1
|
Kurç Ö, Rähse N, Gohlke H, Cramer J. Human chitinases and chitinase-like proteins as emerging drug targets - a medicinal chemistry perspective. RSC Med Chem 2025:d4md01050g. [PMID: 40313579 PMCID: PMC12042104 DOI: 10.1039/d4md01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
Human chitinases and chitinase-like proteins (CLPs) provide the immune system with the ability to recognize or process chitin originating from chitinous pathogens. In addition to their role in host defense, most members of this protein family have evolved pleiotropic cellular effector functions broadly related to immune homeostasis, cell proliferation, and tissue remodeling. This wide-ranging ability to modulate crucial cellular processes proceeds via the activation of cellular signal transduction cascades and appears to be fully independent of chitin recognition. Dysregulation of chitinase/CLP functions has been linked to a plethora of inflammatory diseases, such as allergic airway diseases and asthma, fibrosis, as well as cancer. This fact predetermines certain members of this protein family as prime targets for pharmacological intervention. Here, we provide an extensive review of medicinal chemistry efforts targeting the most widely studied members of the human chitinase/CLP family, namely acidic mammalian chitinase (AMCase), chitotriosidase (CHIT1), and chitinase-3-like protein 1 (CHI3L1/YKL-40).
Collapse
Affiliation(s)
- Önder Kurç
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| | - Nick Rähse
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| | - Holger Gohlke
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) Wilhelm-Johnen-Str. 52425 Jülich Germany
| | - Jonathan Cramer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
2
|
Alvariño R, Alfonso A, Tabudravu JN, González-Jartín J, Al Maqbali KS, Elhariry M, Vieytes MR, Botana LM. Psammaplin A and Its Analogs Attenuate Oxidative Stress in Neuronal Cells through Peroxisome Proliferator-Activated Receptor γ Activation. JOURNAL OF NATURAL PRODUCTS 2024; 87:1187-1196. [PMID: 38632902 PMCID: PMC11061836 DOI: 10.1021/acs.jnatprod.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento
de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Amparo Alfonso
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Jioji N. Tabudravu
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Jesús González-Jartín
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Khalid S. Al Maqbali
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Marwa Elhariry
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| |
Collapse
|
3
|
Niu X, Wang Z, Wang C, Wang H. Dibenzylideneacetone Overcomes Botrytis cinerea Infection in Cherry Tomatoes by Inhibiting Chitinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19422-19433. [PMID: 37915214 DOI: 10.1021/acs.jafc.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Chitinase, a crucial component of the fungal cell wall and septa, plays an important role in fungal germination by hydrolyzing chitin to provide carbon and energy for fungal growth and reproduction. In this study, we initially screened dibenzylideneacetone (DBA), a small molecule with inhibitory activity against Botrytis cinerea Chitinase, exhibiting an IC50 of 13.10 μg/mL. By constructing a three-dimensional (3D) model of the B. cinerea Chitinase and utilizing computational biology approaches, we found DBA bound to the active site pocket and formed strong π-π interactions and hydrophobic interactions with Chitinase, indicative of its competitive inhibitory mode. Site-directed mutagenesis also revealed that TRP-382, TRP-135, and ALA-215 were key amino acid residues involved in DBA binding. Subsequent antifungal assays showed that DBA had an MIC of 32 μg/mL against B. cinerea and EC50 values of 16.29 and 14.64 μg/mL in inhibiting mycelial growth and spore germination, respectively. Importantly, in vivo experiments demonstrated that DBA treatment significantly extended the shelf life of cherry tomatoes by 2-fold. Therefore, DBA represents a promising antifungal agent for fruit preservation applications.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ziyou Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chenyang Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
4
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
5
|
Esther Rubavathy SM, Palanisamy K, Priyankha S, Thilagavathi R, Prakash M, Selvam C. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening. J Biomol Struct Dyn 2023; 41:9492-9502. [PMID: 36369945 DOI: 10.1080/07391102.2022.2142668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/14/2022]
Abstract
A class I histone deacetylase HDAC8 is associated with several diseases, including cancer, intellectual impairment and parasite infection. Most of the HDAC inhibitors that have so far been found to inhibit HDAC8 limit their efficacy in the clinic by producing toxicities. It is therefore very desirable to develop specific HDAC8 inhibitors. The emergence of HDAC inhibitors derived from natural sources has become quite popular. In recent decades, it has been shown that naturally occurring HDAC inhibitors have strong anticancer properties. A total of 0.2 million natural compounds were screened against HDAC8 from the Universal Natural Product Database (UNPD). Molecular docking was performed for these natural compounds and the top six hits were obtained. In addition, molecular dynamics (MD) simulations were used to evaluate the structural stability and binding affinity of the inhibitors, which showed that the protein-ligand complexes remained stable throughout the 100 ns simulation. MM-PBSA method demonstrated that the selected compounds have high affinity towards HDAC8. We infer from our findings that Hit-1 (-29.35 kcal mol-1), Hit-2 (-29.15 kcal mol-1) and Hit-6 (-30.28 kcal mol-1) have better binding affinity and adhesion to ADMET (absorption, distribution, metabolism, excretion and toxicity) characteristics against HDAC8. To compare our discussions and result in an effective way. We performed molecular docking, MD and MM-PBSA analysis for the FDA-approved drug romidepsin. The above results show that our hits show better binding affinity than the compound romidepsin (-12.03 ± 4.66 kcal mol-1). The important hotspot residues Asp29, Ile34, Trp141, Phe152, Asp267, Met274 and Tyr306 have significantly contributed to the protein-ligand interaction. These findings suggest that in vitro testing and additional optimization may lead to the development of HDAC8 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S M Esther Rubavathy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - S Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
6
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Santaniello G, Nebbioso A, Altucci L, Conte M. Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets. Mar Drugs 2022; 21:md21010024. [PMID: 36662197 PMCID: PMC9862894 DOI: 10.3390/md21010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- BIOGEM, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNR, Via Pansini 5, 80131 Napoli, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| |
Collapse
|
8
|
Zhao Z, Xu Q, Chen W, Wang S, Yang Q, Dong Y, Zhang J. Rational Design, Synthesis, and Biological Investigations of N-Methylcarbamoylguanidinyl Azamacrolides as a Novel Chitinase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4889-4898. [PMID: 35416043 DOI: 10.1021/acs.jafc.2c00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chitinase is one of the most important glycoside hydrolyases, widely existing in bacteria, fungi, insects, and plants. It is involved in fungal cell wall remodeling and insect molting. Chitinase inhibitors are an effective means of controlling pathogens and pests. Natural product argifin is a 17-membered pentapeptide that exhibits efficient chitinase inhibitory activity. However, the complexity of the synthetic process results in a lot of restrictions for wide range of applications. In this work, we designed a series of azamacrolide chitinase inhibitors based on the structural features of argifin that have high inhibitory activities against bacterial and insectile chitinase. The most potent chitinase inhibitor compound 19c exhibited IC50 values of 56 nM and 110 nM against OfChi-h and SmChiB, respectively. The molecular docking and molecular dynamics simulations revealed that all inhibitors were bound to the -1 subsite of chitinases via N-methylcarbamoylguanidinyl as well as argifin. Finally, a bioactivity assay against pests was carried out. Compound 18a showed 80% mortality for Mythimna separata at a concentration of 50 mg/L. Besides, insecticides 19b and 19c exhibited high mortality against Plutella xylostella (76 and 73% mortalities at 50 mg/L, respectively).
