1
|
Chan C, Mukai K, Groisman EA. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. mBio 2025; 16:e0022725. [PMID: 40162747 PMCID: PMC12077118 DOI: 10.1128/mbio.00227-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Molecular chaperones are critical for protein homeostasis. In bacteria, chaperone trigger factor (TF) folds proteins co-translationally, and chaperone DnaK requires a J-domain cochaperone and nucleotide exchange factor GrpE to fold proteins largely post-translationally. However, when the pathogen Salmonella enterica serovar Typhimurium faces the infection-relevant condition of cytoplasmic Mg2+ starvation, DnaK reduces protein synthesis independently. This raises the possibility that bacteria differentially express chaperones and cochaperones. We now report that S. Typhimurium responds to cytoplasmic Mg2+ starvation by increasing mRNA amounts of dnaK while decreasing those of the TF-encoding gene tig and J-domain cochaperone genes dnaJ and djlA. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence PhoP, which increases dnaK mRNA amounts by lowering the ATP concentration, thereby hindering proteolysis of the alternative sigma factor RpoH responsible for dnaK transcription. We also establish that DnaK exerts negative feedback on the RpoH protein and RpoH-dependent transcripts independently of J-domain cochaperones. Thus, bacteria express chaperones and cochaperones coordinately or differentially depending on the specific stress perturbing protein homeostasis.IMPORTANCEMolecular chaperones typically require cochaperones to fold proteins and to prevent protein aggregation, and the corresponding genes are thus coordinately expressed. We have now identified an infection-relevant stress condition in which the genes specifying chaperone DnaK and cochaperone DnaJ are differentially expressed despite belonging to the same operon. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence in the pathogen Salmonella enterica serovar Typhimurium. Moreover, it likely reflects that Salmonella requires dnaK, but not J-domain cochaperone-encoding genes, for survival against cytoplasmic Mg2+ starvation and expresses genes only when needed. Thus, the specific condition impacting protein homeostasis determines the coordinate versus differential expression of molecular chaperones and cochaperones.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keiichiro Mukai
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Azaharuddin M, Dasgupta R, Das A, Nandi S, Pal A, Chakrabarty S, Bandopadhyay P, Ghosh S, Nandy S, Sett U, Basu T. Two new oligomers of E. coli small heat-shock protein IbpB identified under heat stress exhibit maximum holding chaperone activity. FEBS Lett 2025; 599:400-414. [PMID: 39284787 DOI: 10.1002/1873-3468.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 02/11/2025]
Abstract
Escherichia coli small heat-shock protein IbpB (MW: 16 KDa) has holding chaperone activity and is present in cells at 30 °C as two large oligomers of MW 2.0-3.0 MDa and 600-700 KDa. We report here about the presence of two additional oligomers of MW around 400 and 130 KDa in cells under heat-stress at 50 °C. These two smaller oligomers possess the most chaperone activity, as observed from the extent of inhibition of inactivation and aggregation separately, of L-Lactate dehydrogenase in the presence of the individual oligomers at 52 and 60 °C, respectively. It is suggested here that the two larger oligomers act as poorly active storage forms, which under heat stress dissociate partially into smaller oligomers with high holdase activity.
Collapse
Affiliation(s)
- Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Rakhi Dasgupta
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | | | | | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, India
| |
Collapse
|
3
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. J Phys Chem Lett 2023:6513-6521. [PMID: 37440608 PMCID: PMC10388350 DOI: 10.1021/acs.jpclett.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.
Collapse
|
5
|
Hua Z. The Ubiquitin-26S Proteasome System-A Versatile Player Worthy of Close Attention in Plants. Int J Mol Sci 2023; 24:ijms24098185. [PMID: 37175891 PMCID: PMC10178954 DOI: 10.3390/ijms24098185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
In the crowded and confined space of a cell, numerous proteins work collaboratively in various subsystems, such as metabolic pathways, organelle compartments, and complexes, to regulate cell growth and development [...].
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
Chang P, Li X, Lin J, Li C, Li S. scFv-oligopeptide chaperoning system-assisted on-column refolding and purification of human muscle creatine kinase from inclusion bodies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123410. [PMID: 35994994 DOI: 10.1016/j.jchromb.2022.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
The formation of inclusion bodies in bacterial hosts poses a major challenge for the large-scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive, and the yields of recombinant protein are often low. Here, we describe a novel method for the renaturation and purification of inclusion bodies. This method combines a scFv-oligopeptide chaperoning system and an on-column refolding system to help refold human muscle creatine kinase (HCK) inclusion bodies. This method could significantly increase the activity recovery of denatured HCK inclusion bodies and provides an effective method for the production of bioactive proteins from inclusion bodies.
Collapse
Affiliation(s)
- Peipei Chang
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Xiaoyun Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Jingye Lin
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Cong Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China
| | - Sen Li
- College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, PR China.
