1
|
Umuhire Juru A, Hargrove AE. Frameworks for targeting RNA with small molecules. J Biol Chem 2021; 296:100191. [PMID: 33334887 PMCID: PMC7948454 DOI: 10.1074/jbc.rev120.015203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Since the characterization of mRNA in 1961, our understanding of the roles of RNA molecules has significantly grown. Beyond serving as a link between DNA and proteins, RNA molecules play direct effector roles by binding to various ligands, including proteins, DNA, other RNAs, and metabolites. Through these interactions, RNAs mediate cellular processes such as the regulation of gene transcription and the enhancement or inhibition of protein activity. As a result, the misregulation of RNA molecules is often associated with disease phenotypes, and RNA molecules have been increasingly recognized as potential targets for drug development efforts, which in the past had focused primarily on proteins. Although both small molecule-based and oligonucleotide-based therapies have been pursued in efforts to target RNA, small-molecule modalities are often favored owing to several advantages including greater oral bioavailability. In this review, we discuss three general frameworks (sets of premises and hypotheses) that, in our view, have so far dominated the discovery of small-molecule ligands for RNA. We highlight the unique merits of each framework as well as the pitfalls associated with exclusive focus of ligand discovery efforts within only one framework. Finally, we propose that RNA ligand discovery can benefit from using progress made within these three frameworks to move toward a paradigm that formulates RNA-targeting questions at the level of RNA structural subclasses.
Collapse
Affiliation(s)
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
2
|
Patwardhan NN, Cai Z, Umuhire Juru A, Hargrove AE. Driving factors in amiloride recognition of HIV RNA targets. Org Biomol Chem 2019; 17:9313-9320. [PMID: 31612165 PMCID: PMC6909927 DOI: 10.1039/c9ob01702j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Noncoding RNAs are increasingly promising drug targets yet ligand design is hindered by a paucity of methods that reveal driving factors in selective small molecule : RNA interactions, particularly given the difficulties of high-resolution structural characterization. HIV RNAs are excellent model systems for method development given their targeting history, known structure-function relationships, and the unmet need for more effective treatments. Herein we report a strategy combining synthetic diversification, profiling against multiple RNA targets, and predictive cheminformatic analysis to identify driving factors for selectivity and affinity of small molecules for distinct HIV RNA targets. Using this strategy, we discovered improved ligands for multiple targets and the first ligands for ESSV, an exonic splicing silencer critical to replication. Computational analysis revealed guiding principles for future designs and a predictive cheminformatics model of small molecule : RNA binding. These methods are expected to facilitate progress toward selective targeting of disease-causing RNAs.
Collapse
Affiliation(s)
- Neeraj N Patwardhan
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27705, USA.
| | | | | | | |
Collapse
|
3
|
Patwardhan NN, Cai Z, Newson CN, Hargrove AE. Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Org Biomol Chem 2019; 17:1778-1786. [PMID: 30468226 DOI: 10.1039/c8ob02467g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A prominent hurdle in developing small molecule probes against RNA is the relative scarcity of general screening methods. In this study, we demonstrate the application of a fluorescent peptide displacement assay to screen small molecule probes against four different RNA targets. The designed experimental protocol combined with statistical analysis provides a fast and convenient method to simultaneously evaluate small molecule libraries against different RNA targets and classify them based on affinity and selectivity patterns.
