1
|
Liang XY, Liu AL, Shawn Fan HJ, Wang L, Xu ZN, Ding XG, Huang BS. TsOH-catalyzed acyl migration reaction of the Bz-group: innovative assembly of various building blocks for the synthesis of saccharides. Org Biomol Chem 2023; 21:1537-1548. [PMID: 36723045 DOI: 10.1039/d2ob02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed an efficient method to achieve the regioselective acyl migration of benzoyl ester. In all the cases, the reactions required only the commercially available organic acid catalyst TsOH·H2O. This method enables the benzoyl group to migrate from secondary groups to primary hydroxyl groups, or from equatorial secondary hydroxyl groups to axial hydroxyl groups. The 1,2 or 1,3 acyl migration would potentially occur via five- and six-membered cyclic ortho acid intermediates. A wide range of orthogonally protected monosaccharides, which are useful intermediates for the synthesis of natural oligosaccharides, were synthesized. Finally, to demonstrate the utility of the method, a tetrasaccharide portion from a mycobacterial cell wall polysaccharide was assembled.
Collapse
Affiliation(s)
- Xing-Yong Liang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - An-Lin Liu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hua-Jun Shawn Fan
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Lei Wang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Zhi-Ning Xu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xin-Gang Ding
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Bo-Shun Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology and Howard Hughes Medical Institute, 1200 East California Boulevard, Pasadena, California 91125, USA.
| |
Collapse
|
2
|
González-Hourcade M, Del Campo EM, Braga MR, Salgado A, Casano LM. Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes. Environ Microbiol 2020; 22:3096-3111. [PMID: 32337764 DOI: 10.1111/1462-2920.15043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 11/26/2022]
Abstract
Trebouxia sp. TR9 and Coccomyxa simplex are desiccation-tolerant microalgae with flexible cell walls, which undergo species-specific remodelling during dehydration-rehydration (D/R) due to their distinct ultrastructure and biochemical composition. Here, we tested the hypothesis that extracellular polysaccharides excreted by each microalga could be quantitatively and/or qualitatively modified by D/R. Extracellular polysaccharides were analysed by size exclusion and anion exchange chromatography, specific stains after gel electrophoresis and gas chromatography/mass spectrometry of trimethylsilyl derivatives (to determine their monosaccharide composition). The structure of a TR9-sulfated polymer was deduced from nuclear magnetic resonance (NMR) analyses. In addition, sugar-sulfotransferase encoding genes were identified in both microalgae, and their expression was measured by RT-qPCR. D/R did not alter the polydispersed profile of extracellular polysaccharides in either microalga but did induce quantitative changes in several peaks. Furthermore, medium-low-sized uronic acid-containing polysaccharides were almost completely substituted by higher molecular mass carbohydrates after D/R. Sulfated polysaccharide(s) were detected, for the first time, in the extracellular polymeric substances of both microalgae, but only increased significantly in TR9 after cyclic D/R, which induced a sugar-sulfotransferase gene and accumulated sulfated ß-D-galactofuranan(s). Biochemical remodelling of extracellular polysaccharides in aeroterrestrial desiccation-tolerant microalgae is species-specific and seems to play a role in the response to changes in environmental water availability.
Collapse
Affiliation(s)
| | - Eva M Del Campo
- University of Alcalá, Department of Life Sciences, Alcalá de Henares, Madrid, 28871, Spain
| | - Marcia R Braga
- Department of Plant Physiology and Biochemistry, Institute of Botany, São Paulo, SP, 04301-012, Brazil
| | - Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Leonardo M Casano
- University of Alcalá, Department of Life Sciences, Alcalá de Henares, Madrid, 28871, Spain
| |
Collapse
|
3
|
Krylov VB, Argunov DA, Solovev AS, Petruk MI, Gerbst AG, Dmitrenok AS, Shashkov AS, Latgé JP, Nifantiev NE. Synthesis of oligosaccharides related to galactomannans from Aspergillus fumigatus and their NMR spectral data. Org Biomol Chem 2019; 16:1188-1199. [PMID: 29376539 DOI: 10.1039/c7ob02734f] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of model oligosaccharides related to antigenic galactomannans of the dangerous fungal pathogen Aspergillus fumigatus has been performed employing pyranoside-into-furanoside (PIF) rearrangement and controlled O(5) → O(6) benzoyl migration as key synthetic methods. The prepared compounds along with some previously synthesized oligosaccharides were studied by NMR spectroscopy with the full assignment of 1H and 13C signals and the determination of 13C NMR glycosylation effects. The obtained NMR database on 13C NMR chemical shifts for oligosaccharides representing galactomannan fragments forms the basis for further structural analysis of galactomannan related polysaccharides by a non-destructive approach based on the calculation of the 13C NMR spectra of polysaccharides by additive schemes.
Collapse
Affiliation(s)
- V B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Janoš P, Kozmon S, Tvaroška I, Koča J. How Mycobacterium tuberculosis
Galactofuranosyl Transferase 2 (GlfT2) Generates Alternating β-(1-6) and β-(1-5) Linkages: A QM/MM Molecular Dynamics Study of the Chemical Steps. Chemistry 2018; 24:7051-7059. [DOI: 10.1002/chem.201800558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Pavel Janoš
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Faculty of Science-National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Stanislav Kozmon
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Igor Tvaroška
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Faculty of Science-National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
5
|
Galactofuranose antigens, a target for diagnosis of fungal infections in humans. Future Sci OA 2017; 3:FSO199. [PMID: 28883999 PMCID: PMC5583699 DOI: 10.4155/fsoa-2017-0030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/02/2022] Open
Abstract
The use of biomarkers for the detection of fungal infections is of interest to complement histopathological and culture methods. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. D-Galactofuranose (Galf) is the antigenic epitope in glycoconjugates of several pathogenic fungi. Since Galf is not biosynthesized by mammals, it is an attractive candidate for diagnosis of infection. A monoclonal antibody that recognizes Galf is commercialized for detection of aspergillosis. The linkage of Galf in the natural glycans and the chemical structures of the synthesized Galf-containing oligosaccharides are described in this paper. The oligosaccharides could be used for the synthesis of artificial carbohydrate-based antigens, not enough exploited for diagnosis. D-Galactofuranose (Galf) is the unit in polysaccharides and glycoconjugates of several pathogenic fungi that is recognized by the immune system. Since Galf is not synthesized by mammals, it is an attractive candidate for diagnosis of infection. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. An antibody that recognizes Galf is commercialized for the detection of aspergillosis. Chemically synthesized Galf-containing oligosaccharides, reviewed in this paper, could therefore be used for the synthesis of artificial carbohydrate-based antigens and in diagnosis.