| |
Collapse
|
7
|
Eslami-Farsani R, Farhadian S, Shareghi B. Exploring the structural basis of conformational alterations of myoglobin in the presence of spermine through computational modeling, molecular dynamics simulations, and spectroscopy methods. J Biomol Struct Dyn 2022; 40:3581-3594. [PMID: 33308044 DOI: 10.1080/07391102.2020.1848633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spermine as polyamines can have interaction with the myoglobin (Mb). The intent of this pondering to evaluate the impact of spermine on Mb properties, for example, the structure and thermal stability. For this analysis, the following approaches are employed. Thermodynamics, molecular dynamics (MD), and docking and the use of other spectroscopic procedures. The results of fluorescence spectroscopy and docking showed that binding spermine to Mb was spontaneous. Spermine quenched the fluorescence of Mb through the static quenching process. The thermal stability of Mb was incremented when the concentration of spermine increased. The CD spectra showed Mb's secondary structure shift with a rise in β-sheet and a decrease in α-helicity Mb's in spermine presence. Molecular docking and MD simulation outcomes demonstrate that electrostatic forces show a critical function in stabilizing of this complex, which is in conforming to spectroscopic results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Shahrekord University, Shahrekord, Iran.,Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Shahrekord University, Shahrekord, Iran.,Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
8
|
Younus I, Kochkina S, Choi CC, Sun W, Ford RC. ATP-Binding Cassette Transporters: Snap-on Complexes? Subcell Biochem 2022; 99:35-82. [PMID: 36151373 DOI: 10.1007/978-3-031-00793-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane proteins in prokaryotic organisms. Much is now understood about the structure of these transporters and many reviews have been written on that subject. In contrast, less has been written on the assembly of ABC transporter complexes and this will be a major focus of this book chapter. The complexes are formed from two cytoplasmic subunits that are highly conserved (in terms of their primary and three-dimensional structures) across the whole family. These ATP-binding subunits give rise to the name of the family. They must assemble with two transmembrane subunits that will typically form the permease component of the transporter. The transmembrane subunits have been found to be surprisingly diverse in structure when the whole family is examined, with seven distinct folds identified so far. Hence nucleotide-binding subunits appear to have been bolted on to a variety of transmembrane platforms during evolution, leading to a greater variety in function. Furthermore, many importers within the family utilise a further external substrate-binding component to trap scarce substrates and deliver them to the correct permease components. In this chapter, we will discuss whether assembly of the various ABC transporter subunits occurs with high fidelity within the crowded cellular environment and whether promiscuity in assembly of transmembrane and cytoplasmic components can occur. We also discuss the new AlphaFold protein structure prediction tool which predicts a new type of transmembrane domain fold within the ABC transporters that is associated with cation exporters of bacteria and plants.
Collapse
Affiliation(s)
- Iqra Younus
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Sofia Kochkina
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Cheri C Choi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Wenjuan Sun
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Robert C Ford
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Anchal, Kaushik V, Goel M. Distribution of Peptidyl-Prolyl Isomerase (PPIase) in the Archaea. Front Microbiol 2021; 12:751049. [PMID: 34691003 PMCID: PMC8530231 DOI: 10.3389/fmicb.2021.751049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Cis-trans isomerization of the peptide bond prior to proline is an intrinsically slow process but plays an essential role in protein folding. In vivo cis-trans isomerization reaction is catalyzed by Peptidyl-prolyl isomerase (PPIases), a category of proteins widely distributed among all the three domains of life. The present study is majorly focused on the distribution of different types of PPIases in the archaeal domain. All the three hitherto known families of PPIases (namely FKBP, Cyclophilin and parvulin) were studied to identify the evolutionary conservation across the phylum archaea. The basic function of cyclophilin, FKBP and parvulin has been conserved whereas the sequence alignment suggested variations in each clade. The conserved residues within the predicted motif of each family are unique. The available protein structures of different PPIase across various domains were aligned to ascertain the structural variation in the catalytic site. The structural alignment of native PPIase proteins among various groups suggested that the apo-protein may have variable conformations but when bound to their specific inhibitors, they attain similar active site configuration. This is the first study of its kind which explores the distribution of archaeal PPIases, along with detailed structural and functional analysis of each type of PPIase found in archaea.
Collapse
Affiliation(s)
- Anchal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Vineeta Kaushik
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
10
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
11
|
Multi fragment melting analysis system (MFMAS) for one-step identification of lactobacilli. J Microbiol Methods 2020; 177:106045. [PMID: 32890569 DOI: 10.1016/j.mimet.2020.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/23/2022]
Abstract
The accurate identification of lactobacilli is essential for the effective management of industrial practices associated with lactobacilli strains, such as the production of fermented foods or probiotic supplements. For this reason, in this study, we proposed the Multi Fragment Melting Analysis System (MFMAS)-lactobacilli based on high resolution melting (HRM) analysis of multiple DNA regions that have high interspecies heterogeneity for fast and reliable identification and characterization of lactobacilli. The MFMAS-lactobacilli is a new and customized version of the MFMAS, which was developed by our research group. MFMAS-lactobacilli is a combined system that consists of i) a ready-to-use plate, which is designed for multiple HRM analysis, and ii) a data analysis software, which is used to characterize lactobacilli species via incorporating machine learning techniques. Simultaneous HRM analysis of multiple DNA fragments yields a fingerprint for each tested strain and the identification is performed by comparing the fingerprints of unknown strains with those of known lactobacilli species registered in the MFMAS. In this study, a total of 254 isolates, which were recovered from fermented foods and probiotic supplements, were subjected to MFMAS analysis, and the results were confirmed by a combination of different molecular techniques. All of the analyzed isolates were exactly differentiated and accurately identified by applying the single-step procedure of MFMAS, and it was determined that all of the tested isolates belonged to 18 different lactobacilli species. The individual analysis of each target DNA region provided identification with an accuracy range from 59% to 90% for all tested isolates. However, when each target DNA region was analyzed simultaneously, perfect discrimination and 100% accurate identification were obtained even in closely related species. As a result, it was concluded that MFMAS-lactobacilli is a multi-purpose method that can be used to differentiate, classify, and identify lactobacilli species. Hence, our proposed system could be a potential alternative to overcome the inconsistencies and difficulties of the current methods.
Collapse
|
12
|
Mittal S, Rajala MS. Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther 2020; 21:477-485. [PMID: 32228356 PMCID: PMC7515496 DOI: 10.1080/15384047.2020.1736482] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Heat shock proteins are known to be associated with a wide variety of human cancers including lung cancer. Overexpression of these molecular chaperones is linked with tumor survival, metastasis and anticancer drug resistance. In recent years, heat shock proteins are gaining much importance in the field of cancer research owing to their potential to be key determinants of cell survival and apoptosis. Lung cancer is one of the most common cancers diagnosed worldwide and the association of heat shock proteins in lung cancer diagnosis, prognosis and as drug targets remains unresolved. The aim of this review is to draw the importance of heat shock protein members; Hsp27, Hsp70, Hsp90, Hsp60 and their diagnostic and prognostic implications in lung cancer. Based on the available literature heat shock proteins can serve as biomarkers and anticancer drug targets in the management of lung cancer patients.