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qingbo Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Siming Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Oluwabusola ET, Katermeran NP, Poh WH, Goh TMB, Tan LT, Diyaolu O, Tabudravu J, Ebel R, Rice SA, Jaspars M. Inhibition of the Quorum Sensing System, Elastase Production and Biofilm Formation in Pseudomonas aeruginosa by Psammaplin A and Bisaprasin. Molecules 2022; 27:1721. [PMID: 35268822 PMCID: PMC8911947 DOI: 10.3390/molecules27051721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Natural products derived from marine sponges have exhibited bioactivity and, in some cases, serve as potent quorum sensing inhibitory agents that prevent biofilm formation and attenuate virulence factor expression by pathogenic microorganisms. In this study, the inhibitory activity of the psammaplin-type compounds, psammaplin A (1) and bisaprasin (2), isolated from the marine sponge, Aplysinellarhax, are evaluated in quorum sensing inhibitory assays based on the Pseudomonas aeruginosa PAO1 lasB-gfp(ASV) and rhlA-gfp(ASV) biosensor strains. The results indicate that psammaplin A (1) showed moderate inhibition on lasB-gfp expression, but significantly inhibited the QS-gene promoter, rhlA-gfp, with IC50 values at 14.02 μM and 4.99 μM, respectively. In contrast, bisaprasin (2) displayed significant florescence inhibition in both biosensors, PAO1 lasB-gfp and rhlA-gfp, with IC50 values at 3.53 μM and 2.41 μM, respectively. Preliminary analysis suggested the importance of the bromotyrosine and oxime functionalities for QSI activity in these molecules. In addition, psammaplin A and bisaprasin downregulated elastase expression as determined by the standard enzymatic elastase assay, although greater reduction in elastase production was observed with 1 at 50 μM and 100 μM. Furthermore, the study revealed that bisaprasin (2) reduced biofilm formation in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.P.K.); (T.M.B.G.); (L.T.T.)
| | - Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (W.H.P.); (S.A.R.)
| | - Teo Min Ben Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.P.K.); (T.M.B.G.); (L.T.T.)
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.P.K.); (T.M.B.G.); (L.T.T.)
| | - Oluwatofunmilayo Diyaolu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (O.D.); (R.E.)
| | - Jioji Tabudravu
- School of Forensic and Applied Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (O.D.); (R.E.)
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (W.H.P.); (S.A.R.)
- The School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (O.D.); (R.E.)
| |
Collapse
|
10
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
11
|
Lever J, Brkljača R, Rix C, Urban S. Application of Networking Approaches to Assess the Chemical Diversity, Biogeography, and Pharmaceutical Potential of Verongiida Natural Products. Mar Drugs 2021; 19:582. [PMID: 34677481 PMCID: PMC8539549 DOI: 10.3390/md19100582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
This study provides a review of all isolated natural products (NPs) reported for sponges within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their geographic and physico-chemical parameters. Physico-chemical parameters were used in this study to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida sponges was applied to systematically explore the chemical space relationships between taxonomy, secondary metabolite and drug score variables, allowing for the identification of differences and correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks provided a platform to explore chemical diversity as well as the use of chemical similarity networks to link pharmacokinetic properties with structural similarity. This study paves the way for future applications of network analysis procedures in the field of natural products for any order or family.
Collapse
Affiliation(s)
- James Lever
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| |
Collapse
|
12
|
Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2. Molecules 2021; 26:molecules26206171. [PMID: 34684755 PMCID: PMC8537272 DOI: 10.3390/molecules26206171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = −7.78, −7.65, −6.39, −6.28, −8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.
Collapse
|
13
|
Natural Products from Tongan Marine Organisms. Molecules 2021; 26:molecules26154534. [PMID: 34361690 PMCID: PMC8347048 DOI: 10.3390/molecules26154534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.
Collapse
|
14
|
Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem 2021; 35:1937-1943. [PMID: 33167737 PMCID: PMC7655067 DOI: 10.1080/14756366.2020.1837123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate Ki values ranging between 20 and 70 μM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with Ki values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jinli Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of oxime lacking Psammaplin inspired chemical libraries as anti-cancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Histone Deacetylase Inhibitors from Marine Invertebrates. BIOLOGY 2020; 9:biology9120429. [PMID: 33260710 PMCID: PMC7760191 DOI: 10.3390/biology9120429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Histone deacetylases (HDACs) are key components of the epigenetic machinery controlling gene expression. They are involved in chromatin remodeling events via post-translational histone modifications but may also act on nonhistone proteins, influencing many fundamental cellular processes. Due to the key involvement of HDACs in serious human pathologies, including cancer, HDAC inhibitors (HDACis) have received increased attention in recent years. It is known that marine invertebrates produce significant amounts of secondary metabolites showing active pharmacological properties and an extensive spectrum of biomedical applications. The aim of this review is to gather selected studies that report the extraction and identification of marine invertebrate-derived compounds that possess HDACi properties, grouping the producing species according to their taxonomic hierarchy. The molecular, biochemical, and/or physiological aspects, where available, and modes of action of these naturally occurring HDACis will be recapitulated, taking into consideration their possible utilization for the future design of analogs with increased bioavailability and efficacy, less toxicity, and, also, higher isoform selectivity.