Collapse
Affiliation(s)
- Neeraj N Patwardhan
- Department of Chemistry, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
4
|
Donlic A, Morgan BS, Xu JL, Liu A, Roble C, Hargrove AE. Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA-Binding Scaffold. Angew Chem Int Ed Engl 2018; 57:13242-13247. [PMID: 30134013 DOI: 10.1002/anie.201808823] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 01/08/2023]
Abstract
Structural studies of the 3'-end of the oncogenic long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) confirmed a unique triple-helix structure. This structure enables accumulation of the transcript, and high levels of MALAT1 are found in several cancers. Here, we synthesize a small molecule library based on an RNA-binding scaffold, diphenylfuran (DPF), screen it against a variety of nucleic acid constructs, and demonstrate for the first time that the MALAT1 triple helix can be selectively targeted with small molecules. Computational analysis revealed a trend between subunit positioning and composition on DPF shape and intramolecular interactions, which in turn generally correlated with selectivity and binding strengths. This work thus provides design strategies toward chemical probe development for the MALAT1 triple helix and suggests that comprehensive analyses of RNA-focused libraries can generate insights into selective RNA recognition.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Brittany S Morgan
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Jason L Xu
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Anqi Liu
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Carlos Roble
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| |
Collapse
|
5
|
Donlic A, Morgan BS, Xu JL, Liu A, Roble C, Hargrove AE. Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA‐Binding Scaffold. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anita Donlic
- Department of ChemistryDuke University Durham NC 27708-0346 USA
| | | | - Jason L. Xu
- Department of ChemistryDuke University Durham NC 27708-0346 USA
| | - Anqi Liu
- Department of ChemistryDuke University Durham NC 27708-0346 USA
| | - Carlos Roble
- Department of ChemistryDuke University Durham NC 27708-0346 USA
| | | |
Collapse
|
6
|
Wynn JE, Zhang W, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Santos WL. Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA. Bioorg Med Chem 2016; 24:3947-3952. [PMID: 27091070 DOI: 10.1016/j.bmc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
A branched peptide containing multiple boronic acids was found to bind RRE IIB selectively and inhibit HIV-1 p24 capsid production in a dose-dependent manner. Structure-activity relationship studies revealed that branching in the peptide is crucial for the low micromolar binding towards RRE IIB, and the peptide demonstrates selectivity towards RRE IIB in the presence of tRNA. Footprinting studies suggest a binding site on the upper stem and internal loop regions of the RNA, which induces enzymatic cleavage of the internal loops of RRE IIB upon binding.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Wenyu Zhang
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Denis M Tebit
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - Laurie R Gray
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - Marie-Louise Hammarskjold
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - David Rekosh
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
7
|
Fukuzumi T, Murata A, Aikawa H, Harada Y, Nakatani K. Exploratory Study on the RNA-Binding Structural Motifs by Library Screening Targeting pre-miRNA-29 a. Chemistry 2015; 21:16859-67. [DOI: 10.1002/chem.201502913] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/31/2022]
|
8
|
Campos N, Myburgh R, Garcel A, Vautrin A, Lapasset L, Nadal ES, Mahuteau-Betzer F, Najman R, Fornarelli P, Tantale K, Basyuk E, Séveno M, Venables JP, Pau B, Bertrand E, Wainberg MA, Speck RF, Scherrer D, Tazi J. Long lasting control of viral rebound with a new drug ABX464 targeting Rev - mediated viral RNA biogenesis. Retrovirology 2015; 12:30. [PMID: 25889234 PMCID: PMC4422473 DOI: 10.1186/s12977-015-0159-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Current therapies have succeeded in controlling AIDS pandemic. However, there is a continuing need for new drugs, in particular those acting through new and as yet unexplored mechanisms of action to achieve HIV infection cure. We took advantage of the unique feature of proviral genome to require both activation and inhibition of splicing of viral transcripts to develop molecules capable of achieving long lasting effect on viral replication in humanized mouse models through inhibition of Rev-mediated viral RNA biogenesis. RESULTS Current HIV therapies reduce viral load during treatment but titers rebound after treatment is discontinued. We devised a new drug that has a long lasting effect after viral load reduction. We demonstrate here that ABX464 compromises HIV replication of clinical isolates of different subtypes without selecting for drug resistance in PBMCs or macrophages. ABX464 alone, also efficiently compromised viral proliferation in two humanized mouse models infected with HIV that require a combination of 3TC, Raltegravir and Tenofovir (HAART) to achieve viral inhibition in current protocols. Crucially, while viral load increased dramatically just one week after stopping HAART treatment, only slight rebound was observed following treatment cessation with ABX464 and the magnitude of the rebound was maintained below to that of HAART for two months after stopping the treatment. Using a system to visualize single HIV RNA molecules in living cells, we show that ABX464 inhibits viral replication by preventing Rev-mediated export of unspliced HIV-1 transcripts to the cytoplasm and by interacting with the Cap Binding Complex (CBC). Deep sequencing of viral RNA from treated cells established that retained viral RNA is massively spliced but importantly, normal cellular splicing is unaffected by the drug. Consistently ABX464 is non-toxic in humans and therefore represents a promising complement to current HIV therapies. CONCLUSIONS ABX464 represents a novel class of anti-HIV molecules with unique properties. ABX464 has a long lasting effect in humanized mice and neutralizes the expression of HIV-1 proviral genome of infected immune cells including reservoirs and it is therefore a promising drug toward a functional cure of HIV.