Collapse
Affiliation(s)
- Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
13
|
Bealer EJ, Kavetsky K, Dutko S, Lofland S, Hu X. Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications. Int J Mol Sci 2019; 21:E186. [PMID: 31888066 PMCID: PMC6981412 DOI: 10.3390/ijms21010186] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
The combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties. Various types of these composites are highly regarded due to their biocompatible, thermal, and mechanical properties while retaining their biological characteristics. This review provides information on protein and polysaccharide materials combined with magnetic elements in the biomedical space showcasing the materials used, fabrication methods, and their subsequent applications in biomedical research.
Collapse
Affiliation(s)
- Elizabeth J. Bealer
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kyril Kavetsky
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Sierra Dutko
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Samuel Lofland
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
14
|
Finka A, Mattoo RUH, Goloubinoff P. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. Annu Rev Biochem 2016; 85:715-42. [PMID: 27050154 DOI: 10.1146/annurev-biochem-060815-014124] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.
Collapse
Affiliation(s)
- Andrija Finka
- Laboratory of Biophysical Statistics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University, Stanford, California 94305;
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
15
|
Elengoe A, Naser MA, Hamdan S. Molecular dynamics simulation and docking studies on novel mutants (T11V, T12P and D364S) of the nucleotide-binding domain of human heat shock 70 kDa protein. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|
17
|
Demko V, Perroud PF, Johansen W, Delwiche CF, Cooper ED, Remme P, Ako AE, Kugler KG, Mayer KFX, Quatrano R, Olsen OA. Genetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens. PLANT PHYSIOLOGY 2014; 166:903-19. [PMID: 25185121 PMCID: PMC4213117 DOI: 10.1104/pp.114.243758] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/31/2014] [Indexed: 05/02/2023]
Abstract
DEFECTIVE KERNEL1 (DEK1) of higher plants plays an essential role in position-dependent signaling and consists of a large transmembrane domain (MEM) linked to a protease catalytic domain and a regulatory domain. Here, we show that the postulated sensory Loop of the MEM domain plays an important role in the developmental regulation of DEK1 activity in the moss Physcomitrella patens. Compared with P. patens lacking DEK1 (∆dek1), the dek1∆loop mutant correctly positions the division plane in the bud apical cell. In contrast with an early developmental arrest of ∆dek1 buds, dek1∆loop develops aberrant gametophores lacking expanded phyllids resulting from misregulation of mitotic activity. In contrast with the highly conserved sequence of the protease catalytic domain, the Loop is highly variable in land plants. Functionally, the sequence from Marchantia polymorpha fully complements the dek1∆loop phenotype, whereas sequences from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) give phenotypes with retarded growth and affected phyllid development. Bioinformatic analysis identifies MEM as a member of the Major Facilitator Superfamily, membrane transporters reacting to stimuli from the external environment. Transcriptome analysis comparing wild-type and ∆dek1 tissues identifies an effect on two groups of transcripts connected to dek1 mutant phenotypes: transcripts related to cell wall remodeling and regulation of the AINTEGUMENTA, PLETHORA, and BABY BOOM2 (APB2) and APB3 transcription factors known to regulate bud initiation. Finally, sequence data support the hypothesis that the advanced charophyte algae that evolved into ancestral land plants lost cytosolic calpains, retaining DEK1 as the sole calpain in the evolving land plant lineage.
Collapse
Affiliation(s)
- Viktor Demko
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Pierre-François Perroud
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Wenche Johansen
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Charles F Delwiche
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Endymion D Cooper
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Pål Remme
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Ako Eugene Ako
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Karl G Kugler
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Klaus F X Mayer
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Ralph Quatrano
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| |
Collapse
|
18
|
Abstract
Accurate folding, assembly, localization, and maturation of newly synthesized proteins are essential to all cells and require high fidelity in the protein biogenesis machineries that mediate these processes. Here, we review our current understanding of how high fidelity is achieved in one of these processes, the cotranslational targeting of nascent membrane and secretory proteins by the signal recognition particle (SRP). Recent biochemical, biophysical, and structural studies have elucidated how the correct substrates drive a series of elaborate conformational rearrangements in the SRP and SRP receptor GTPases; these rearrangements provide effective fidelity checkpoints to reject incorrect substrates and enhance the fidelity of this essential cellular pathway. The mechanisms used by SRP to ensure fidelity share important conceptual analogies with those used by cellular machineries involved in DNA replication, transcription, and translation, and these mechanisms likely represent general principles for other complex cellular pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| | | |
Collapse
|
19
|
Elengoe A, Naser MA, Hamdan S. Modeling and docking studies on novel mutants (K71L and T204V) of the ATPase domain of human heat shock 70 kDa protein 1. Int J Mol Sci 2014; 15:6797-814. [PMID: 24758925 PMCID: PMC4013662 DOI: 10.3390/ijms15046797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/16/2022] Open
Abstract
The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO) were mutated. 3D mutant models (K71L and T204V) using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255), as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of −9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy.
Collapse
Affiliation(s)
- Asita Elengoe
- Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia.
| | - Mohammed Abu Naser
- Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia.
| | - Salehhuddin Hamdan
- Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia.
| |
Collapse
|
20
|
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013; 82:323-55. [PMID: 23746257 DOI: 10.1146/annurev-biochem-060208-092442] [Citation(s) in RCA: 1058] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Yujin E Kim
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
21
|
Oskay Halacli S, Halacli B, Altundag K. The significance of heat shock proteins in breast cancer therapy. Med Oncol 2013; 30:575. [PMID: 23606238 DOI: 10.1007/s12032-013-0575-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
Abstract
The evalutionary conserved heat shock proteins are involved basically life protecting mechanisms against harmful extracellular effects such as primarily heat shock response. Normally, the expression of these proteins is increased for cellular adaptation to high temperature. This increase is also important in the etiology of breast cancer. Overexpression of heat shock proteins is associated with reduced disease-free survival in breast cancer. However, increased expression of these proteins is related to acquired resistance of traditional chemotherapeutic drugs in use in breast cancer treatment. In this review, we discuss the multiple roles of heatshock proteins in resistance and where we are to overcome this in clinical practice.