Collapse
|
17
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
18
|
Fang Z, Jiang X, Zhang Q, Zhang L, Zhang W, Yang C, Zhang H, Zhu Y, Zhang C. S-Bridged Thioether and Structure-Diversified Angucyclinone Derivatives from the South China Sea-Derived Micromonospora echinospora SCSIO 04089. JOURNAL OF NATURAL PRODUCTS 2020; 83:3122-3130. [PMID: 32970433 DOI: 10.1021/acs.jnatprod.0c00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Angucyclinces belong to the class of aromatic polyketides and display a wide variety of structure diversity and pharmaceutical significance. Herein we report the isolation, structure elucidation, and bioactivity evaluation of structure-diversified angucyclinone derivatives and anthracene from the South China Sea-derived Micromonospora echinospora SCSIO 04089, including a thioether, gephysulfuromycin (1), two new benzo[b]phenanthridines, homophenanthroviridone (2) and homophenanthridonamide (3), a new benzo[b]fluorene, homostealthin D (4), a new naphtho[2,3-b]benzofuran, nenesfuran (5), a new naphthoquinone, WS-5995 D (6) and a new anthracene, nenesophanol (7), together with three known compounds (8-10). Their structures were elucidated by extensive spectroscopic analyses. The structures of 1-3 and 5-8 were confirmed by X-ray crystallographic analyses. Gephysulfuromycin (1) featured a rare single S-bridged 3,12a-epithiotetraphene skeleton. Homophenanthroviridone (2) was found to be cytotoxic to SF-268, MCF-7, and HepG2 cell lines with IC50 values of 5.4 ± 0.4, 6.8 ± 0.3, and 1.4 ± 0.1 μM, respectively. Compound 2 was also active against Gram-positive bacteria with MIC (minimal inhibition concentration) values ranging 2-4 μg mL-1.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
19
|
Akone SH, Ntie-Kang F, Stuhldreier F, Ewonkem MB, Noah AM, Mouelle SEM, Müller R. Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Front Pharmacol 2020; 11:992. [PMID: 32903500 PMCID: PMC7438611 DOI: 10.3389/fphar.2020.00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics refers to heritable changes in gene expression and chromatin structure without change in a DNA sequence. Several epigenetic modifications and respective regulators have been reported. These include DNA methylation, chromatin remodeling, histone post-translational modifications, and non-coding RNAs. Emerging evidence has revealed that epigenetic dysregulations are involved in a wide range of diseases including cancers. Therefore, the reversible nature of epigenetic modifications concerning activation or inhibition of enzymes involved could be promising targets and useful tools for the elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) making them promising candidates for the development of lead structures for anticancer-drugs targeting epigenetic modifications. However, most of the natural products targeting HDAC and/or DNMT lack isoform selectivity, which is important for determining their potential use as therapeutic agents. Nevertheless, the structures presented in this review offer the well-founded basis that screening and chemical modifications of natural products will in future provide not only leads to the identification of more specific inhibitors with fewer side effects, but also important features for the elucidation of HDAC and DNMT function with respect to cancer treatment.
Collapse
Affiliation(s)
- Sergi Herve Akone
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Fabian Stuhldreier
- Medical Faculty, Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexandre Mboene Noah
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
20
|
Oluwabusola ET, Tabudravu JN, Al Maqbali KS, Annang F, Pérez-Moreno G, Reyes F, Jaspars M. Antiparasitic Activity of Bromotyrosine Alkaloids and New Analogues Isolated from the Fijian Marine Sponge Aplysinella rhax. Chem Biodivers 2020; 17:e2000335. [PMID: 32697400 DOI: 10.1002/cbdv.202000335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Ten bromotyrosine alkaloids were isolated and characterised from the marine sponge Aplysinella rhax (de Laubenfels 1954) collected from the Fiji Islands, which included one new bromotyrosine analogue, psammaplin P and two other analogues, psammaplin O and 3-bromo-2-hydroxy-5-(methoxycarbonyl)benzoic acid, which have not been previously reported from natural sources. HR-ESI-MS, 1D and 2D NMR spectroscopic methods were used in the elucidation of the compounds. Bisaprasin, a biphenylic dimer of psammaplin A, showed moderate activity with IC50 at 19±5 and 29±6 μM against Trypanzoma cruzi Tulahuen C4, and the lethal human malaria species Plasmodium falciparum clone 3D7, respectively, while psammaplins A and D exhibited low activity against both parasites. This is the first report of the antimalarial and antitrypanosomal activity of the psammaplin-type compounds. Additionally, the biosynthesis hypotheses of three natural products were proposed.
Collapse
Affiliation(s)
- Emmanuel T Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, AB24 3UE, Old Aberdeen, UK
| | - Jioji N Tabudravu
- School of Forensic and Applied Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Khalid S Al Maqbali
- School of Forensic and Applied Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-, Armilla, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016-, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-, Armilla, Granada, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, AB24 3UE, Old Aberdeen, UK
| |
Collapse
|
21
|
Hayashi-Takanaka Y, Kina Y, Nakamura F, Becking LE, Nakao Y, Nagase T, Nozaki N, Kimura H. Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 2020; 133:jcs243444. [PMID: 32576661 PMCID: PMC7390643 DOI: 10.1242/jcs.243444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
Post-translational modifications on histones can be stable epigenetic marks or transient signals that can occur in response to internal and external stimuli. Levels of histone modifications fluctuate during the cell cycle and vary among different cell types. Here, we describe a simple system to monitor the levels of multiple histone modifications in single cells by multicolor immunofluorescence using directly labeled modification-specific antibodies. We analyzed histone H3 and H4 modifications during the cell cycle. Levels of active marks, such as acetylation and H3K4 methylation, were increased during the S phase, in association with chromatin duplication. By contrast, levels of some repressive modifications gradually increased during G2 and the next G1 phases. We applied this method to validate the target modifications of various histone demethylases in cells using a transient overexpression system. In extracts of marine organisms, we also screened chemical compounds that affect histone modifications and identified psammaplin A, which was previously reported to inhibit histone deacetylases. Thus, the method presented here is a powerful and convenient tool for analyzing the changes in histone modifications.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
| | - Yuto Kina
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, PO Box 338, Bode 36, 6700 AH Wageningen, The Netherlands
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
22
|
Jiang X, Kumar A, Motomura Y, Liu T, Zhou Y, Moro K, Zhang KYJ, Yang Q. A Series of Compounds Bearing a Dipyrido-Pyrimidine Scaffold Acting as Novel Human and Insect Pest Chitinase Inhibitors. J Med Chem 2020; 63:987-1001. [PMID: 31928006 DOI: 10.1021/acs.jmedchem.9b01154] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitinases not only play vital roles in the human innate immune system but are also essential for the development of pathogenic fungi and pests. Chitinase inhibitors are efficient tools to investigate the elusive role of human chitinases and to control pathogens and pests. Via hierarchical virtual screening, we have discovered a series of chitinase inhibitors with a novel scaffold that have high inhibitory activities and selectivities against human and insect chitinases. The most potent human chitotriosidase inhibitor, compound 40, exhibited a Ki of 49 nM, and the most potent inhibitor of the insect pest chitinase OfChi-h, compound 53, exhibited a Ki of 9 nM. The binding of these two most potent inhibitors was confirmed by X-ray crystallography. In a murine model of bleomycin-induced pulmonary fibrosis, compound 40 was found to suppress the chitotriosidase activity by 60%, leading to a significant increase in inflammatory cells and suggesting that chitotriosidase played a protective role.
