteins could bind single-stranded segments of RNA along a concave surface formed by the N-terminal half of their beta-sheet and a central alpha-helix. The crystal structure of Mil is incompatible with the presence, in the Imp4/Brix domain, of a helix-turn-helix motif that was proposed to comprise the RNA-binding moiety of the Imp4/Brix proteins.
Collapse
Affiliation(s)
- Chyan Leong Ng
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| | - David Waterman
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| | - Miguel Ortiz-Lombardía
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, UK
| |
Collapse
|
30
|
Gérczei T, Correll CC. Imp3p and Imp4p mediate formation of essential U3-precursor rRNA (pre-rRNA) duplexes, possibly to recruit the small subunit processome to the pre-rRNA. Proc Natl Acad Sci U S A 2004; 101:15301-6. [PMID: 15489263 PMCID: PMC524450 DOI: 10.1073/pnas.0406819101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, formation of short duplexes between the U3 small nucleolar RNA (snoRNA) and the precursor rRNA (pre-rRNA) at multiple sites is a prerequisite for three endonucleolytic cleavages that initiate small subunit biogenesis by releasing the 18S rRNA precursor from the pre-rRNA. The most likely role of these RNA duplexes is to guide the U3 snoRNA and its associated proteins, designated the small subunit processome, to the target cleavage sites on the pre-rRNA. Studies by others in Saccharomyces cerevisiae have identified the proteins Mpp10p, Imp3p, and Imp4p as candidates to mediate U3-pre-rRNA interactions. We report here that Imp3p and Imp4p appear to stabilize an otherwise unstable duplex between the U3 snoRNA hinge region and complementary bases in the external transcribed spacer of the pre-rRNA. In addition, Imp4p, but not Imp3p, seems to rearrange the U3 box A stem structure to expose the site that base-pairs with the 5' end of the 18S rRNA, thereby mediating duplex formation at a second site. By mediating formation of both essential U3-pre-rRNA duplexes, Imp3p and Imp4p may help the small subunit processome to dock onto the pre-rRNA, an event indispensable for ribosome biogenesis and hence for cell growth.
Collapse
Affiliation(s)
- Tímea Gérczei
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
31
|
Squatrito M, Mancino M, Donzelli M, Areces LB, Draetta GF. EBP1 is a nucleolar growth-regulating protein that is part of pre-ribosomal ribonucleoprotein complexes. Oncogene 2004; 23:4454-65. [PMID: 15064750 DOI: 10.1038/sj.onc.1207579] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EBP1 was identified as a protein that interacts with the ErbB-3 receptor and possibly contributes to transducing growth regulatory signals. The existence of EBP1 homologs across species from simple eukaryotes to humans and its wide tissue expression pattern suggest that EBP1 acts as a general signaling molecule. We provide evidence that EBP1 is localized to the cytoplasm and to the nucleolus, and that its nucleolar localization requires amino-acid sequences present at both the amino- and carboxy-terminus of the molecule. We also show that EBP1 overexpression inhibits proliferation of human fibroblasts, and that this effect is linked to its nucleolar localization. Using mass spectrometry we demonstrate that EBP1 is part of ribonucleoprotein complexes and associates with different rRNA species. It is becoming clear that cell growth and proliferation are actively coordinated with rRNA processing and ribosome assembly. Our findings indicate that EBP1 is a nucleolar growth-regulating protein, and we propose that it could represent a new link between ribosome biosynthesis and cell proliferation.
Collapse
Affiliation(s)
- Massimo Squatrito
- European Institute of Oncology, 435 Via Ripamonti, 20141 Milan, Italy
| | | | | | | | | |
Collapse
|
32
|
Hsu CL, Chen YS, Tsai SY, Tu PJ, Wang MJ, Lin JJ. Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control. Nucleic Acids Res 2004; 32:511-21. [PMID: 14742666 PMCID: PMC373330 DOI: 10.1093/nar/gkh203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomeres are the physical ends of eukaryotic chromosomes. They are important for maintaining the integrity of chromosomes and this function is mediated through a number of protein factors. In Saccharomyces cerevisiae, Cdc13p binds to telomeres and affects telomere maintenance, telomere position effects and cell cycle progression through G(2)/M phase. We identified four genes encoding Pol1p, Sir4p, Zds2p and Imp4p that interact with amino acids 1-252 of Cdc13p using a yeast two-hybrid screening system. Interactions of these four proteins with Cdc13p were through direct protein-protein interactions as judged by in vitro pull-down assays. Direct protein-protein interactions were also observed between Pol1p-Imp4p, Pol1p-Sir4p and Sir4p-Zds2p, whereas no interaction was detected between Imp4p-Sir4p and Zds2p-Imp4p, suggesting that protein interactions were specific in the complex. Pol1p was shown to interact with Cdc13p. Here we show that Zds2p and Imp4p also form a stable complex with Cdc13p in yeast cells, because Zds2p and Imp4p co-immunoprecipitate with Cdc13p, whereas Sir4p does not. The function of the N-terminal 1-252 region of Cdc13p was also analyzed. Expressing Cdc13(252-924)p, which lacks amino acids 1-252 of Cdc13p, causes defects in progressive cell growth and eventually arrested in the G(2)/M phase of the cell cycle. These growth defects were not caused by progressive shortening of telomeres because telomeres in these cells were long. Point mutants in the amino acids 1-252 region of Cdc13p that reduced the interaction between Cdc13p and its binding proteins resulted in varying level of defects in cell growth and telomeres. These results indicate that the interactions between Cdc13(1-252)p and its binding proteins are important for the function of Cdc13p in telomere regulation and cell growth. Together, our results provide evidence for the formation of a Cdc13p-mediated telosome complex through its N-terminal region that is involved in telomere maintenance, telomere length regulation and cell growth control.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Biopharmaceutical Science, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Ribosome synthesis is a highly complex and coordinated process that occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells. Based on the protein composition of several ribosomal subunit precursors recently characterized in yeast, a total of more than 170 factors are predicted to participate in ribosome biogenesis and the list is still growing. So far the majority of ribosomal factors have been implicated in RNA maturation (nucleotide modification and processing). Recent advances gave insight into the process of ribosome export and assembly. Proteomic approaches have provided the first indications for a ribosome assembly pathway in eukaryotes and confirmed the dynamic character of the whole process.