Collapse
Affiliation(s)
- Noëlie Campos
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Renier Myburgh
- Division of Infectious Diseases and Hospital Epidemiology Department of Internal Medicin, University of Zurich, University Hospital, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Aude Garcel
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Audrey Vautrin
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Laure Lapasset
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Erika Schläpfer Nadal
- Division of Infectious Diseases and Hospital Epidemiology Department of Internal Medicin, University of Zurich, University Hospital, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Florence Mahuteau-Betzer
- Institut Curie, CNRS UMR9187, INSERM U1196, Centre universitaire, Bâtiment 110, 15 rue Georges Clémenceau, 91405, ORSAY CEDEX, France.
| | - Romain Najman
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | | | - Katjana Tantale
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Eugénia Basyuk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Martial Séveno
- Plate-forme de Protéomique Fonctionnelle (FPP) IGF, UMR 5203 CNRS - INSERM U661- UM, 141 rue de la Cardonille (pièce 029), 34094, Montpellier CEDEX 05, France.
| | - Julian P Venables
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Bernard Pau
- Université de Montpellier, UFR Pharmacie, 15 Avenue Charles Flahault, 34000, Montpellier, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Mark A Wainberg
- McGill AIDS Center, Lady Davis Institute - Jewish General Hospital, Montréal, QC, Canada.
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology Department of Internal Medicin, University of Zurich, University Hospital, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Didier Scherrer
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| |
Collapse
|
9
|
Human Immunodeficiency Virus Type 1 Tat and Rev as Potential Targets for Drug Development. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zhang W, Bryson DI, Crumpton JB, Wynn J, Santos WL. Targeting folded RNA: a branched peptide boronic acid that binds to a large surface area of HIV-1 RRE RNA. Org Biomol Chem 2014; 11:6263-71. [PMID: 23925474 DOI: 10.1039/c3ob41053f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On-bead high-throughput screening of a medium-sized (1000-2000 Da) branched peptide boronic acid (BPBA) library consisting of 46,656 unique sequences against HIV-1 RRE RNA generated peptides with binding affinities in the low micromolar range. In particular, BPBA1 had a K(d) of 1.4 μM with RRE IIB, preference for RNA over DNA (27 fold), and selectivity of up to >75 fold against a panel of RRE IIB variants. Structure-activity studies suggest that the boronic acid moiety and "branching" in peptides are key structural features for efficient binding and selectivity for the folded RNA target. BPBA1 was efficiently taken up by HeLa and A2780 cells. RNA-footprinting studies revealed that the BPBA1 binding site encompasses a large surface area that spans both the upper stem as well as the internal loop regions of RRE IIB.
Collapse
Affiliation(s)
- Wenyu Zhang
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
11
|
Ehlers P, Petrosyan A, Baumgard J, Jopp S, Steinfeld N, Ghochikyan TV, Saghyan AS, Fischer C, Langer P. Synthesis of 2,5-Diarylpyrroles by Ligand-Free Palladium-Catalyzed CH Activation of Pyrroles in Ionic Liquids. ChemCatChem 2013. [DOI: 10.1002/cctc.201300099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Mohammadi H, Bienzle D. Pharmacological inhibition of feline immunodeficiency virus (FIV). Viruses 2012; 4:708-24. [PMID: 22754645 PMCID: PMC3386625 DOI: 10.3390/v4050708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/10/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses and causes an acquired immunodeficiency syndrome (AIDS) in domestic and non-domestic cats worldwide. Genome organization of FIV and clinical characteristics of the disease caused by the virus are similar to those of human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes and macrophages, and their replication cycle in infected cells is analogous. Due to marked similarity in genomic organization, virus structure, virus replication and disease pathogenesis of FIV and HIV, infection of cats with FIV is a useful tool to study and develop novel drugs and vaccines for HIV. Anti-retroviral drugs studied extensively in HIV infection have targeted different steps of the virus replication cycle: (1) inhibition of virus entry into susceptible cells at the level of attachment to host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus membrane with the cell membrane; (3) blockade of reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and viral DNA integration into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite much success of anti-retroviral therapy slowing disease progression in people, similar therapy has not been thoroughly investigated in cats. In this article we review current pharmacological approaches and novel targets for anti-lentiviral therapy, and critically assess potentially suitable applications against FIV infection in cats.