Collapse
Affiliation(s)
- Xi Jiang
- School of Bioengineering , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan.,Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine , Osaka University , 2-2 Yamadaoka , Suita-shi, Osaka 565-0871 , Japan
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China
| | - Yong Zhou
- School of Software , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan.,Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine , Osaka University , 2-2 Yamadaoka , Suita-shi, Osaka 565-0871 , Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences , 2 West Yuanmingyuan Road , Beijing 100193 , China
| |
Collapse
|
23
|
Schubert M, Binnewerg B, Voronkina A, Muzychka L, Wysokowski M, Petrenko I, Kovalchuk V, Tsurkan M, Martinovic R, Bechmann N, Ivanenko VN, Fursov A, Smolii OB, Fromont J, Joseph Y, Bornstein SR, Giovine M, Erpenbeck D, Guan K, Ehrlich H. Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida). Int J Mol Sci 2019; 20:E5105. [PMID: 31618840 PMCID: PMC6829448 DOI: 10.3390/ijms20205105] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine.
| | - Lyubov Muzychka
- V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine.
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine.
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Oleg B Smolii
- V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine.
| | - Jane Fromont
- Aquatic Zoology Department, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK.
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| |
Collapse
|
24
|
Kovalchuk V, Voronkina A, Binnewerg B, Schubert M, Muzychka L, Wysokowski M, Tsurkan MV, Bechmann N, Petrenko I, Fursov A, Martinovic R, Ivanenko VN, Fromont J, Smolii OB, Joseph Y, Giovine M, Erpenbeck D, Gelinsky M, Springer A, Guan K, Bornstein SR, Ehrlich H. Naturally Drug-Loaded Chitin: Isolation and Applications. Mar Drugs 2019; 17:E574. [PMID: 31658704 PMCID: PMC6835269 DOI: 10.3390/md17100574] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.
Collapse
Affiliation(s)
- Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsia 21018, Ukraine.
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia 21018, Ukraine.
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany.
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany.
| | - Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kyiv 02094, Ukraine.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, Freiberg 09599, Germany.
| | - Mikhail V Tsurkan
- Leibniz Institute for Polymer Research Dresden, Dresden 01069, Germany.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden 01307, Germany.
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, Freiberg 09599, Germany.
| | - Andriy Fursov
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, Freiberg 09599, Germany.
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Jane Fromont
- Aquatic Zoology Department, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia WA6986, Australia.
| | - Oleg B Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kyiv 02094, Ukraine.
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, Freiberg 09599, Germany.
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, Munich 80333, Germany.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Armin Springer
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universitätsmedizin Rostock, Rostock 18055, Germany.
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden 01307, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
- Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK.
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, Freiberg 09599, Germany.
| |
Collapse
|
25
|
Marine-Derived Natural Lead Compound Disulfide-Linked Dimer Psammaplin A: Biological Activity and Structural Modification. Mar Drugs 2019; 17:md17070384. [PMID: 31252563 PMCID: PMC6669562 DOI: 10.3390/md17070384] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Marine natural products are considered to be valuable resources that are furnished with diverse chemical structures and various bioactivities. To date, there are seven compounds derived from marine natural products which have been approved as therapeutic drugs by the U.S. Food and Drug Administration. Numerous bromotyrosine derivatives have been isolated as a type of marine natural products. Among them, psammaplin A, including the oxime groups and carbon-sulfur bonds, was the first identified symmetrical bromotyrosine-derived disulfide dimer. It has been found to have a broad bioactive spectrum, especially in terms of antimicrobial and antiproliferative activities. The highest potential indole-derived psammaplin A derivative, UVI5008, is used as an epigenetic modulator with multiple enzyme inhibitory activities. Inspired by these reasons, psammaplin A has gradually become a research focus for pharmacologists and chemists. To the best of our knowledge, there is no systematic review about the biological activity and structural modification of psammaplin A. In this review, the pharmacological effects, total synthesis, and synthesized derivatives of psammaplin A are summarized.
Collapse
|
26
|
Chen W, Zhou Y, Yang Q. Structural dissection reveals a general mechanistic principle for group II chitinase (ChtII) inhibition. J Biol Chem 2019; 294:9358-9364. [PMID: 31053640 DOI: 10.1074/jbc.ra119.007812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Small-molecule inhibitors of insect chitinases have potential applications for controlling insect pests. Insect group II chitinase (ChtII) is the most important chitinase in insects and functions throughout all developmental stages. However, the possibility of inhibiting ChtII by small molecules has not been explored yet. Here, we report the structural characteristics of four molecules that exhibited similar levels of inhibitory activity against OfChtII, a group II chitinase from the agricultural pest Asian corn borer Ostrinia furnacalis These inhibitors were chitooctaose ((GlcN)8), dipyrido-pyrimidine derivative (DP), piperidine-thienopyridine derivative (PT), and naphthalimide derivative (NI). The crystal structures of the OfChtII catalytic domain complexed with each of the four inhibitors at 1.4-2.0 Å resolutions suggested they all exhibit similar binding modes within the substrate-binding cleft; specifically, two hydrophobic groups of the inhibitor interact with +1/+2 tryptophan and a -1 hydrophobic pocket. The structure of the (GlcN)8 complex surprisingly revealed that the oligosaccharide chain of the inhibitor is orientated in the opposite direction to that previously observed in complexes with other chitinases. Injection of the inhibitors into 4th instar O. furnacalis larvae led to defects in development and pupation. The results of this study provide insights into a general mechanistic principle that confers inhibitory activity against ChtII, which could facilitate rational design of agrochemicals that target ecdysis of insect pests.
Collapse
Affiliation(s)
- Wei Chen
- From the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China and
| | - Yong Zhou
- School of Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qing Yang
- From the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China and .,School of Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
27
|
Fromont J, Żółtowska-Aksamitowska S, Galli R, Meissner H, Erpenbeck D, Vacelet J, Diaz C, Tsurkan MV, Petrenko I, Youssef D, Ehrlich H. New family and genus of a Dendrilla-like sponge with characters of Verongiida. Part II. Discovery of chitin in the skeleton of Ernstilla lacunosa. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Synthesis, homology modeling, molecular docking, dynamics, and antifungal screening of new 4-hydroxycoumarin derivatives as potential chitinase inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Shaala LA, Asfour HZ, Youssef DTA, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan M, Galli R, Meissner H, Petrenko I, Tabachnick K, Ivanenko VN, Bechmann N, Muzychka LV, Smolii OB, Martinović R, Joseph Y, Jesionowski T, Ehrlich H. New Source of 3D Chitin Scaffolds: The Red Sea Demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar Drugs 2019; 17:E92. [PMID: 30717221 PMCID: PMC6410331 DOI: 10.3390/md17020092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of α-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine.