Collapse
Affiliation(s)
- Sevil Oskay Halacli
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara 06100, Turkey
| | | | | |
Collapse
|
22
|
Duttler S, Pechmann S, Frydman J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol Cell 2013; 50:379-93. [PMID: 23583075 DOI: 10.1016/j.molcel.2013.03.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/30/2013] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Abstract
Achieving efficient cotranslational folding of complex proteomes poses a challenge for eukaryotic cells. Nascent polypeptides that emerge vectorially from the ribosome often cannot fold stably and may be susceptible to misfolding and degradation. The extent to which nascent chains are subject to cotranslational quality control and degradation remains unclear. Here, we directly and quantitatively assess cotranslational ubiquitination and identify, at a systems level, the determinants and factors governing this process. Cotranslational ubiquitination occurs at very low levels and is carried out by a complex network of E3 ubiquitin ligases. Ribosome-associated chaperones and cotranslational folding protect the majority of nascent chains from premature quality control. Nonetheless, a number of nascent chains whose intrinsic properties hinder efficient cotranslational folding remain susceptible for cotranslational ubiquitination. We find that quality control at the ribosome is achieved through a tiered system wherein nascent polypeptides have a chance to fold before becoming accessible to ubiquitination.
Collapse
Affiliation(s)
- Stefanie Duttler
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
23
|
Sharifizadeh A, Saboury AA, Moosavi-Movahedi AA, Salami M, Yousefi R. A new aspect to chaperone-like activity of bovine β-casein by protein–protein interactions study. Int J Biol Macromol 2012; 51:901-7. [DOI: 10.1016/j.ijbiomac.2012.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
|
24
|
Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proc Natl Acad Sci U S A 2012. [PMID: 23197838 DOI: 10.1073/pnas.1218836109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic chaperonin, TRiC/CCT (TRiC, TCP-1 ring complex; CCT, chaperonin containing TCP-1), uses a built-in lid to mediate protein folding in an enclosed central cavity. Recent structural data suggest an effective size limit for the TRiC folding chamber of ∼70 kDa, but numerous chaperonin substrates are substantially larger. Using artificial fusion constructs with actin, an obligate chaperonin substrate, we show that TRiC can mediate folding of large proteins by segmental or domain-wise encapsulation. Single or multiple protein domains up to ∼70 kDa are stably enclosed by stabilizing the ATP-hydrolysis transition state of TRiC. Additional domains, connected by flexible linkers that pass through the central opening of the folding chamber, are excluded and remain accessible to externally added protease. Experiments with the physiological TRiC substrate hSnu114, a 109-kDa multidomain protein, suggest that TRiC has the ability to recognize domain boundaries in partially folded intermediates. In the case of hSnu114, this allows the selective encapsulation of the C-terminal ∼45-kDa domain and segments thereof, presumably reflecting a stepwise folding mechanism. The capacity of the eukaryotic chaperonin to overcome the size limitation of the folding chamber may have facilitated the explosive expansion of the multidomain proteome in eukaryotes.
Collapse
|
25
|
Liu W, Li L, Khan MA, Zhu F. Popular molecular markers in bacteria. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2012; 27:103-107. [DOI: 10.3103/s0891416812030056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Huang CH, Chang MT, Huang MC, Lee FL. Rapid identification of Lactobacillus plantarum group using the SNaPshot minisequencing assay. Syst Appl Microbiol 2012; 34:586-9. [PMID: 21641139 DOI: 10.1016/j.syapm.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
This study used SNaPshot minisequencing for species identification within the Lactobacillus plantarum group. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 35 strains of L. plantarum group species. The results showed that the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus fabifermentans. In conclusion, a rapid, accurate and cost-effective assay was successfully developed for species identification of the members of the L. plantarum group.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, P.O. Box 246, Hsinchu 30099, Taiwan, ROC
| | | | | | | |
Collapse
|
27
|
YrhB is a highly stable small protein with unique chaperone-like activity inEscherichia coliBL21(DE3). FEBS Lett 2012; 586:1044-8. [DOI: 10.1016/j.febslet.2012.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/20/2012] [Accepted: 02/28/2012] [Indexed: 11/17/2022]
|
28
|
Bogacheva EN, Bogachev AN, Dmitriev IB, Dolgov AA, Chulichkov AL, Shishkov AV, Baratova LA. Modeling of protein spatial structure using tritium planigraphy. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350911060030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Huang CH, Chang MT, Huang MC, Lee FL. Application of the SNaPshot minisequencing assay to species identification in the Lactobacillus casei group. Mol Cell Probes 2011; 25:153-7. [PMID: 21440058 DOI: 10.1016/j.mcp.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
This study used group-specific PCR combined with SNaPshot minisequencing for species identification within the Lactobacillus casei group. The L. casei group-specific PCR primer pair was designed using the rpoA gene sequence. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 63 strains of L. casei group species. The results showed that the group-specific PCR could assign Lactobacillus strains into the L. casei group, and the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. casei, Lactobacillus paracasei, and Lactobacillus rhamnosus. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for species identification of members of the L. casei group.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | | | | | | |
Collapse
|
30
|
Welsh JP, Bonomo J, Swartz JR. Localization of BiP to translating ribosomes increases soluble accumulation of secreted eukaryotic proteins in an Escherichia coli cell-free system. Biotechnol Bioeng 2011; 108:1739-48. [PMID: 21351069 DOI: 10.1002/bit.23111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/04/2011] [Accepted: 02/14/2011] [Indexed: 01/30/2023]
Abstract
The endoplasmic reticulum (ER) resident Hsp70 chaperone, BiP, docks to the Sec translocon and interacts co-translationally with polypeptides entering the ER to encourage proper folding. In order to recreate this interaction in Escherichia coli cell-free protein synthesis (CFPS) reactions, a fusion protein was formed between the ribosome-binding portion of the E. coli protein trigger factor (TF) and BiP. The biophysical affinity to ribosomes as well as the characteristic Hsp70 ATPase activity were both verified for the fusion protein. When added to E. coli-based CFPS reactions, the TF-BiP fusion chaperone increased soluble yields of several protein fragments that are normally secreted through the ER and have poor solubility in typical CFPS reactions. For comparison, a fusion between TF and the native E. coli Hsp70, DnaK, was also constructed. This fusion was also biologically active and increased soluble yields of certain protein targets in CFPS. The TF-BiP fusion described in this study can be seen as a first step in reconstituting and better understanding ER folding pathways in the prokaryotic environment of E. coli CFPS.