Collapse
Affiliation(s)
- Hakimeh Mohammadi
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
13
|
Cressina E, Chen L, Abell C, Leeper FJ, Smith AG. Fragment screening against the thiamine pyrophosphate riboswitchthiM. Chem Sci 2011. [DOI: 10.1039/c0sc00406e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Abstract
PURPOSE OF REVIEW One of the major problems in HIV chemotherapy is appearance of drug-resistant virus strains. Novel HIV intervention strategies are required and new targets must be considered. The nuclear export of intron-containing HIV-1 mRNA is an essential step in the viral replication cycle and is a prospective antiviral target. This nucleocytoplasmic transport is mediated by the viral protein Rev. Rev binds as a multimeric complex to the viral mRNA and exports it to the cytoplasm exploiting the CRM1-mediated cellular machinery. Inhibitors acting on the interface between virus and cell could overcome the problems of drug resistance against virus-specific treatments. These drugs have an added value in combination therapy as they are expected to be less prone to virus-drug resistance selection, but they are likely to be more cytotoxic. RECENT FINDINGS We will discuss the therapeutic approaches aimed at interfering with Rev function, both now and likely in the future, and the recent attempts that have been undertaken to design small molecules against this target. SUMMARY Recent approaches provide leads for development of new compounds. A better understanding of the mechanism of Rev action and its interaction with the cellular transport pathway is required to identify and rationally design novel strategies that may have potential for future antiretroviral intervention.
Collapse
|
15
|
Mishra SH, Spring AM, Germann MW. Thermodynamic profiling of HIV RREIIB RNA-zinc finger interactions. J Mol Biol 2009; 393:369-82. [PMID: 19646998 DOI: 10.1016/j.jmb.2009.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
Abstract
The interactions between the HIV Rev-responsive element (RRE) RNA and the HIV regulatory protein Rev, are crucial for the HIV life-cycle. Earlier, we showed that single C(2)H(2) zinc fingers (znfs) have the same binding site as the Rev peptide and exhibit nanomolar affinity. In this study, the specific role of amino acid side chains and molecular processes involved with complex formation were investigated by perturbation of the binding energetics via changes in temperature, pH, buffers, and salt concentrations, as well as znf and RNA mutations, by isothermal titration calorimetry. Interestingly, despite the large cationic charge on the znfs, the number of interactions with the RNA phosphate backbone was lower than intuitively expected. The presence of binding induced protonation was established by ITC and localized by NMR to a histidine on the znf beta-sheet. The DeltaC(p) of znf-RNA binding was observed to be substantially negative and could not be accounted for by conventional solvent-accessible surface area models. An alternative model, based on the extent of hydrogen bond changes as a result of differences in ligand-induced water displacement at the binding site, provided reasonable explanation of the trends in DeltaC(p), as well as DeltaH and DeltaS. Our studies show that incorporation of favorable interactions at the solvent-excluded binding interface can be used to alleviate the unfavorable enthalpic penalties of displacing water molecules from the hydrated RNA surface.
Collapse
Affiliation(s)
- Subrata H Mishra
- Departments of Chemistry and Biology, Georgia State University, Atlanta, 30303, USA
| | | | | |
Collapse
|
16
|
Kumar R, Garneau P, Nguyen N, William Lown J, Pelletier J. Methionine Sustituted Polyamides are RNAse Mimics that Inhibit Translation. J Drug Target 2008; 12:125-34. [PMID: 15203891 DOI: 10.1080/1061186042000220728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNAse mimics are small molecules that can cleave RNA in a fashion similar to ribonucleases. These compounds would be very useful as gene specific reagents if their activities could be regulated and targeted. We demonstrate here that polyamides with methionine substituents show enhanced RNA cleavage activity relative to other polyamides. Conjugation of these compounds to aminoglycosides produced RNAse mimics that are capable of inhibiting eukaryotic protein synthesis. As a new class of compounds capable of interacting with nucleic acids, these novel aminoglycoside-polyamides constitute promising scaffolds for the construction of nuclease mimics with biological activity.