Collapse
Affiliation(s)
- Lamiaa A Shaala
- Natural Products Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt.
| | - Hani Z Asfour
- Department of Medical Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany.
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany.
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Konstantin Tabachnick
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany.
| | - Lyubov V Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kiev 02094, Ukraine.
| | - Oleg B Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kiev 02094, Ukraine.
| | - Rajko Martinović
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| |
Collapse
|
30
|
Tetreau G, Wang P. Chitinous Structures as Potential Targets for Insect Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:273-292. [PMID: 31102251 DOI: 10.1007/978-981-13-7318-3_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
31
|
Biochemical and Anti-Triple Negative Metastatic Breast Tumor Cell Properties of Psammaplins. Mar Drugs 2018; 16:md16110442. [PMID: 30423844 PMCID: PMC6265740 DOI: 10.3390/md16110442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Breast tumors reprogram their cellular metabolism, nutrient uptake, and utilization-associated biochemical processes. These processes become further transformed as genetically predisposed metastatic breast tumor cells colonize specific organs. Breast tumor cells often metastasize to the brain, bone, lung and liver. Massagué and colleagues isolated organotropic subclones and established organ-specific gene signatures associated with lung-, bone-, and brain-specific metastatic triple-negative breast cancer (TNBC) MDA-MB-231 cells. Using these genetically characterized metastatic subclones specific to lung (LM4175), bone (BoM1833), and brain (BrM-2a), we evaluated marine natural products for the ability to differentially suppress metastatic breast cancer cells in a target organ-dependent manner. Psammaplin-based histone deacetylase (HDAC) inhibitors were found to differentially inhibit HDAC activity, induce activation of hypoxia-inducible factor-1 (HIF-1), and disrupt organotropic metastatic TNBC subclone growth. Further, psammaplins distinctly suppressed the outgrowth of BoM1833 tumor spheroids in 3D-culture systems. Similar results were observed with the prototypical HDAC inhibitor trichostatin A (TSA). These organotropic tumor cell-based studies suggest the potential application of HDAC inhibitors that may yield new directions for anti-metastatic breast tumor research and drug discovery.
Collapse
|
32
|
Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Appl Microbiol Biotechnol 2018; 102:9937-9948. [PMID: 30276711 DOI: 10.1007/s00253-018-9385-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.
Collapse
|
33
|
Dong Y, Jiang X, Liu T, Ling Y, Yang Q, Zhang L, He X. Structure-Based Virtual Screening, Compound Synthesis, and Bioassay for the Design of Chitinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3351-3357. [PMID: 29554796 DOI: 10.1021/acs.jafc.8b00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chitinases play a vital part in the molting phase of insect pests. Inhibiting their activities by the use of drug-like small chemical molecules is thought to be an efficient strategy in pesticide design and development. On the basis of the crystal structure of OfChtI, a chitinase indispensable for the molting of the insect pest Ostrinia furnacalis (Asian corn borer), here we report a chemical fragment and five variant compounds as inhibitors of OfChtI obtained from a library of over 200 000 chemicals by a structure-based-virtual-screening approach. The compounds were synthesized with high atom economy and tested for their OfChtI-inhibitory activities in a bioassay. Compound 3 showed preferential inhibitory activity with a Ki value of 1.5 μΜ against OfChtI. Analysis of the structure-activity relationships of the compounds provided insight into their interactions with the enzyme active site, which may inform future work in improving the potencies of their inhibitory activities.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xi Jiang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Yun Ling
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Qing Yang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Li Zhang
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xiongkui He
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
34
|
Determination of the Halogenated Skeleton Constituents of the Marine Demosponge Ianthella basta. Mar Drugs 2017; 15:md15020034. [PMID: 28208597 PMCID: PMC5334614 DOI: 10.3390/md15020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
Demosponges of the order Verongida such as Ianthella basta exhibit skeletons containing spongin, a collagenous protein, and chitin. Moreover, Verongida sponges are well known to produce bioactive brominated tyrosine derivatives. We recently demonstrated that brominated compounds do not only occur in the cellular matrix but also in the skeletons of the marine sponges Aplysina cavernicola and I. basta. Further investigations revealed the amino acid composition of the skeletons of A. cavernicola including the presence of several halogenated amino acids. In the present work, we investigated the skeletal amino acid composition of the demosponge I. basta, which belongs to the Ianthellidae family, and compared it with that of A. cavernicola from the Aplysinidae family. Seventeen proteinogenic and five non-proteinogenic amino acids were detected in I. basta. Abundantly occurring amino acids like glycine and hydroxyproline show the similarity of I. basta and A. cavernicola and confirm the collagenous nature of their sponging fibers. We also detected nine halogenated tyrosines as an integral part of I. basta skeletons. Since both sponges contain a broad variety of halogenated amino acids, this seems to be characteristic for Verongida sponges. The observed differences of the amino acid composition confirm that spongin exhibits a certain degree of variability even among the members of the order Verongida.
Collapse
|
35
|
Jiang X, Kumar A, Liu T, Zhang KYJ, Yang Q. A Novel Scaffold for Developing Specific or Broad-Spectrum Chitinase Inhibitors. J Chem Inf Model 2016; 56:2413-2420. [PMID: 28024404 DOI: 10.1021/acs.jcim.6b00615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chitinases play important roles in pathogen invasion, arthropod molting, plant defense, and human inflammation. Inhibition of the activity of a typical chitinase by small molecules is of significance in drug development and biological research. On the basis of a recent reported crystal structure of OfChtI, the insect chitinase derived from the pest Ostrinia furnacalis, we computationally identified 17 compounds from a library of over 4 million chemicals by two rounds virtual screening. Among these, three compounds from one chemical class inhibited the activity of OfChtI with single-digit-micromolar IC50 values, and one compound from another chemical class exhibited a broad inhibitory activity not only toward OfChtI but also toward bacterial, fungal, and human chitinases. A new scaffold was discovered, and a structure-inhibitory activity relationship was proposed. This work may provide a novel starting point for the development of specific or broad-spectrum chitinase inhibitors.