Collapse
Affiliation(s)
- John P Welsh
- Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, California 94305, USA
| | | | | |
Collapse
|
31
|
Merner ND, Dion PA, Rouleau GA. Recent advances in the genetics of distal hereditary motor neuropathy give insight to a disease mechanism involving copper homeostasis that may extend to other motor neuron disorders. Clin Genet 2010; 79:23-34. [DOI: 10.1111/j.1399-0004.2010.01591.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie van Leeuwenhoek 2010; 99:319-27. [DOI: 10.1007/s10482-010-9493-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
33
|
Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer. Radiother Oncol 2010; 95:350-8. [PMID: 20430459 DOI: 10.1016/j.radonc.2010.03.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Hsp72 found in the extracellular milieu has been shown to play an important role in immune regulation. The impact of common cancer therapies on extracellular release of Hsp72 however, has been to date undefined. MATERIALS AND METHODS Serum from 13 patients undergoing radiation therapy (XRT) for prostate cancer with or without hormonal therapy (ADT) was measured for levels of circulating serum Hsp72 and pro-inflammatory cytokines (IL-6 and TNF-alpha) using the classical sandwich ELISA technique and the relative expression of CD8(+) T lymphocytes and natural killer (NK) cells was measured using flow cytometry. Mouse orthotopic xenograft of human prostate cancer tumors (DU-145 and PC-3) were used to validate and further characterize the response noted in the clinical setting. The biological significance of tumor released Hsp72 was studied in human dendritic cells (DC) in vitro. RESULTS Circulating serum Hsp72 levels increased an average of 3.5-fold (median per patient 4.8-fold) with XRT but not with ADT (p=0.0002). Increases in IL-6 (3.3-fold), TNF-alpha (1.8-fold), CD8(+) CTL (2.1-fold) and NK cells (3.2-fold) also occurred. Using PC-3 and DU-145 human prostate cancer xenograft models in mice, we confirmed that XRT induces Hsp72 release primarily from implanted tumors. In vitro studies using supernatant recovered from irradiated human prostate cancer cells point to exosomes containing Hsp72 as a possible stimulator of pro-inflammatory cytokine production and costimulatory molecules expression in human DC. CONCLUSIONS The current study confirms for the first time in an actual clinical setting elevation of circulating serum Hsp72 with XRT. The accompanying studies in mice and in vitro identify the released exosomes containing Hsp72 as playing a pivotal role in stimulating pro-inflammatory immune responses. These findings, if validated, may lead to new treatment paradigms for common human malignancies.
Collapse
|
34
|
Today's thermal therapy: not your father's hyperthermia: challenges and opportunities in application of hyperthermia for the 21st century cancer patient. Am J Clin Oncol 2010; 33:96-100. [PMID: 19636240 DOI: 10.1097/coc.0b013e3181817a75] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The realization that hyperthermia was an ideal complementary treatment to radiation and certain chemotherapeutic agents from a biologic perspective led to great enthusiasm for this modality over a quarter of a century ago. Unfortunately, this well-deserved enthusiasm quickly become tempered because of the inability to effectively heat tumors, particularly deep-seated ones with cumbersome first generation technology coupled with still-emerging understandings of thermal biology. Today as before, both challenges and opportunities remain in the application of hyperthermia for cancer patients. The lessons learned from the introduction of hyperthermia, a generation ago, are providing focus for application of this still-promising modality in today's clinic. These areas of challenge and opportunity include: thermal biology; treatment planning, delivery, and monitoring; successful high-quality clinical trials; and integration of thermal therapy with emerging technologies and therapeutic strategies both established and evolving. The progress made in understanding of thermal biology, physics, and bioengineering, coupled with advances in complementary clinical treatment modalities have all contributed to the next generation of clinical thermal therapy.
Collapse
|
35
|
Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 2010; 29:910-23. [PMID: 20094032 DOI: 10.1038/emboj.2009.412] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/21/2009] [Indexed: 11/08/2022] Open
Abstract
The aggregation of proteins as a result of intrinsic or environmental stress may be cytoprotective, but is also linked to pathophysiological states and cellular ageing. We analysed the principles of aggregate formation and the cellular strategies to cope with aggregates in Escherichia coli using fluorescence microscopy of thermolabile reporters, EM tomography and mathematical modelling. Misfolded proteins deposited at the cell poles lead to selective re-localization of the DnaK/DnaJ/ClpB disaggregating chaperones, but not of GroEL and Lon to these sites. Polar aggregation of cytosolic proteins is mainly driven by nucleoid occlusion and not by an active targeting mechanism. Accordingly, cytosolic aggregation can be efficiently re-targeted to alternative sites such as the inner membrane in the presence of site-specific aggregation seeds. Polar positioning of aggregates allows for asymmetric inheritance of damaged proteins, resulting in higher growth rates of damage-free daughter cells. In contrast, symmetric damage inheritance of randomly distributed aggregates at the inner membrane abrogates this rejuvenation process, indicating that asymmetric deposition of protein aggregates is important for increasing the fitness of bacterial cell populations.