Collapse
|
6
|
Synthesis and biological properties of galactofuranosyl-containing fluorescent dyes. Bioorg Med Chem Lett 2017; 27:152-155. [PMID: 27956346 DOI: 10.1016/j.bmcl.2016.11.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022]
Abstract
Two fluorescent galactofuranosides were synthesized and their biological activities evaluated on non-infected and Leishmania infected macrophages. Both tagged scaffolds were able to penetrate macrophages. Compared to the activity of the parent octyl galactofuranoside used as a reference, the fluorescein-conjugate showed altered biological properties while the rhodamine 6G one synergistically acted with the lipid chain to significantly increase antiparasitic activity.
Collapse
|
7
|
Argunov DA, Krylov VB, Nifantiev NE. The Use of Pyranoside-into-Furanoside Rearrangement and Controlled O(5) → O(6) Benzoyl Migration as the Basis of a Synthetic Strategy To Assemble (1→5)- and (1→6)-Linked Galactofuranosyl Chains. Org Lett 2016; 18:5504-5507. [PMID: 27759393 DOI: 10.1021/acs.orglett.6b02735] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new pyranoside-into-furanoside (PIF) rearrangement of selectively protected galactopyranosides, followed by controlled O(5) → O(6) benzoate migration, gives either 5-OH or 6-OH products. It has been applied for the synthesis of four oligosaccharides related to the galactomannan from Aspergillus fumigatus. The assembly of target oligosaccharides containing both (1→5) and (1→6) linkages between galactofuranosyl residues was performed by applying terminal mannoside and digalactofuranoside blocks, forming a versatile approach toward fungal and bacterial carbohydrate antigens containing both 5-O- and 6-O-substituted galactofuranoside residues.
Collapse
Affiliation(s)
- Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky Prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
8
|
Tilve MJ, Cori CR, Gallo-Rodriguez C. Regioselective 5-O-Opening of Conformationally Locked 3,5-O-Di-tert-butylsilylene-d-galactofuranosides. Synthesis of (1→5)-β-d-Galactofuranosyl Derivatives. J Org Chem 2016; 81:9585-9594. [PMID: 27673745 DOI: 10.1021/acs.joc.6b01562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of thiogalactofuranoside as donors for the construction of internal Galf containing oligosaccharide is limited, probably due to the difficulty to functionalize thiogalactofuranoside derivatives showing O-2, O-3, and O-5 with similar reactivity. An efficient method for complete regioselective 5-O-opening of conformationally restricted 3,5-O-di-tert-butylsilylene-d-galactofuranoside derivatives was developed. The use of a solution nBu4NF (1.1 equiv) in CH2Cl2 on 6 gave the 5-OH free derivative 10 as the only product (90%). 3-O-Di-tert-butylhydroxysilyl derivative 10 was stable upon purification and glycosylation reaction. Preactivation of conformationally restricted thioglycoside 6 employing p-NO2-benzensulfenyl chloride/AgOTf followed by condensation over the 5-OH thioglycoside acceptor 10 gave the corresponding disaccharide 12 without autocondensation byproduct. Regioselective 5-O-deprotection was also successfully performed over the (1→5)-β-d-galactofuranosyl di- and trisaccharide derivatives 12 and 13. This methodology allowed the differentiation between the secondary hydroxyl groups OH-3 and OH-5 of 1,2-cis or 1,2-trans d-galactofuranoside derivatives, and it still constitutes an innovative approach to access oligosaccharides of pharmacological importance.
Collapse
Affiliation(s)
- Mariano J Tilve
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| | - Carmen R Cori
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| |
Collapse
|
9
|
Poulin MB, Lowary TL. Chemical Insight into the Mechanism and Specificity of GlfT2, a Bifunctional Galactofuranosyltransferase from Mycobacteria. J Org Chem 2016; 81:8123-30. [PMID: 27557056 DOI: 10.1021/acs.joc.6b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall structure that is essential to survival. A key component of this structure is a glycoconjugate, the mycolyl-arabinogalactan-peptidoglycan complex, which has at its core a galactan domain composed of galactofuranose (Galf) residues linked to peptidoglycan. Because galactan biosynthesis is essential for mycobacterial viability, compounds that interfere with this process are potential therapeutic agents for treating mycobacterial diseases, including tuberculosis. Galactan biosynthesis in mycobacteria involves two glycosyltransferases, GlfT1 and GlfT2, which have been the subject of increasing interest in recent years. This Synopsis summarizes efforts to characterize the mechanism and specificity of GlfT2, which is responsible for introducing the majority of the Galf residues into mycobacterial galactan.
Collapse
Affiliation(s)
- Myles B Poulin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Eppe G, El Bkassiny S, Vincent SP. Galactofuranose Biosynthesis: Discovery, Mechanisms and Therapeutic Relevance. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Galactofuranose, the atypical and thermodynamically disfavored form of d-galactose, has in reality a very old history in chemistry and biochemistry. The purpose of this book chapter is to give an overview on the fundamental aspects of the galactofuranose biosynthesis, from the biological occurrence to the search of inhibitors.