Collapse
Affiliation(s)
- Xi Jiang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China
| | - Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tian Liu
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Qing Yang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| |
Collapse
|
36
|
Lee BC, Lee A, Jung JH, Choi SH, Kim TS. In vitro and in vivo anti-Vibrio vulnificus activity of psammaplin A, a natural marine compound. Mol Med Rep 2016; 14:2691-6. [PMID: 27431807 DOI: 10.3892/mmr.2016.5522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/06/2016] [Indexed: 11/05/2022] Open
Abstract
Vibrio vulnificus is known to induce severely fulminant and fatal septicemia in susceptible hosts. In the present study, the antimicrobial activity of natural marine product-derived compounds against V. vulnificus, were investigated in vitro and in vivo. Twelve pure compounds were isolated from natural marine products and their inhibitory effects on V. vulnificus-induced cytotoxicity were determined in INT‑407 cells. Among the 12 pure compounds tested, treatment with psammaplin A significantly suppressed V. vulnificus‑induced cytotoxicity in INT‑407 cells. Notably, treatment with psammaplin A (5-50 µg) had improved survival rates compared with that in the untreated mice, when the mice were infected with V. vulnificus intraperitoneally. In addition, the bacterial load of V. vulnificus in several tissues (spleen, liver and small intestine) was significantly lower in psammaplin A‑treated mice than in untreated mice. Furthermore, psammaplin A treatment significantly suppressed the growth of V. vulnificus. Taken together, these results indicate that psammaplin A may be a potential agent for the prevention and treatment of V. vulnificus infections.
Collapse
Affiliation(s)
- Byung Cheol Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136‑701, Republic of Korea
| | - Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136‑701, Republic of Korea
| | - Jee Hyung Jung
- Department of Pharmacy, Pusan National University, Geumjeong‑gu, Busan 609‑735, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 151‑921, Republic of Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136‑701, Republic of Korea
| |
Collapse
|
37
|
Kim TH, Kim HS, Kang YJ, Yoon S, Lee J, Choi WS, Jung JH, Kim HS. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:401-410. [PMID: 25445714 DOI: 10.1016/j.bbagen.2014.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/16/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Psammaplin A (PsA) is a natural product isolated from marine sponges, which has been demonstrated to have anticancer activity against several human cancer cell lines via the induction of cell cycle arrest and apoptosis. New drugs that are less toxic and more effective against multidrug-resistant cancers are urgently needed. METHODS We tested cell proliferation, cell cycle progression and autophagic cell death pathway in doxorubicin-resistant MCF-7 (MCF-7/adr) human breast cancer cells. The potency of PsA was further determined using an in vivo xenograft model. RESULTS AND CONCLUSION PsA significantly inhibited MCF-7/adr cells proliferation in a concentration-dependent manner, with accumulation of cells in G2/M phase of the cell cycle. PsA significantly decreased SIRT1 enzyme activity and reduced expression of SIRT1 protein in the cultured cells with greater potency than sirtinol or salermide. Acetylation of p53, a putative target of SIRT1, increased significantly following PsA treatment. In addition, PsA markedly increased the expression levels of autophagy-related proteins. In support of this, it was found that PsA significantly increased the expression of damage-regulated autophagy modulator (DRAM), a p53-induced protein. GENERAL SIGNIFICANCE The results of this study suggest that PsA is sufficient to overcome multidrug-resistant cancer via SIRT1-mediated autophagy in MCF-7/adr breast cancer cells, indicating that PsA has therapeutic potential for clinical use.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Yoon Jong Kang
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Sungpil Yoon
- Research Institute, National Cancer Center, 809 Madu 1-dong, Ilsan-gu, Goyang-si, Gyeonggi-do 411-764, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
38
|
Niemann H, Marmann A, Lin W, Proksch P. Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sponge derived bromotyrosines are a multifaceted class of marine bioactive compounds that are important for the chemical defense of sponges but also for drug discovery programs as well as for technical applications in the field of antifouling constituents. These compounds, which are mainly accumulated by Verongid sponges, exhibit a diverse range of bioactivities including antibiotic, cytotoxic and antifouling effects. In spite of the simple biogenetic building blocks, which consist only of brominated tyrosine and tyramine units, an impressive diversity of different compounds is obtained through different linkages between these precursors and through structural modifications of the side chains and/or aromatic rings resembling strategies that are known from combinatorial chemistry. As examples for bioactive, structurally divergent bromotyrosines psammaplin A, Aplysina alkaloids featuring aerothionin, aeroplysinin-1 and the dienone, and the bastadins, including the synthetically derived hemibastadin congeners, have been selected for this review. Whereas all of these natural products are believed to be involved in the chemical defense of sponges, some of them may also be of particular relevance to drug discovery due to their interaction with specific molecular targets in eukaryotic cells. These targets involve important enzymes and receptors, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), which are inhibited by psammaplin A, as well as ryanodine receptors that are targeted by bastadine type compounds. The hemibastadins such as the synthetically derived dibromohemibastadin are of particular interest due to their antifouling activity. For the latter, a phenoloxidase which catalyzes the bioglue formation needed for firm attachment of fouling organisms to a given substrate was identified as a molecular target. The Aplysina alkaloids finally provide a vivid example for dynamic wound induced bioconversions of natural products that generate highly efficient chemical weapons precisely when and where needed.
Collapse
Affiliation(s)
- Hendrik Niemann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Andreas Marmann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Health Science Center, Beijing100191, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
El Bahhaj F, Désiré J, Blanquart C, Martinet N, Zwick V, Simões-Pires C, Cuendet M, Grégoire M, Bertrand P. Superacid and thiol-ene reactions for access to psammaplin analogues with HDAC inhibition activities. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Ehrlich H, Rigby JK, Botting JP, Tsurkan MV, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov VN, Vyalikh DV, Molodtsov SL, Kurek D, Kammer M, Hunoldt S, Born R, Stawski D, Steinhof A, Bazhenov VV, Geisler T. Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 2013; 3:3497. [PMID: 24336573 PMCID: PMC3861796 DOI: 10.1038/srep03497] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/29/2013] [Indexed: 11/27/2022] Open
Abstract
Sponges are probably the earliest branching animals, and their fossil record dates back to the Precambrian. Identifying their skeletal structure and composition is thus a crucial step in improving our understanding of the early evolution of metazoans. Here, we present the discovery of 505–million-year-old chitin, found in exceptionally well preserved Vauxia gracilenta sponges from the Middle Cambrian Burgess Shale. Our new findings indicate that, given the right fossilization conditions, chitin is stable for much longer than previously suspected. The preservation of chitin in these fossils opens new avenues for research into other ancient fossil groups.