Collapse
|
34
|
Fatica A, Cronshaw AD, Dlakić M, Tollervey D. Ssf1p prevents premature processing of an early pre-60S ribosomal particle. Mol Cell 2002; 9:341-51. [PMID: 11864607 DOI: 10.1016/s1097-2765(02)00458-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ssf1p and Ssf2p are two nearly identical and functionally redundant nucleolar proteins. In the absence of Ssf1p and Ssf2p, the 27SA(2) pre-rRNA was prematurely cleaved, inhibiting synthesis of the 27SB and 7S pre-rRNAs and the 5.8S and 25S rRNA components of the large ribosomal subunit. On sucrose gradients, Ssf1p sedimented with pre-60S ribosomal particles. The 27SA(2), 27SA(3), and 27SB pre-rRNAs were copurified with tagged Ssf1p, as were 23 large subunit ribosomal proteins and 21 other proteins implicated in ribosome biogenesis. These included four Brix family proteins, Ssf1p, Rpf1p, Rpf2p, and Brx1p, indicating that the entire family functions in ribosome synthesis. This complex is distinct from recently reported pre-60S complexes in RNA and protein composition. We describe a multistep pathway of 60S preribosome maturation.
Collapse
|
35
|
Wehner KA, Baserga SJ. The sigma(70)-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol Cell 2002; 9:329-39. [PMID: 11864606 DOI: 10.1016/s1097-2765(02)00438-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Little is understood about the role of nucleolar RNA binding proteins in ribosome biogenesis, although there is a clear need for them based on the strict folding requirements of the pre-rRNA. We have identified a superfamily of RNA binding proteins whose members are required for different stages of ribosome biogenesis. The Imp4 superfamily is composed of five individual families (Imp4, Rpf1, Rpf2, Brx1, and Ssf) that all possess the sigma(70)-like motif, a eukaryotic RNA binding domain with prokaryotic origins. The Imp4 superfamily members associate with RNAs that are consistent with their distinct roles in ribosome biogenesis and suggest the mechanisms by which they function.
Collapse
Affiliation(s)
- Karen A Wehner
- Yale University School of Medicine, Department of Genetics, New Haven, CT 06520, USA
| | | |
Collapse
|
36
|
Kaser A, Bogengruber E, Hallegger M, Doppler E, Lepperdinger G, Jantsch M, Breitenbach M, Kreil G. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits. Biol Chem 2001; 382:1637-47. [PMID: 11843177 DOI: 10.1515/bc.2001.199] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A clone was isolated from a cDNA library from early embryos of Xenopus laevis that codes for a highly charged protein containing 339 amino acids. Two putative nuclear localization signals could be identified in its sequence, but no other known motifs or domains. Closely related ORFs are present in the genomes of man, C. elegans, yeast and Arabidopsis. A fusion protein with GFP expressed in HeLa cells or Xenopus oocytes was found to be localized in the nucleolus and coiled (Cajal) bodies. Moreover, immunoprecipitation experiments demonstrated that the new Xenopus protein interacts with 5S, 5.8S and 28S RNAs of large ribosomal subunits. The name Brix (biogenesis of ribosomes in Xenopus) is proposed for this protein and the corresponding gene. In Saccharomyces cerevisiae, the essential gene YOL077c, now named BRX1, codes for the Brix homolog, which is also localized in the nucleolus. Depletion of Brx1 p in a conditional yeast mutant leads to defects in rRNA processing, and a block in the assembly of large ribosomal subunits.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Nucleolus/ultrastructure
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fluorescent Antibody Technique
- HeLa Cells
- Humans
- Molecular Sequence Data
- Precipitin Tests
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/biosynthesis
- Ribosomal Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Xenopus laevis/genetics
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- A Kaser
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg
| | | | | | | | | | | | | | | |
Collapse
|