Collapse
Affiliation(s)
- Guillaume Eppe
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Sandy El Bkassiny
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Stéphane P. Vincent
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| |
Collapse
|
11
|
Wang S, Meng X, Huang W, Yang JS. Influence of silyl protections on the anomeric reactivity of galactofuranosyl thioglycosides and application of the silylated thiogalactofuranosides to one-pot synthesis of diverse β-D-oligogalactofuranosides. J Org Chem 2014; 79:10203-17. [PMID: 25310684 DOI: 10.1021/jo5018684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe in this paper the tuning effect of silyl protecting groups on the donor reactivity of galactofuranosyl phenyl thioglycosides. Silyl ethers on the galactofuranose ring are found to have an arming effect on the glycosylation reactivity, but the cyclic 3,5-acetal protecting group decreases the reactivity. The reactive phenyl 2,6-di-O-Bz-3,5-di-O-TBS-1-thio-β-d-galactofuranoside 3 is proved to be a useful glycosyl building block. By taking advantage of this donor, we achieved the highly efficient one-pot solution-phase assembly of a panel of β-d-galactofuranosyl tri- and tetrasaccharides possessing diverse glycosidic linkages.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Drug Targeting, Ministry of Education, and Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University , Chengdu 610041, P. R. China
| | | | | | | |
Collapse
|
12
|
Marino C, Baldoni L. Synthesis of D-galactofuranose-containing molecules: design of galactofuranosyl acceptors. Chembiochem 2014; 15:188-204. [PMID: 24420700 DOI: 10.1002/cbic.201300638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/11/2022]
Abstract
D-Galactofuranose (D-Galf) is present in glycoconjugates of several pathogenic microorganisms but is absent in mammals, so it is a good target for the development of chemotherapeutic agents for the treatment of microbial infections. This fact has increased interest in the synthesis of D-Galf-containing molecules for corresponding glycobiological studies. The synthesis of oligosaccharides, glycoconjugates, and mimetics of D-Galf requires specific methods for the preparation of galactose derivatives in the furanosic configuration, the synthesis of appropriate acceptors, and efficient glycosylation methods for the construction of α- and β-D-Galf linkages. This review summarizes the different strategies developed for the preparation of partially protected derivatives of D-Galf, suitable as acceptors for the construction of (1→2), (1→3), (1→5), and (1→6) link- ages, and describes recent applications.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR-CONICET-UBA, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires (Argentina).
| | | |
Collapse
|
13
|
Li J, Lowary TL. Sulfonium ions as inhibitors of the mycobacterial galactofuranosyltransferase GlfT2. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00067f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mycobacterial cell wall possesses a core galactan moiety composed of approximately 30 galactofuranosyl residues attached via alternating β-(1→5) and β-(1→6) linkages.
Collapse
Affiliation(s)
- Jing Li
- Alberta Glycomics Centre and Department of Chemistry
- The University of Alberta
- Gunning–Lemieux Chemistry Centre
- Edmonton
- Canada
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry
- The University of Alberta
- Gunning–Lemieux Chemistry Centre
- Edmonton
- Canada
| |
Collapse
|
14
|
Chaveriat L, Gosselin I, Machut C, Martin P. Synthesis, surface tension properties and antibacterial activities of amphiphilic d -galactopyranose derivatives. Eur J Med Chem 2013; 62:177-86. [DOI: 10.1016/j.ejmech.2012.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 11/26/2022]
|
15
|
Liang XY, Liu QW, Bin HC, Yang JS. One-pot synthesis of branched oligosaccharides by use of galacto- and mannopyranosyl thioglycoside diols as key glycosylating agents. Org Biomol Chem 2013; 11:3903-17. [DOI: 10.1039/c3ob40421h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Baldoni L, Marino C. Synthesis of S- and C-galactofuranosides via a galactofuranosyl iodide. Isolable 1-galactofuranosylthiol derivative as a new glycosyl donor. Carbohydr Res 2012; 362:70-8. [DOI: 10.1016/j.carres.2012.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 12/12/2022]
|
17
|
Poulin MB, Zhou R, Lowary TL. Synthetic UDP-galactofuranose analogs reveal critical enzyme-substrate interactions in GlfT2-catalyzed mycobacterial galactan assembly. Org Biomol Chem 2012; 10:4074-87. [PMID: 22499274 DOI: 10.1039/c2ob25159k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterial cell wall galactan, composed of alternating β-(1→5) and β-(1→6) galactofuranosyl residues, is assembled by the action of two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2, which use UDP-galactofuranose (UDP-Galf) as the donor substrate. Kinetic analysis of synthetic UDP-Galf analogs identified critical interactions involved in donor substrate recognition by GlfT2, a processive polymerizing glycosyltransferase. Testing of methylated UDP-Galf analogs showed the donor substrate-binding pocket is sterically crowded. Evaluation of deoxy UDP-Galf analogs revealed that the C-6 hydroxyl group is not essential for substrate activity, and that interactions with the UDP-Galf C-3 hydroxyl group orient the substrate for turnover but appears to play no role in substrate recognition, making the 3-deoxy-analog a moderate competitive inhibitor of the enzyme. Moreover, the addition of a Galf residue deoxygenated at C-5 or C-6, or an l-arabinofuranose residue, to the growing galactan chain resulted in "dead end" reaction products, which no longer act as an acceptor for the enzyme. This finding shows dual recognition of both the terminal C-5 and C-6 hydroxyl groups of the acceptor substrate are required for GlfT2 activity, which is consistent with a recent model developed based upon a crystal structure of the enzyme. These observations provide insight into specific protein-carbohydrate interactions in the GlfT2 active site and may facilitate the design of future inhibitors.
Collapse
Affiliation(s)
- Myles B Poulin
- Alberta Glycomics Centre and Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
18
|
Deng LM, Liu X, Liang XY, Yang JS. Regioselective glycosylation method using partially protected arabino- and galactofuranosyl thioglycosides as key glycosylating substrates and its application to one-pot synthesis of oligofuranoses. J Org Chem 2012; 77:3025-37. [PMID: 22369586 DOI: 10.1021/jo300084g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe in this paper the development of a novel regioselective furanosylation methodology using partially protected furanosyl thioglycosides as central glycosylating building blocks and its application in the efficient one-pot synthesis of a series of linear and branched-type arabino- and galactofuranoside fragments structurally related to the cell wall polysaccharides of Mycobacterium tuberculosis , Streptococcus pneumoniae serostype 35A, and sugar beet.