Collapse
Affiliation(s)
- Rohtash Kumar
- Department of Chemistry University of Alberta Edmonton Alta. Canada
| | | | | | | | | |
Collapse
|
17
|
Heterocyclic compounds that inhibit Rev-RRE function and human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 2008; 52:3169-79. [PMID: 18625767 DOI: 10.1128/aac.00274-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A cell-based screening assay was performed to identify compounds that inhibited the postintegration stage of the human immunodeficiency virus (HIV) life cycle. This assay utilized a cell line that contains the HIV gag and pol genes expressed in a Rev-dependent fashion. The cell line produces about 10 to 15 ng of p24 per milliliter of medium over a 24-h period in the form of viruslike particles. Any compound that inhibits a postintegration step in the HIV life cycle scores in this assay by decreasing particle production. Forty thousand compounds were screened, and 192 compounds were selected from the original screen because they showed more than 50% inhibition at a 10 muM concentration. The cumulative evidence presented in this study strongly suggests that 2 of the 192 compounds work as inhibitors of HIV Rev function. This was determined by a variety of cell-based assays, although the compounds do not interfere with Rev-RRE (Rev response element) binding in vitro. Both compounds inhibit replication of the lab isolate NL4-3 as well as an HIV primary isolate from Brazil (93BR021) and thus are promising leads as therapeutic candidates that target HIV replication through inhibition of Rev function.
Collapse
|
18
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
19
|
Sinha R, Hossain M, Kumar GS. RNA targeting by DNA binding drugs: structural, conformational and energetic aspects of the binding of quinacrine and DAPI to A-form and H(L)-form of poly(rC).poly(rG). Biochim Biophys Acta Gen Subj 2007; 1770:1636-50. [PMID: 17942232 DOI: 10.1016/j.bbagen.2007.08.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/13/2007] [Accepted: 08/23/2007] [Indexed: 11/16/2022]
Abstract
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4',6-diamidino-2-phenylindole (DAPI) with the right handed Watson-Crick base paired A-form and the left-handed Hoogsteen base paired H(L)-form of poly(rC).poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and H(L)-form of poly(rC).poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the H(L)-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the H(L)-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and H(L)-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA-ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.
Collapse
Affiliation(s)
- Rangana Sinha
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, India
| | | | | |
Collapse
|
20
|
Ye Y, Li B. 1'S-1'-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J Gen Virol 2006; 87:2047-2053. [PMID: 16760408 DOI: 10.1099/vir.0.81685-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIDS remains a major global health concern. Despite a number of therapeutic advancements, there is still an urgent need to develop a new class of therapy for human immunodeficiency virus (HIV). Here, it was shown that 1'S-1'-acetoxychavicol acetate (ACA), a small molecular compound isolated from the rhizomes of Alpinia galanga, inhibited Rev transport at a low concentration by binding to chromosomal region maintenance 1 and accumulating full-length HIV-1 RNA in the nucleus, resulting in a block in HIV-1 replication in peripheral blood mononuclear cells. Additionally, ACA and didanosine acted synergistically to inhibit HIV-1 replication. Thus, ACA may represent a novel treatment for HIV-1 infection, especially in combination with other anti-HIV drugs.
Collapse
Affiliation(s)
- Ying Ye
- Department of Biomedical Sciences and the Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- Department of Research and Development, Nanchang Helioeast Science and Technology Co. Ltd, Nanchang, Jiangxi 330096, People's Republic of China
| | - Baoan Li
- Department of Biomedical Sciences and the Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
21
|
Sinha R, Islam MM, Bhadra K, Kumar GS, Banerjee A, Maiti M. The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC).poly(rG): spectroscopic and viscometric study. Bioorg Med Chem 2005; 14:800-14. [PMID: 16202606 DOI: 10.1016/j.bmc.2005.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 11/20/2022]
Abstract
Polymorphic RNA conformations may serve as potential targets for structure specific antiviral agents. As an initial step in the development of such drugs, the interaction of a wide variety of compounds which are characterized to bind to DNA through classical or partial intercalation or by mechanism of groove binding, with the A-form and the protonated form of poly(rC).poly(rG), been evaluated by multifaceted spectroscopic and viscometric techniques. Results of this study suggest that (i) ethidium intercalates to the A-form of RNA, but does not intercalate to the protonated form, (ii) methylene blue intercalates to the protonated form of the RNA but does not intercalate to the A-form, (iii) actinomycin D does not bind to either conformations of the RNA, and (iv) berberine binds to the protonated form by partial intercalation process, while its binding to the A-form is very weak. The DNA groove binder distamycin A has much higher affinity to the protonated form of the RNA compared to the A-form and binds to both structures by non-intercalative mechanism. We conclude that the binding affinity characteristics of these DNA binding molecules to the RNA conformations are vastly different and may serve as data for the development of RNA based antiviral drugs.