Collapse
|
36
|
Huang CH, Lee FL, Liou JS. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. Antonie van Leeuwenhoek 2009; 97:289-96. [DOI: 10.1007/s10482-009-9409-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 12/16/2009] [Indexed: 11/28/2022]
|
37
|
cDNA cloning and expression of grp94 in the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:290-7. [DOI: 10.1016/j.cbpb.2009.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/29/2009] [Accepted: 07/05/2009] [Indexed: 01/10/2023]
|
38
|
Landriscina M, Maddalena F, Laudiero G, Esposito F. Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal 2009; 11:2701-16. [PMID: 19778285 DOI: 10.1089/ars.2009.2692] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of some additional properties and functions of reactive oxygen species (ROS), beyond their toxic effects, provides a novel scenario for the molecular basis and cell regulation of several pathophysiologic processes. ROS are generated by redox-sensitive, prosurvival signaling pathways and function as second messengers in the transduction of several extracellular signals. A complex intracellular redox buffering network has developed to adapt and protect cells against the dangerous effects of oxidative stress. However, pathways involved in ROS-adaptive response may also play a critical role in protecting cells against cytotoxic effects of anticancer agents, thus supporting the hypothesis of a correlation between adaptation/resistance to oxidative stress and resistance to anticancer drugs. This review summarizes the main systems involved in the adaptive responses: an overview on the pathophysiologic relevance of mitochondria on redox-sensitive transcription factors and genes and main antioxidant networks in tumor cells is provided. One of the major aims is to highlight the adaptive mechanisms and their interplay in the intricate connection between oncogenic signaling, oxidative stress, and chemoresistance. Clarification of these mechanisms has tremendous application potential, in terms of developing novel molecular-targeted anticancer therapies and innovative strategies for rational combination of these agents with chemotherapeutic or tumor-specific biologic drugs.
Collapse
Affiliation(s)
- Matteo Landriscina
- Clinical Oncology Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | | | | | | |
Collapse
|
39
|
|
40
|
Chaperone-like α-cyclodextrins assisted self-assembly of double hydrophilic block copolymers in aqueous medium. POLYMER 2009. [DOI: 10.1016/j.polymer.2008.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Frielingsdorf S, Jakob M, Klösgen RB. A stromal pool of TatA promotes Tat-dependent protein transport across the thylakoid membrane. J Biol Chem 2008; 283:33838-45. [PMID: 18842584 PMCID: PMC2662211 DOI: 10.1074/jbc.m806334200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/07/2008] [Indexed: 11/06/2022] Open
Abstract
In chloroplasts and bacteria, the Tat (twin-arginine translocation) system is engaged in transporting folded passenger proteins across the thylakoid and cytoplasmic membranes, respectively. To date, three membrane proteins (TatA, TatB, and TatC) have been identified to be essential for Tat-dependent protein translocation in the plant system, whereas soluble factors seem not to be required. In contrast, in the bacterial system, several cytosolic chaperones were described to be involved in Tat transport processes. Therefore, we have examined whether stromal or peripherally associated membrane proteins also play a role in Tat transport across the thylakoid membrane. Analyzing both authentic precursors as well as the chimeric 16/23 protein, which allows us to study each step of the translocation process individually, we demonstrate that a soluble form of TatA is present in the chloroplast stroma, which significantly improves the efficiency of Tat-dependent protein transport. Furthermore, this soluble TatA is able to reconstitute the Tat transport properties of thylakoid membranes that are transport-incompetent due to extraction with solutions of chaotropic salts.
Collapse
Affiliation(s)
- Stefan Frielingsdorf
- Institute of Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
42
|
Simms-Waldrip T, Rodriguez-Gonzalez A, Lin T, Ikeda AK, Fu C, Sakamoto KM. The aggresome pathway as a target for therapy in hematologic malignancies. Mol Genet Metab 2008; 94:283-6. [PMID: 18472289 PMCID: PMC2587432 DOI: 10.1016/j.ymgme.2008.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/21/2008] [Accepted: 03/21/2008] [Indexed: 12/31/2022]
Abstract
Misfolded or unfolded proteins are often refolded with the help of chaperones or degraded by the 26S proteasome. An alternative fate of these proteins is the aggresome pathway. The microtubule-organizing center (MTOC) transports unfolded proteins to lysosomes and are degraded through autophagy. Histone deacetylase 6 (HDAC6) deacetylates alpha-tubulin, which is thought to be a component of the MTOC. Recently, two small molecule inhibitors of the aggresome pathway and HDAC6 have been described. One inhibitor, tubacin, prevents deacetylation of alpha-tubulin and produces accumulation of polyubiquitinated proteins and apoptosis. Tubacin acts synergistically with the proteasome inhibitor, bortezomib, to induce cytotoxicity in one type of hematologic malignancy, multiple myeloma. The other, LBH589, is a pan HDAC inhibitor and hydroxamic acid derivative that induces apoptosis of multiple myeloma cells resistant to conventional therapies. In this review, we summarize recent reports on targeting the aggresome pathway and HDAC6 in hematologic malignancies.