Collapse
Affiliation(s)
- Li-Min Deng
- Key Laboratory of Drug Targeting, Ministry of Education, and Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Repetto E, Manzano VE, Uhrig ML, Varela O. Synthesis of Branched Dithiotrisaccharides via Ring-Opening Reaction of Sugar Thiiranes. J Org Chem 2011; 77:253-65. [DOI: 10.1021/jo2018685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Evangelina Repetto
- CIHIDECAR-CONICET, Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Verónica E. Manzano
- CIHIDECAR-CONICET, Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - María Laura Uhrig
- CIHIDECAR-CONICET, Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Oscar Varela
- CIHIDECAR-CONICET, Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
20
|
Legentil L, Audic JL, Daniellou R, Nugier-Chauvin C, Ferrières V. Studies of a furanoside as antimycobacterial agent loaded into a biodegradable PBAT/sodium caseinate support. Carbohydr Res 2011; 346:1541-5. [PMID: 21592464 DOI: 10.1016/j.carres.2011.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
An improved synthesis of n-octyl β-D-galactofuranoside was described using micro-wave activation. The resulting alkyl furanoside showed antibacterial activity against Mycobacterium smegmatis, a non-pathogenic model of Mycobacterium tuberculosis. It was further incorporated into a biodegradable PBAT/sodium caseinate polymer. The resulting biomaterial loaded with 5% of the pharmacophore retained the mycobacteriostatic properties and developed a mycobactericidal activity on contact and at the periphery of the film.
Collapse
Affiliation(s)
- Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France.
| | | | | | | | | |
Collapse
|
21
|
Peltier P, Beláňová M, Dianišková P, Zhou R, Zheng RB, Pearcey JA, Joe M, Brennan PJ, Nugier-Chauvin C, Ferrières V, Lowary TL, Daniellou R, Mikušová K. Synthetic UDP-furanoses as potent inhibitors of mycobacterial galactan biogenesis. CHEMISTRY & BIOLOGY 2010; 17:1356-66. [PMID: 21168771 PMCID: PMC3012269 DOI: 10.1016/j.chembiol.2010.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 11/29/2022]
Abstract
UDP-galactofuranose (UDP-Galf) is a substrate for two types of enzymes, UDP-galactopyranose mutase and galactofuranosyltransferases, which are present in many pathogenic organisms but absent from mammals. In particular, these enzymes are involved in the biosynthesis of cell wall galactan, a polymer essential for the survival of the causative agent of tuberculosis, Mycobacterium tuberculosis. We describe here the synthesis of derivatives of UDP-Galf modified at C-5 and C-6 using a chemoenzymatic route. In cell-free assays, these compounds prevented the formation of mycobacterial galactan, via the production of short "dead-end" intermediates resulting from their incorporation into the growing oligosaccharide chain. Modified UDP-furanoses thus constitute novel probes for the study of the two classes of enzymes involved in mycobacterial galactan assembly, and studies with these compounds may ultimately facilitate the future development of new therapeutic agents against tuberculosis.
Collapse
Affiliation(s)
- Pauline Peltier
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes cedex 7, France
- Université européenne de Bretagne, France
| | - Martina Beláňová
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Bratislava, Slovakia, SK-842 15
| | - Petronela Dianišková
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Bratislava, Slovakia, SK-842 15
| | - Ruokun Zhou
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Edmonton, Canada, AB T6G 2G2
| | - Ruixiang Blake Zheng
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Edmonton, Canada, AB T6G 2G2
| | - Jean A. Pearcey
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Edmonton, Canada, AB T6G 2G2
| | - Maju Joe
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Edmonton, Canada, AB T6G 2G2
| | - Patrick J. Brennan
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, U.S.A., CO 80523
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes cedex 7, France
- Université européenne de Bretagne, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes cedex 7, France
- Université européenne de Bretagne, France
| | - Todd L. Lowary
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Edmonton, Canada, AB T6G 2G2
| | - Richard Daniellou
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes cedex 7, France
- Université européenne de Bretagne, France
| | - Katarína Mikušová
- Department of Biochemistry, Comenius University, Faculty of Natural Sciences, Bratislava, Slovakia, SK-842 15
| |
Collapse
|
22
|
Splain RA, Kiessling LL. Synthesis of galactofuranose-based acceptor substrates for the study of the carbohydrate polymerase GlfT2. Bioorg Med Chem 2010; 18:3753-9. [PMID: 20513638 PMCID: PMC2888036 DOI: 10.1016/j.bmc.2010.04.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 11/23/2022]
Abstract
Despite the prevalence and importance of carbohydrate polymers, the molecular details of their biosynthesis remain elusive. Many enzymes responsible for the synthesis of carbohydrate polymers require a 'primer' or 'initiator' carbohydrate sequence. One example of such an enzyme is the mycobacterial galactofuranosyltransferase GlfT2 (Rv3808c), which generates an essential cell wall building block. We recently demonstrated that recombinant GlfT2 is capable of producing a polymer composed of alternating beta-(1,5) and beta-(1,6)-linked galactofuranose (Galf) residues. Intriguingly, the length of the polymers produced from a synthetic glycosyl acceptor is consistent with those found in the cell wall. To probe the mechanism by which polymer length is controlled, a collection of initiator substrates has been assembled. The central feature of the synthetic route is a ruthenium-catalyzed cross-metathesis as the penultimate transformation. Access to synthetic substrates has led us to postulate a new mechanism for length control in this template-independent polymerization. Moreover, our investigations indicate that lipids possessing but a single galactofuranose residue can act as substrates for GlfT2.
Collapse
Affiliation(s)
- Rebecca A. Splain
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, U.S.A
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, U.S.A
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, U.S.A
| |
Collapse
|
23
|
Chlubnová I, Filipp D, Spiwok V, Dvořáková H, Daniellou R, Nugier-Chauvin C, Králová B, Ferrières V. Enzymatic synthesis of oligo-d-galactofuranosides and l-arabinofuranosides: from molecular dynamics to immunological assays. Org Biomol Chem 2010; 8:2092-102. [DOI: 10.1039/b926988f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Mendoza VM, Kashiwagi GA, de Lederkremer RM, Gallo-Rodriguez C. Synthesis of trisaccharides containing internal galactofuranose O-linked in Trypanosoma cruzi mucins. Carbohydr Res 2009; 345:385-96. [PMID: 20044082 DOI: 10.1016/j.carres.2009.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/24/2009] [Accepted: 12/05/2009] [Indexed: 11/19/2022]
Abstract
The trisaccharides beta-D-Galf-(1-->2)-beta-D-Galf-(1-->4)-D-GlcNAc (5) and beta-D-Galp-(1-->2)-beta-D-Galf-(1-->4)-D-GlcNAc (6) constitute novel structures isolated as alditols when released by reductive beta-elimination from mucins of Trypanosoma cruzi (Tulahuen strain). Trisaccharides 5 and 6 were synthesized employing the aldonolactone approach. Thus, a convenient D-galactono-1,4-lactone derivative was used for the introduction of the internal galactofuranose and the trichloroacetimidate method was employed for glycosylation reactions. Due to the lack of anchimeric assistance on O-2 of the galactofuranosyl precursor, glycosylation studies were performed under different conditions. The nature of the solvent strongly determined the stereochemical course of the glycosylation reactions when the galactofuranosyl donor was substituted either by 2-O-Galp or 2-O-Galf.