Collapse
Affiliation(s)
- H Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
| | - J Keith Rigby
- 1] Museum of Paleontology, Brigham Young University, Provo, Utah, USA 84602-3300 [2]
| | - J P Botting
- Leeds Museum Discovery Centre, Leeds LS10 1LB, UK
| | - M V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, D-01069 Dresden, Germany
| | - C Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, D-01069 Dresden, Germany
| | - P Schwille
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Z Petrášek
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - A Pisera
- Institute of Paleobiology, Polish Academy of Sciences, 00-818 Warszawa, Poland
| | - P Simon
- Max Planck Institute of Chemical Physics of Solids, D-01187 Dresden, Germany
| | - V N Sivkov
- Department of Mathematics Komi SC UrD RAS, Syktyvkar, Russia
| | - D V Vyalikh
- Institute of the Solid State Physics, Dresden University of Technology, D-01069 Dresden, Germany
| | - S L Molodtsov
- 1] Institute of Experimental Physics, TU Bergakademie Freiberg, D-09599 Freiberg, Germany [2] European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg, Germany
| | - D Kurek
- Centre "Bioengineering", Russian Academy of Sciences, 117312 Moscow, Russia
| | - M Kammer
- Institute of Bioanalytical Chemistry, TU Dresden, D-01069 Dresden, Germany
| | - S Hunoldt
- Institute of Bioanalytical Chemistry, TU Dresden, D-01069 Dresden, Germany
| | - R Born
- R&D Chemistry, EKF Diagnostics, D-39179 Barleben, Germany
| | - D Stawski
- Department of Material Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Łódź, Poland
| | - A Steinhof
- Max Planck Institute of Biogeochemistry, D-07701, Jena, Germany
| | - V V Bazhenov
- Institute of Experimental Physics, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
| | - T Geisler
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn, Germany
| |
Collapse
|
41
|
Brominated skeletal components of the marine demosponges, Aplysina cavernicola and Ianthella basta: analytical and biochemical investigations. Mar Drugs 2013; 11:1271-87. [PMID: 23595055 PMCID: PMC3705403 DOI: 10.3390/md11041271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 11/16/2022] Open
Abstract
Demosponges possess a skeleton made of a composite material with various organic constituents and/or siliceous spicules. Chitin is an integral part of the skeleton of different sponges of the order Verongida. Moreover, sponges of the order Verongida, such as Aplysina cavernicola or Ianthella basta, are well-known for the biosynthesis of brominated tyrosine derivates, characteristic bioactive natural products. It has been unknown so far whether these compounds are exclusively present in the cellular matrix or whether they may also be incorporated into the chitin-based skeletons. In the present study, we therefore examined the skeletons of A. cavernicola and I. basta with respect to the presence of bromotyrosine metabolites. The chitin-based-skeletons isolated from these sponges indeed contain significant amounts of brominated compounds, which are not easily extractable from the skeletons by common solvents, such as MeOH, as shown by HPLC analyses in combination with NMR and IR spectroscopic measurements. Quantitative potentiometric analyses confirm that the skeleton-associated bromine mainly withstands the MeOH-based extraction. This observation suggests that the respective, but yet unidentified, brominated compounds are strongly bound to the sponge skeletons, possibly by covalent bonding. Moreover, gene fragments of halogenases suggested to be responsible for the incorporation of bromine into organic molecules could be amplified from DNA isolated from sponge samples enriched for sponge-associated bacteria.
Collapse
|
42
|
Salam KA, Furuta A, Noda N, Tsuneda S, Sekiguchi Y, Yamashita A, Moriishi K, Nakakoshi M, Tsubuki M, Tani H, Tanaka J, Akimitsu N. Psammaplin A inhibits hepatitis C virus NS3 helicase. J Nat Med 2013; 67:765-72. [PMID: 23359228 DOI: 10.1007/s11418-013-0742-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/06/2013] [Indexed: 01/04/2023]
Abstract
Hepatitis C virus (HCV) is the causative agent of hepatitis C, a chronic infectious disease that can lead to development of hepatocellular carcinoma. The NS3 nucleoside triphosphatase (NTPase)/helicase has an essential role in HCV replication, and is therefore an attractive target for direct-acting antiviral strategies. In this study, we employed high-throughput screening using a photo-induced electron transfer (PET) system to identify an inhibitor of NS3 helicase from marine organism extracts. We successfully identified psammaplin A as a novel NS3 inhibitor. The dose-response relationship clearly demonstrates the inhibition of NS3 RNA helicase and ATPase activities by psammaplin A, with IC₅₀ values of 17 and 32 μM, respectively. Psammaplin A has no influence on the apparent Km value (0.4 mM) of NS3 ATPase activity, and acts as a non-competitive inhibitor. Additionally, it inhibits the binding of NS3 to single-stranded RNA in a dose-dependent manner. Furthermore, psammaplin A shows an inhibitory effect on viral replication, with EC₅₀ values of 6.1 and 6.3 μM in subgenomic replicon cells derived from genotypes 1b and 2a, respectively. We postulate that psammaplin A is a potential anti-viral agent through the inhibition of ATPase, RNA binding and helicase activities of NS3.
Collapse
Affiliation(s)
- Kazi Abdus Salam
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S. Chitinases: An update. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2013; 5:21-9. [PMID: 23559820 PMCID: PMC3612335 DOI: 10.4103/0975-7406.106559] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/04/2022] Open
Abstract
Chitin, the second most abundant polysaccharide in nature after cellulose, is found in the exoskeleton of insects, fungi, yeast, and algae, and in the internal structures of other vertebrates. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications, especially the chitinases exploited in agriculture fields to control pathogens. Chitinases have a use in human health care, especially in human diseases like asthma. Chitinases have wide-ranging applications including the preparation of pharmaceutically important chitooligosaccharides and N-acetyl D glucosamine, preparation of single-cell protein, isolation of protoplasts from fungi and yeast, control of pathogenic fungi, treatment of chitinous waste, mosquito control and morphogenesis, etc. In this review, the various types of chitinases and the chitinases found in different organisms such as bacteria, plants, fungi, and mammals are discussed.
Collapse
Affiliation(s)
- Rifat Hamid
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Minhaj A. Khan
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Mahboob Ahmad
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Malik Mobeen Ahmad
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Malik Zainul Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Javed Musarrat
- Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| |
Collapse
|
44
|
Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:135498. [PMID: 23304523 PMCID: PMC3532916 DOI: 10.1155/2012/135498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022]
Abstract
This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.