Collapse
Affiliation(s)
- Tiffany Simms-Waldrip
- Division of Hematology-Oncology, Mattel Children’s Hospital UCLA, David Geffen School of Medicine, Los Angeles, California, 90095-1752
| | - Agustin Rodriguez-Gonzalez
- Division of Hematology-Oncology, Mattel Children’s Hospital UCLA, David Geffen School of Medicine, Los Angeles, California, 90095-1752
| | - Tara Lin
- Division of Hematology-Oncology, Mattel Children’s Hospital UCLA, David Geffen School of Medicine, Los Angeles, California, 90095-1752
| | - Alan K Ikeda
- Division of Hematology-Oncology, Mattel Children’s Hospital UCLA, David Geffen School of Medicine, Los Angeles, California, 90095-1752
| | - Cecilia Fu
- Division of Hematology-Oncology, Mattel Children’s Hospital UCLA, David Geffen School of Medicine, Los Angeles, California, 90095-1752
| | - Kathleen M. Sakamoto
- Division of Hematology-Oncology, Mattel Children’s Hospital UCLA, David Geffen School of Medicine, Los Angeles, California, 90095-1752
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California, 90095
- Division of Biology, California Institute of Technology, California, 91125
| |
Collapse
|
43
|
Abstract
Recombinant protein expression has become a standard laboratory tool, and a wide variety of systems and techniques are now in use. Because there are so many systems to choose from, the investigator has to be careful to use the combination that will give the best results for the protein being studied. This overview unit discusses expression and production choices, including post-translational modifications (e.g., glycosylation, acylation, sulfation, and removal of N-terminal methionine), in vivo and in vitro folding, and influence of downstream elements on expression.
Collapse
Affiliation(s)
- D Gray
- Chiron Corporation, Emeryville, California, USA
| | | |
Collapse
|
44
|
Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 2008; 68:2557-60. [PMID: 18413721 DOI: 10.1158/0008-5472.can-07-5989] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Misfolded or aggregated proteins have two fates: they are either refolded with the help of chaperones or degraded by the proteasome. Cells also have an alternative pathway that involves intracellular "storage bins" for misfolded intracellular proteins known as aggresomes. Aggresomes recruit motor proteins that transport misfolded or aggregated proteins to chaperones and proteasomes for subsequent destruction. There is emerging evidence that inhibiting the aggresome pathway leads to accumulation of misfolded proteins and apoptosis in tumor cells through autophagy. We discuss the role of aggresomes in cancer and the potential to target this pathway for therapy.
Collapse
Affiliation(s)
- Agustin Rodriguez-Gonzalez
- Division of Hematology-Oncology, Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1752, USA
| | | | | | | | | | | |
Collapse
|
45
|
Angov E, Hillier CJ, Kincaid RL, Lyon JA. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One 2008; 3:e2189. [PMID: 18478103 PMCID: PMC2364656 DOI: 10.1371/journal.pone.0002189] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/04/2008] [Indexed: 11/24/2022] Open
Abstract
Synonymous codon replacement can change protein structure and function, indicating that protein structure depends on DNA sequence. During heterologous protein expression, low expression or formation of insoluble aggregates may be attributable to differences in synonymous codon usage between expression and natural hosts. This discordance may be particularly important during translation of the domain boundaries (link/end segments) that separate elements of higher ordered structure. Within such regions, ribosomal progression slows as the ribosome encounters clusters of infrequently used codons that preferentially encode a subset of amino acids. To replicate the modulation of such localized translation rates during heterologous expression, we used known relationships between codon usage frequencies and secondary protein structure to develop an algorithm (“codon harmonization”) for identifying regions of slowly translated mRNA that are putatively associated with link/end segments. It then recommends synonymous replacement codons having usage frequencies in the heterologous expression host that are less than or equal to the usage frequencies of native codons in the native expression host. For protein regions other than these putative link/end segments, it recommends synonymous substitutions with codons having usage frequencies matched as nearly as possible to the native expression system. Previous application of this algorithm facilitated E. coli expression, manufacture and testing of two Plasmodium falciparum vaccine candidates. Here we describe the algorithm in detail and apply it to E. coli expression of three additional P. falciparum proteins. Expression of the “recoded” genes exceeded that of the native genes by 4- to 1,000-fold, representing levels suitable for vaccine manufacture. The proteins were soluble and reacted with a variety of functional conformation-specific mAbs suggesting that they were folded properly and had assumed native conformation. Codon harmonization may further provide a general strategy for improving the expression of soluble functional proteins during heterologous expression in hosts other than E. coli.
Collapse
Affiliation(s)
- Evelina Angov
- Molecular Parasitology, Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | |
Collapse
|
46
|
Li HY, Wang TY, Shi YS, Fu JJ, Song YC, Wang GY, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). ACTA ACUST UNITED AC 2008; 18:445-60. [PMID: 17676474 DOI: 10.1080/10425170701292051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Maize female organs are sensitive to drought stress, leading to reproductive failure and yield reduction. In the present study gene expression profiles of ears and silks of maize at the flowering stage under drought stress were investigated. From 1920 white positive clones of a forward suppression subtractive hybridization (SSH) library, 1439 available sequences of expression sequence tags (ESTs) were obtained, resulting in 361 unique ESTs after assembling. Data analysis showed that 218 of the unique ESTs had significant protein homology by BLASTX in UNIPROT database. Totally 99 uniESTs were found in TIGR maize gene indices and nr database by BLASTN, while 44 uniESTs were not found to have homologous nucleic acid sequences and putatively classified as "maize-specific" uniESTs. The 218 cDNAs with significant protein homology were sorted into 13 groups according to the functional categories of the Arabidopsis proteins. Among those genes, the genes associated with the metabolisms were the largest group (account for 27%), and the genes related to protein synthesis, protein fate, transcription, cell cycle and DNA processing accounted for 16, 10, 10 and 9%, respectively. After analysis of macroarray data and real-time quantitative polymerase chain reaction (PCR), it was found that 160 of the 218 homologous protein uniESTs were up-regulated genes in the ears, 129 in the silks, and 125 in both of the tissues. The present work provided a valuable starting point for further elucidation of the roles played by these genes/gene products in drought tolerance in maize.