Collapse
Affiliation(s)
- Verónica M Mendoza
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
25
|
Richards MR, Lowary TL. Chemistry and biology of galactofuranose-containing polysaccharides. Chembiochem 2009; 10:1920-38. [PMID: 19591187 DOI: 10.1002/cbic.200900208] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The thermodynamically less stable form of galactose-galactofuranose (Galf)-is essential for the viability of several pathogenic species of bacteria and protozoa but absent in this form in mammals, so the biochemical pathways by which Galf-containing glycans are assembled and catabolysed are attractive sites for drug action. This potential has led to increasing interest in the synthesis of molecules containing Galf residues, their subsequent use in studies directed towards understanding the enzymes that process these residues and the identification of potential inhibitors of these pathways. Major achievements of the past several years have included an in-depth understanding of the mechanism of UDP-galactopyranose mutase (UGM), the enzyme that produces UDP-Galf, which is the donor species for galactofuranosyltransferases. A number of methods for the synthesis of galactofuranosides have also been developed, and practitioners in the field now have many options for the initiation of a synthesis of glycoconjugates containing either alpha- or beta-Galf residues. UDP-Galf has also been prepared by a number of approaches, and it appears that a chemoenzymatic approach is currently the most viable method for producing multi-milligram amounts of this important intermediate. Recent advances both in the understanding of the mechanism of UGM and in the synthesis of galactofuranose and its derivatives are highlighted in this review.
Collapse
Affiliation(s)
- Michele R Richards
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2 (Canada)
| | | |
Collapse
|
26
|
Szczepina MG, Zheng RB, Completo GC, Lowary TL, Pinto BM. STD-NMR studies suggest that two acceptor substrates for GlfT2, a bifunctional galactofuranosyltransferase required for the biosynthesis of Mycobacterium tuberculosis arabinogalactan, compete for the same binding site. Chembiochem 2009; 10:2052-9. [PMID: 19575371 DOI: 10.1002/cbic.200900202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mycobacterial cell wall is a complex architecture, which has, as its major structural component, a lipidated polysaccharide covalently bound to peptidoglycan. This structure, termed the mycolyl-arabinogalactan-peptidoglycan complex, possesses a core galactan moiety composed of approximately 30 galactofuranosyl (Galf) resides attached via alternating beta-(1-->6) and beta-(1-->5) linkages. Recent studies have shown that the entire galactan is synthesized by the action of only two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2. We report here saturation-transfer difference (STD) NMR spectroscopy studies with GlfT2 using two trisaccharide acceptor substrates, beta-D-Galf-(1-->6)-beta-D-Galf-(1-->5)-beta-D-Galf-O(CH(2))(7)CH(3) (2) and beta-D-Galf-(1-->5)-beta-D-Galf-(1-->6)-beta-D-Galf-O(CH(2))(7)CH(3) (3), as well as the donor substrate for the enzyme, UDP-Galf. Competition STD-NMR titration experiments and saturation transfer double difference (STDD) experiments with 2 and 3 were undertaken to explore the bifunctionality of this enzyme, in particular to answer whether one or two active sites are responsible for the formation of both beta-(1-->5)- and beta-(1-->6)-Galf linkages. It was demonstrated that 2 and 3 bind competitively at the same site; this suggests that GlfT2 has one active site pocket capable of catalyzing both beta-(1-->5) and beta-(1-->6) galactofuranosyl transfer reactions. The addition of UDP-Galf to GlfT2 in the presence of either 2 or 3 generated a tetrasaccharide product; this indicates that the enzyme was catalytically active under the conditions at which the STD-NMR experiments were carried out.
Collapse
Affiliation(s)
- Monica G Szczepina
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada)
| | | | | | | | | |
Collapse
|
27
|
May JF, Splain RA, Brotschi C, Kiessling LL. A tethering mechanism for length control in a processive carbohydrate polymerization. Proc Natl Acad Sci U S A 2009; 106:11851-6. [PMID: 19571009 PMCID: PMC2715488 DOI: 10.1073/pnas.0901407106] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Indexed: 11/18/2022] Open
Abstract
Carbohydrate polymers are the most abundant organic substances on earth. Their degrees of polymerization range from tens to thousands of units, yet polymerases generate the relevant lengths without the aid of a template. To gain insight into template-independent length control, we investigated how the mycobacterial galactofuranosyl-transferase GlfT2 mediates formation of the galactan, a polymer of galactofuranose residues that is an integral part of the cell wall. We show that isolated recombinant GlfT2 can catalyze the synthesis of polymers with degrees of polymerization that are commensurate with values observed in mycobacteria, indicating that length control by GlfT2 is intrinsic. Investigations using synthetic substrates reveal that GlfT2 is processive. The data indicate that GlfT2 controls length by using a substrate tether, which is distal from the site of elongation. The strength of interaction of that tether with the polymerase influences the length of the resultant polymer. Thus, our data identify a mechanism for length control by a template-independent polymerase.