Collapse
|
45
|
Baud MGJ, Haus P, Leiser T, Meyer-Almes FJ, Fuchter MJ. Highly ligand efficient and selective N-2-(Thioethyl)picolinamide histone deacetylase inhibitors inspired by the natural product psammaplin A. ChemMedChem 2012. [PMID: 23184734 DOI: 10.1002/cmdc.201200450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel picolinamide-based histone deacetylase (HDAC) inhibitors were developed, drawing inspiration from the natural product psammaplin A. We found that the HDAC potency and isoform selectivity provided by the oxime unit of psammaplin A could be reproduced by using carefully chosen heterocyclic frameworks. The resulting (hetero)aromatic amide based compounds displayed very high potency and isoform selectivity among the HDAC family, in addition to excellent ligand efficiency relative to previously reported HDAC inhibitors. In particular, the high HDAC1 isoform selectivity provided by the chloropyridine motif represents a valuable design criterion for the development of new lead compounds and chemical probes that target HDAC1.
Collapse
Affiliation(s)
- Matthias G J Baud
- Department of Chemistry, Imperial College London, London SW7 2AZ (UK)
| | | | | | | | | |
Collapse
|
46
|
Pharmacokinetics and tissue distribution of psammaplin A, a novel anticancer agent, in mice. Arch Pharm Res 2012; 35:1849-54. [PMID: 23139138 DOI: 10.1007/s12272-012-1019-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
This study reports the pharmacokinetics and tissue distribution of a novel histone deacetylase and DNA methyltransferase inhibitor, psammaplin A (PsA), in mice. PsA concentrations were determined by a validated LC-MS/MS assay method (LLOQ 2 ng/mL). Following intravenous injection at a dose of 10 mg/kg in mice, PsA was rapidly eliminated, with the average half-life (t(1/2, λn)) of 9.9 ± 1.4 min and the systemic clearance (CL(s)) of 925.1 ± 570.1 mL/min. The in vitro stability of PsA was determined in different tissue homogenates. The average degradation t(1/2) of PsA in blood, liver, kidney and lung was found relatively short (≤ 12.8 min). Concerning the in vivo tissue distribution characteristics, PsA was found to be highly distributed to lung tissues, with the lung-to-serum partition coefficients (K(p)) ranging from 49.9 to 60.2. In contrast, PsA concentrations in other tissues were either comparable with or less than serum concentrations. The high and specific lung targeting characteristics indicates that PsA has the potential to be developed as a lung cancer treatment agent.
Collapse
|
47
|
Singh BN, Zhou H, Li J, Tipton T, Wang B, Shao G, Gilbert EN, Li Q, Jiang SW. Preclinical studies on histone deacetylase inhibitors as therapeutic reagents for endometrial and ovarian cancers. Future Oncol 2012; 7:1415-28. [PMID: 22112317 DOI: 10.2217/fon.11.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from lysine residues of histones and the deacetylation allows for tighter electrostatic interactions between DNA and histones, leading to a more compact chromatin conformation with limited access for transactivators and the suppression of transcription. HDAC mRNA and protein overexpression was observed in endometrial and ovarian cancers. Numerous in vitro studies have shown that HDAC inhibitors, through their actions on histone and nonhistone proteins, are able to reactivate the tumor suppressor genes, inhibit cell cycle progression and induce cell apoptosis in endometrial and ovarian cancer cell cultures. Results from mouse xenograft models also demonstrated the potency of HDAC inhibitors as anticancer reagents when used as single agent or in combination with classical chemotherapy drugs.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Biomedical Science, Mercer University School of Medicine at Savannah, Savannah, GA 31404, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Baud MGJ, Leiser T, Haus P, Samlal S, Wong AC, Wood RJ, Petrucci V, Gunaratnam M, Hughes SM, Buluwela L, Turlais F, Neidle S, Meyer-Almes FJ, White AJP, Fuchter MJ. Defining the Mechanism of Action and Enzymatic Selectivity of Psammaplin A against Its Epigenetic Targets. J Med Chem 2012; 55:1731-50. [DOI: 10.1021/jm2016182] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Matthias G. J. Baud
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| | - Thomas Leiser
- Department of Chemical Engineering
and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | - Patricia Haus
- Department of Chemical Engineering
and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | - Sharon Samlal
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Ai Ching Wong
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Robert J. Wood
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Vanessa Petrucci
- Cancer Research UK Biomolecular Structure
Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mekala Gunaratnam
- Cancer Research UK Biomolecular Structure
Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Siobhan M. Hughes
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN,
United Kingdom
| | - Lakjaya Buluwela
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN,
United Kingdom
| | - Fabrice Turlais
- Cancer Research Technology Discovery
Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure
Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering
and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | - Andrew J. P. White
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial
College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
49
|
Abstract
Marine sponges continue to attract wide attention from marine natural product chemists and pharmacologists alike due to their remarkable diversity of bioactive compounds. Since the early days of marine natural products research in the 1960s, sponges have notoriously yielded the largest number of new metabolites reported per year compared to any other plant or animal phylum known from the marine environment. This not only reflects the remarkable productivity of sponges with regard to biosynthesis and accumulation of structurally diverse compounds but also highlights the continued interest of marine natural product researchers in this fascinating group of marine invertebrates. Among the numerous classes of natural products reported from marine sponges over the years, alkaloids, peptides, and terpenoids have attracted particularly wide attention due to their unprecedented structural features as well as their pronounced pharmacological activities which make several of these metabolites interesting candidates for drug discovery. This chapter consequently highlights several important groups of sponge-derived alkaloids, peptides, and terpenoids and describes their biological and/or pharmacological properties.
Collapse
|
50
|
Francis F, Saguez J, Cherqui A, Vandermoten S, Vincent C, Versali MF, Dommès J, De Pauw E, Giordanengo P, Haubruge E. Purification and characterisation of a 31-kDa chitinase from the Myzus Persicae aphid: a target for hemiptera biocontrol. Appl Biochem Biotechnol 2012; 166:1291-300. [PMID: 22222431 DOI: 10.1007/s12010-011-9517-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/20/2011] [Indexed: 11/27/2022]
Abstract
Hydrolytic enzymes involved in chitin degradation are important to allow moulting during insect development. Chitinases are interesting targets to disturb growth and develop alternative strategies to control insect pests. In this work, a chitinase from the aphid Myzus persicae was purified with a 36-fold purification rate in a three step procedure by ammonium sulphate fractionation, anion-exchange chromatography on a DEAE column and on an affinity Concanavalin A column. The purified chitinase purity assessed by 1D and 2D SDS-PAGE revealed a single band and three spots at 31 kDa, respectively. Chitinases were found to have high homologies with Concanavalins A and B, two chitinase-related proteins, a fungal endochitinase and an aphid acetylhydrolase by peptide identification by Maldi-Tof-Tof. The efficiency of two potent chitinase inhibitors, namely allosamidin and psammaplin A, was tested and showed significant rate of enzymatic inhibition.
Collapse
Affiliation(s)
- Frédéric Francis
- Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech, Université de Liège,Gembloux, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|