Collapse
Affiliation(s)
- Hui-Yong Li
- College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Eun YJ, Kurt N, Sekhar A, Cavagnero S. Thermodynamic and kinetic characterization of apoHmpH, a fast-folding bacterial globin. J Mol Biol 2007; 376:879-97. [PMID: 18187151 DOI: 10.1016/j.jmb.2007.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/02/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Despite the widespread presence of the globin fold in most living organisms, only eukaryotic globins have been employed as model proteins in folding/stability studies so far. This work introduces the first thermodynamic and kinetic characterization of a prokaryotic globin, that is, the apo form of the heme-binding domain of flavohemoglobin (apoHmpH) from Escherichia coli. This bacterial globin has a widely different sequence but nearly identical structure to its eukaryotic analogues. We show that apoHmpH is a well-folded monomeric protein with moderate stability at room temperature [apparent Delta G degrees (UN(w))=-3.1+/-0.3 kcal mol(-1); m(UN)=-1.7 kcal mol(-1) M(-1)] and predominant alpha-helical structure. Remarkably, apoHmpH is the fastest-folding globin known to date, as it refolds about 4- to 16-fold more rapidly than its eukaryotic analogues (e.g., sperm whale apomyoglobin and soybean apoleghemoglobin), populating a compact kinetic intermediate (beta(I)=0.9+/-0.2) with significant helical content. Additionally, the single Trp120 (located in the native H helix) becomes locked into a fully native-like environment within 6 ms, suggesting that this residue and its closest spatial neighbors complete their folding at ultrafast (submillisecond) speed. In summary, apoHmpH is a bacterial globin that shares the general folding scheme (i.e., a rapid burst phase followed by slower rate-determining phases) of its eukaryotic analogues but displays an overall faster folding and a kinetic intermediate with some fully native-like traits. This study supports the view that the general folding features of bacterial and eukaryotic globins are preserved through evolution while kinetic details differ.
Collapse
Affiliation(s)
- Ye-Jin Eun
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
48
|
Panner A, Murray JC, Berger MS, Pieper RO. Heat shock protein 90alpha recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res 2007; 67:9482-9. [PMID: 17909058 DOI: 10.1158/0008-5472.can-07-0569] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that contributes to the proper folding and stability of target proteins. Because HSP90 has been suggested to interact with FLIP(S), the key regulator of tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in glioma cells, we examined the role HSP90 played in controlling TRAIL response. HSP90alpha was found to associate with FLIP(S) in resting cells in a manner dependent on the ATP-binding NH2-terminal domain of HSP90alpha. Following TRAIL exposure, HSP90alpha and the client FLIP(S) protein were recruited to the death-inducing signaling complex (DISC). Short interfering RNA-mediated suppression of HSP90alpha did not alter the total cellular levels of FLIP(S), but rather inhibited the recruitment of FLIP(S) and other antiapoptotic proteins such as RIP and FLIP(L) to the DISC, and sensitized otherwise resistant glioma cells to TRAIL-induced apoptosis. These results show that HSP90alpha, by localizing FLIP(S) to the DISC, plays a key role in the resistance of tumor cells to TRAIL, and perhaps other proapoptotic agents. The results also define a novel means of apoptotic control by a HSP90alpha that may in turn help explain the global antiapoptotic effects of this protein.
Collapse
Affiliation(s)
- Amith Panner
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California 94115-0875, USA
| | | | | | | |
Collapse
|
49
|
Biswas A, Das KP. Alpha-crystallin assisted refolding of enzyme substrates: optimization of external parameters. Protein J 2007; 26:247-55. [PMID: 17211683 DOI: 10.1007/s10930-006-9066-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
alpha-Crystallin is known to act as a molecular chaperone by preventing the aggregation of partially unfolded substrate proteins. It is also known to assist the refolding of a number of denatured enzymes, but the activity yield is often less than 20%. In this paper, we have tried to tune the refolding ability of alpha-crystallin in vitro by optimizing various external parameters. We wanted to find out the best possible condition under which it can exhibit maximum refolding capacity. We found that under suitable condition in vitro alpha-crystallin can refold denatured malate dehydrogenase, carbonic anhydrase and lactate dehydrogenase to recover more than 40% activity. We also measured the effect of several external factors such as nucleotides, osmolytes, electrolytes, temperature etc. on the in vitro alpha-crystallin mediated reactivation of above stated enzymes. We found that nucleotides and electrolytes had little effect on the refolding ability of alpha-crystallin. However, in presence of different osmolytes, we found that its ability to reactivate denatured substrate proteins enhanced significantly. Refolding in presence of pre-incubated alpha-crystallin reveals that hydrophobicity had stronger influence on the refolding capacity of alpha-crystallin than its oligomeric size.
Collapse
Affiliation(s)
- A Biswas
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India
| | | |
Collapse
|
50
|
Abstract
"Inborn errors of metabolism," first recognized 100 years ago by Garrod, were seen as transforming evidence for chemical and biological individuality. Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype, was identified in 1934 by Asbjörn Fölling. It is a disease with impaired postnatal cognitive development resulting from a neurotoxic effect of hyperphenylalaninemia (HPA). Its metabolic phenotype is accountable to multifactorial origins both in nurture, where the normal nutritional experience introduces L-phenylalanine, and in nature, where mutations (>500 alleles) occur in the phenylalanine hydroxylase gene (PAH) on chromosome 12q23.2 encoding the L-phenylalanine hydroxylase enzyme (EC 1.14.16.1). The PAH enzyme converts phenylalanine to tyrosine in the presence of molecular oxygen and catalytic amounts of tetrahydrobiopterin (BH4), its nonprotein cofactor. PKU is among the first of the human genetic diseases to enter, through newborn screening, the domain of public health, and to show a treatment effect. This effect caused a paradigm shift in attitudes about genetic disease. The PKU story contains many messages, including: a framework on which to appreciate the complexity of PKU in which phenotype reflects both locus-specific and genomic components; what the human PAH gene tells us about human population genetics and evolution of modern humans; and how our interest in PKU is served by a locus-specific mutation database (http://www.pahdb.mcgill.ca; last accessed 20 March 2007). The individual Mendelian PKU phenotype has no "simple" or single explanation; every patient has her/his own complex PKU phenotype and will be treated accordingly. Knowledge about PKU reveals genomic components of both disease and health.
Collapse
Affiliation(s)
- Charles R Scriver
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|