Collapse
Affiliation(s)
- John F. May
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706; and
| | - Rebecca A. Splain
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Christine Brotschi
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Laura L. Kiessling
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706; and
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
28
|
Baldoni L, Marino C. Facile Synthesis of per-O-tert-Butyldimethylsilyl-β-d-galactofuranose and Efficient Glycosylation via the Galactofuranosyl Iodide. J Org Chem 2009; 74:1994-2003. [DOI: 10.1021/jo8025274] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luciana Baldoni
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carla Marino
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
29
|
Pathak AK, Pathak V, Suling WJ, Riordan JR, Gurcha SS, Besra GS, Reynolds RC. Synthesis of deoxygenated alpha(1-->5)-linked arabinofuranose disaccharides as substrates and inhibitors of arabinosyltransferases of Mycobacterium tuberculosis. Bioorg Med Chem 2009; 17:872-81. [PMID: 19056279 PMCID: PMC2707774 DOI: 10.1016/j.bmc.2008.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Arabinosyltransferases (AraTs) play a critical role in mycobacterial cell wall biosynthesis and are potential drug targets for the treatment of tuberculosis, especially multi-drug resistant forms of M. tuberculosis (MTB). Herein, we report the synthesis and acceptor/inhibitory activity of Araf alpha(1-->5) Araf disaccharides possessing deoxygenation at the reducing sugar of the disaccharide. Deoxygenation at either the C-2 or C-3 position of Araf was achieved via a free radical procedure using xanthate derivatives of the hydroxyl group. The alpha(1-->5)-linked disaccharides were produced by coupling n-octyl alpha-Araf 2-/3-deoxy, 2-fluoro glycosyl acceptors with an Araf thioglycosyl donor. The target disaccharides were tested in a cell free mycobacterial AraTs assay as well as an in vitro assay against MTB H(37)Ra and M. avium complex strains.
Collapse
Affiliation(s)
- Ashish K. Pathak
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - Vibha Pathak
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - William J. Suling
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - James R. Riordan
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Robert C. Reynolds
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| |
Collapse
|
30
|
Lucas R, Balbuena P, Errey JC, Squire MA, Gurcha SS, McNeil M, Besra GS, Davis BG. Glycomimetic inhibitors of mycobacterial glycosyltransferases: targeting the TB cell wall. Chembiochem 2008; 9:2197-9. [PMID: 18780384 DOI: 10.1002/cbic.200800189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Indexed: 11/10/2022]
Affiliation(s)
- Ricardo Lucas
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Novel Galf-disaccharide mimics: synthesis by way of 1,3-dipolar cycloaddition reactions in water. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Peltier P, Euzen R, Daniellou R, Nugier-Chauvin C, Ferrières V. Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications. Carbohydr Res 2008; 343:1897-923. [DOI: 10.1016/j.carres.2008.02.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|
33
|
Gandolfi-Donadío L, Gallo-Rodriguez C, de Lederkremer RM. Synthesis of a tetrasaccharide fragment of mycobacterial arabinogalactan. Carbohydr Res 2008; 343:1870-5. [DOI: 10.1016/j.carres.2008.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/15/2008] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
|
34
|
Facile synthesis of methyl α- and β-d-[6-3H]galactofuranosides from d-galacturonic acid. Substrates for the detection of galactofuranosidases. Carbohydr Res 2008; 343:1863-9. [DOI: 10.1016/j.carres.2008.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/19/2008] [Accepted: 02/23/2008] [Indexed: 11/23/2022]
|
35
|
Completo GC, Lowary TL. Synthesis of Galactofuranose-Containing Acceptor Substrates for Mycobacterial Galactofuranosyltransferases. J Org Chem 2008; 73:4513-25. [DOI: 10.1021/jo800457j] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gladys C. Completo
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta, T6G 2G2 Canada
| | - Todd L. Lowary
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta, T6G 2G2 Canada
| |
Collapse
|
36
|
Alderwick LJ, Dover LG, Veerapen N, Gurcha SS, Kremer L, Roper DL, Pathak AK, Reynolds RC, Besra GS. Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expr Purif 2008; 58:332-41. [PMID: 18248822 DOI: 10.1016/j.pep.2007.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/28/2007] [Accepted: 11/28/2007] [Indexed: 11/22/2022]
Abstract
The arabinogalactan (AG) component of the mycobacterial cell wall is an essential branched polysaccharide which tethers mycolic acids (m) to peptidoglycan (P), forming the mAGP complex. Much interest has been focused on the biosynthetic machinery involved in the production of this highly impermeable shield, which is the target for numerous anti-tuberculosis agents. The galactan domain of AG is synthesised via a bifunctional galactofuranosyltransferase (GlfT), which utilises UDP-Galf as its high-energy substrate. However, it has proven difficult to study the protein in its recombinant form due to difficulties in recovering pure soluble protein using standard expression systems. Herein, we describe the effects of glfT co-induction with a range of chaperone proteins, which resulted in an appreciable yield of soluble protein at 5 mg/L after a one-step purification procedure. We have shown that this purified enzyme transfers [14C]Galf to a range of both beta(1-->5) and beta(1-->6) linked digalactofuranosyl neoglycolipid acceptors with a distinct preference for the latter. Ligand binding studies using intrinsic tryptophan fluorescence have provided supporting evidence for the apparent preference of this enzyme to bind the beta(1-->6) disaccharide acceptor. However, we could not detect binding or galactofuranosyltransferase activity with an n-octyl beta-d-Gal-(1-->4)-alpha-l-Rha acceptor, which mimics the reducing terminus of galactan in the mycobacterial cell wall. Conversely, after an extensive bioinformatics analysis of the H37Rv genome, further cloning, expression and functional analysis of the Rv3792 open reading frame indicates that this protein affords galactofuranosyltransferase activity against such an acceptor and paves the way for a better understanding of galactan biosynthesis in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Luke J Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Development of a coupled spectrophotometric assay for GlfT2, a bifunctional mycobacterial galactofuranosyltransferase. Carbohydr Res 2008; 343:2130-9. [PMID: 18423586 DOI: 10.1016/j.carres.2008.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 11/22/2022]
Abstract
As a key constituent of their protective cell wall all mycobacteria produce a large structural component, the mycolyl-arabinogalactan (mAG) complex, which has at its core a galactan moiety of alternating beta-(1-->5) and beta-(1-->6) galactofuranosyl residues. Galactan biosynthesis is essential for mycobacterial viability and thus inhibitors of the enzymes involved in its assembly are potential drugs for the treatment of mycobacterial diseases, including tuberculosis. Only two galactofuranosyltransferases, GlfT1 and GlfT2, are responsible for the biosynthesis of the entire galactan domain of the mAG and we report here the first high-throughput assay for GlfT2. Successful implementation of the assay required the synthesis of multi-milligram amounts of the donor for the enzyme, UDP-Galf, 1, which was achieved using a chemoenzymatic approach. We also describe an improved expression system for GlfT2, which provides a larger amount of active protein for the assay. Kinetic analysis of 1 and a known trisaccharide acceptor for the enzyme, 2, have been carried out and the apparent K(m) and k(cat) values obtained for the latter are in agreement with those obtained using a previously reported radiochemical assay. The assay has been implemented in 384-well microtiter plates, which will facilitate the screening of large numbers of potential GlfT2 inhibitors, with possible utility as novel anti-TB drugs.
Collapse
|
38
|
Taveira AF, Hyaric ML, Reis EFC, Araújo DP, Ferreira AP, de Souza MA, Alves LL, Lourenço MCS, Vicente FRC, de Almeida MV. Preparation and antitubercular activities of alkylated amino alcohols and their glycosylated derivatives. Bioorg Med Chem 2007; 15:7789-94. [PMID: 17851083 DOI: 10.1016/j.bmc.2007.08.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 11/16/2022]
Abstract
A series of N- and C-alkylated amino alcohols and of their protected galactopyranosyl derivatives was synthesized and evaluated for antitubercular activity. Five of these compounds displayed good activity, with a MIC below 12.5mug/mL. The presence of the carbohydrate slightly affected the antibacterial activity.
Collapse
Affiliation(s)
- Aline F Taveira
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora-MG 36036-330, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pathak AK, Pathak V, Seitz L, Gurcha SS, Besra GS, Riordan JM, Reynolds RC. Disaccharide analogs as probes for glycosyltransferases in Mycobacterium tuberculosis. Bioorg Med Chem 2007; 15:5629-50. [PMID: 17544276 PMCID: PMC2699567 DOI: 10.1016/j.bmc.2007.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Glycosyltransferases (GTs) play a crucial role in mycobacterial cell wall biosynthesis and are necessary for the survival of mycobacteria. Hence, these enzymes are potential new drug targets for the treatment of tuberculosis (TB), especially multiple drug-resistant TB (MDR-TB). Herein, we report the efficient syntheses of Araf(alpha 1-->5)Araf, Galf(beta 1-->5)Galf, and Galf(beta 1-->6)Galf disaccharides possessing a 5-N,N-dimethylaminonaphthalene-1-sulfonamidoethyl (dansyl) unit that were prepared as fluorescent disaccharide acceptors for arabinosyl- and galactosyl-transferases, respectively. Such analogs may offer advantages relative to radiolabeled acceptors or donors for studying the enzymes and for assay development and compound screening. Additionally, analogs possessing a 5-azidonaphthalene-1-sulfonamidoethyl unit were prepared as photoaffinity probes for their potential utility in studying active site labeling of the GTs (arabinosyl and galactosyl) in Mycobacterium tuberculosis (MTB). Beyond their preparation, initial biological testing and kinetic analysis of these disaccharides as acceptors toward glycosyltransferases are also presented.
Collapse
Affiliation(s)
- Ashish K. Pathak
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - Vibha Pathak
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - Lainne Seitz
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James M. Riordan
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| | - Robert C. Reynolds
- Drug Discovery Division, Southern Research Institute, P.O. Box 55305, Birmingham, AL 35255, USA
| |
Collapse
|
40
|
Abstract
Mycobacteria have a unique cell wall, which is rich in drug targets. The cell wall core consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide connecting them. The detailed structure of the cell wall core is largely, although not completely, understood and will be presented. The biosynthetic pathways of all three components reveal significant drug targets that are the basis of present drugs and/or have potential for new drugs. These pathways will be reviewed and include enzymes involved in polyisoprene biosynthesis, soluble arabinogalactan precursor production, arabinogalactan polymerization, fatty acid synthesis, mycolate maturation, and soluble peptidoglycan precursor formation. Information relevant to targeting all these enzymes will be presented in tabular form. Selected enzymes will then be discussed in more detail. It is thus hoped this chapter will aid in the selection of targets for new drugs to combat tuberculosis.
Collapse
Affiliation(s)
- Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Host Defense, NIAID, NIH, Twinbrook 2, Room 239, 12441 Parklawn Drive, Rockville, MD 20852
| | - Dean C. Crick
- Mycobacterial Research Laboratories, Dept. of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1682
| | - Michael R. McNeil
- Mycobacterial Research Laboratories, Dept. of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1682
| |
Collapse
|
41
|
Darwish OS, Callam CS, Hadad CM, Lowary TL. Regioselectivity in Alkylation Reactions of 1,2‐O‐Stannylene Acetals of d‐Arabinofuranose. J Carbohydr Chem 2007. [DOI: 10.1081/car-120026604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Omar S. Darwish
- a Department of Chemistry , The Ohio State University , 100 West 18th Ave., Columbus, Ohio, 43210, USA
| | - Christopher S. Callam
- a Department of Chemistry , The Ohio State University , 100 West 18th Ave., Columbus, Ohio, 43210, USA
| | - Christopher M. Hadad
- a Department of Chemistry , The Ohio State University , 100 West 18th Ave., Columbus, Ohio, 43210, USA
| | - Todd L. Lowary
- a Department of Chemistry , The Ohio State University , 100 West 18th Ave., Columbus, Ohio, 43210, USA
- b Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science , The University of Alberta , Gunning‐Lemieux Chemistry Centre, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
42
|
Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007; 15:2479-513. [PMID: 17291770 DOI: 10.1016/j.bmc.2007.01.030] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/26/2006] [Accepted: 01/17/2007] [Indexed: 02/03/2023]
Abstract
Tuberculosis is today amongst the worldwide health threats. As resistant strains of Mycobacterium tuberculosis have slowly emerged, treatment failure is too often a fact, especially in countries lacking the necessary health care organisation to provide the long and costly treatment adapted to patients. Because of lack of treatment or lack of adapted treatment, at least two million people will die of tuberculosis this year. Due to this concern, this infectious disease was the focus of renewed scientific interest in the last decade. Regimens were optimized and much was learnt on the mechanisms of action of the antituberculosis drugs used. Moreover, the quest for original drugs overcoming some of the problems of current regimens also became the focus of research programmes and many new series of M. tuberculosis growth inhibitors were reported. This review presents the drugs currently used in antituberculosis treatments and the most advanced compounds undergoing clinical trials. We then provide a description of their mechanism of action along with other series of inhibitors known to act on related biochemical targets. This is followed by other inhibitors of M. tuberculosis growth, including recently reported compounds devoid of a reported mechanism of action.
Collapse
Affiliation(s)
- Yves L Janin
- URA 2128 CNRS-Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
43
|
Bhowruth V, Dover LG, Besra GS. Tuberculosis chemotherapy: recent developments and future perspectives. PROGRESS IN MEDICINAL CHEMISTRY 2007; 45:169-203. [PMID: 17280904 DOI: 10.1016/s0079-6468(06)45504-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Veemal Bhowruth
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
44
|
Euzen R, Ferrières V, Plusquellec D. Synthesis of galactofuranose-containing disaccharides using thioimidoyl-type donors. Carbohydr Res 2006; 341:2759-68. [PMID: 17056021 DOI: 10.1016/j.carres.2006.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Four galactofuranose-containing disaccharides have been prepared utilising various thioimidates [Galf-SC(NR)XR'] and suitably protected acceptors as key precursors. We observed that the efficiency of the coupling reactions was particularly dependent on the aglycon present on the furanosyl donor when copper(II) ions were used as the promoter, and that activation could be correlated with the nature of the third heteroatom, X.
Collapse
Affiliation(s)
- Ronan Euzen
- Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, Avenue du Général Leclerc, F-35700 Rennes, France
| | | | | |
Collapse
|
45
|
Wing C, Errey JC, Mukhopadhyay B, Blanchard JS, Field RA. Expression and initial characterization of WbbI, a putative D-Galf:alpha-D-Glc beta-1,6-galactofuranosyltransferase from Escherichia coli K-12. Org Biomol Chem 2006; 4:3945-50. [PMID: 17047874 DOI: 10.1039/b609455d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cloning of E. coli K-12 orf8 (wbbI) and over-expression of the corresponding enzyme as a maltose-binding fusion protein provided recombinant WbbI beta-1,6-galactofuranosyltransferase activity. Challenged with synthetic acceptor analogues in the presence of UDP-galactofuranose as a donor, WbbI showed a modest preference for pyranoside acceptor substrates of the alpha-D-gluco-configuration but it also possessed the ability to turn-over acceptor analogues.
Collapse
Affiliation(s)
- Corin Wing
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
46
|
Khasnobis S, Zhang J, Angala SK, Amin AG, McNeil MR, Crick DC, Chatterjee D. Characterization of a Specific Arabinosyltransferase Activity Involved in Mycobacterial Arabinan Biosynthesis. ACTA ACUST UNITED AC 2006; 13:787-95. [PMID: 16873027 DOI: 10.1016/j.chembiol.2006.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/08/2006] [Accepted: 05/19/2006] [Indexed: 11/24/2022]
Abstract
Mycobacterium smegmatis strains that contain inactivated EmbA or EmbB proteins are unable to synthesize terminal Arabeta1-->2Araalpha1-->5(Arabeta1-->2Araalpha1-->3)Araalpha1-->5Araalpha1-->(Ara(6)) motif in the cell wall polysaccharide arabinogalactan. Instead, the mutants contain a linear Arabeta1-->2Araalpha1-->5Araalpha1-->5Araalpha1-->(Ara(4)) motif, suggesting that these proteins are involved in the synthesis or transfer of the disaccharide Arabeta1-->2Araalpha1--> to an internal 5-linked Ara. Therefore, we synthesized a linear Arabeta1-->2Araalpha1-->5Araalpha1-->5Araalpha1-->5Araalpha1--> with an octyl aglycon as an arabinosyl acceptor in cell-free assays. A facile assay was developed using the chemically synthesized glycan, membrane, and particulate cell wall as the enzyme source, and 5-phosphoribose diphosphate pR[(14)C]pp as the arabinose donor. The results unequivocally show that two arabinofuranosyl residues were added at the tertiary -->5Araalpha1--> of the synthetic glycan. This activity was undetectable in strains of M. smegmatis where embB or embA had been genetically disrupted. Normal activity could be restored only in the presence of both EmbA and EmbB proteins.
Collapse
Affiliation(s)
- Shampa Khasnobis
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, 80523, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Euzen R, Lopez G, Nugier-Chauvin C, Ferrières V, Plusquellec D, Rémond C, O’Donohue M. A Chemoenzymatic Approach for the Synthesis of Unnatural Disaccharides ContainingD-Galacto- orD-Fucofuranosides. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Nokami T, Werz D, Seeberger P. Synthesis and Reactions of 1,4-Anhydrogalactopyranose and 1,4-Anhydroarabinose - Steric and Electronic Limitations. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590224] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Cren S, Wilson C, Thomas NR. A Rapid Synthesis of Hexofuranose-like Iminosugars Using Ring-Closing Metathesis. Org Lett 2005; 7:3521-3. [PMID: 16048332 DOI: 10.1021/ol051232b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new 1-N-iminosugars have been prepared as hexofuranose analogues in an efficient manner by an RCM-based route. Both 3,4-disubstituted pyrrolidines display moderate inhibitory activity against Mycobacterium smegmatis galactan biosynthesis. [structure: see text]
Collapse
Affiliation(s)
- Sylvaine Cren
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | |
Collapse
|
50
|
Cociorva OM, Gurcha SS, Besra GS, Lowary TL. Oligosaccharides as inhibitors of mycobacterial arabinosyltransferases. Di- and trisaccharides containing C-3 modified arabinofuranosyl residues. Bioorg Med Chem 2005; 13:1369-79. [PMID: 15670944 DOI: 10.1016/j.bmc.2004.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 10/29/2004] [Accepted: 11/04/2004] [Indexed: 11/20/2022]
Abstract
The assembly of the arabinan portions of cell wall polysaccharides in mycobacteria involves a family of arabinosyltransferases (AraT's) that promote the polymerization of decaprenolphosphoarabinose. Mycobacterial viability depends upon the ability of the organism to synthesize an intact arabinan and thus compounds that inhibit these AraT's are both useful biochemical tools as well as potential lead compounds for new anti-tuberculosis agents. We describe here the preparation of oligosaccharide fragments of mycobacterial arabinan that contain arabinofuranosyl residues modified at C-3 by the replacement of the hydroxyl group with an amino, azido or methoxy functionality. Subsequent testing of these oligosaccharides as inhibitors of mycobacterial AraT's revealed that all inhibited the enzymes, but to varying degrees. In further studies, each compound was shown to have only low activity as an inhibitor of mycobacterial growth.
Collapse
Affiliation(s)
- Oana M Cociorva
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|