Collapse
Affiliation(s)
- Rangana Sinha
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Tok JBH, Bi L, Saenz M. Specific recognition of napthyridine-based ligands toward guanine-containing bulges in RNA duplexes and RNA–DNA heteroduplexes. Bioorg Med Chem Lett 2005; 15:827-31. [PMID: 15664866 DOI: 10.1016/j.bmcl.2004.10.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/13/2004] [Accepted: 10/15/2004] [Indexed: 11/18/2022]
Abstract
Mismatched bulges in nucleic acid constructs are important in the recognition event between biological molecules. Herein, it is observed that napthyridine dimer 2 is able to specifically bind G-G mismatches in all nucleic acid constructs comprising of RNA-RNA, RNA-DNA and DNA-DNA duplexes. However, the binding affinity of 2 is strongest toward DNA duplex, followed by RNA-DNA heteroduplex and RNA duplex being the weakest binding partner. Nonetheless, this binding behavior suggests that the binding process primarily occurs between the guanine base pairs and the napthyridine moiety, and is independent of the tertiary structure of the nucleic acid duplexes.
Collapse
Affiliation(s)
- Jeffrey B-H Tok
- Department of Chemistry, York College and Graduate Center, The City University of New York, 94-20 Guy R. Brewer Blvd., Jamaica, NY 11451, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Abstract
The base of knowledge concerning RNA structure and function has been expanding rapidly in recent years. Simultaneously, an increasing awareness of the pivotal role RNA plays in viral diseases has prompted many researchers to apply new technologies in high-throughput screening and molecular modelling to the design of antiviral drugs that target RNA. While the two RNA viruses with the greatest unmet medical need, HIV and HCV, have been most actively pursued, the approaches discussed in this review are relevant to all virus infections. Both traditional small-molecule and large-molecule therapeutics, such as antisense, ribozymes and interfering dsRNAs have been described, and several molecules are under development for commercialization. The purpose of this review is to summarize the current state of the art in this field and to postulate new directions in the future.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Base Sequence
- Drug Design
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- RNA, Antisense/genetics
- RNA, Antisense/therapeutic use
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Viral/chemistry
- RNA, Viral/drug effects
- RNA, Viral/genetics
Collapse
Affiliation(s)
- Kevin L McKnight
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Ind., USA.
| | | |
Collapse
|
26
|
Daelemans D, Afonina E, Nilsson J, Werner G, Kjems J, De Clercq E, Pavlakis GN, Vandamme AM. A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc Natl Acad Sci U S A 2002; 99:14440-5. [PMID: 12374846 PMCID: PMC137902 DOI: 10.1073/pnas.212285299] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 Rev protein is an essential regulator of the HIV-1 mRNA expression that promotes the export of unspliced and partially spliced mRNA. The export receptor for the leucine-rich nuclear export signal (NES) of Rev has recently been recognized as CRM1. We identified a low molecular weight compound PKF050-638 as an inhibitor of HIV-1 Rev. This drug inhibits in a dose-dependent fashion Rev-dependent mRNA expression in a cellular assay for Rev function. We show that PKF050-638 is an inhibitor of the CRM1-mediated Rev nuclear export. By using a quantitative in vitro CRM1-NES cargo-binding assay, we could demonstrate that PKF050-638 disrupts CRM1-NES interaction. This mode of action is confirmed in cell culture because the drug reversibly interferes with the colocalization of CRM1 and Rev in the nucleolus of the cell. In addition, we prove that the inhibition is through direct interaction of the compound with Cys-539 of CRM1. These effects are similar to those of the known CRM1 inhibitor leptomycin B and suggest that the inhibitory effect of the compound is caused by binding to CRM1 at a similar site. The compound displayed strict structural requirements for its activity, as its enantiomer was inactive in all assays tested. These results show that we identified a drug that interferes with the CRM1-mediated nuclear export of Rev through inhibition of the CRM1-NES complex formation. The reversibility of its binding to CRM1 and its availability through chemical synthesis could make it useful for studying CRM1-mediated export pathways.
Collapse
Affiliation(s)
- Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chapman RL, Stanley TB, Hazen R, Garvey EP. Small molecule modulators of HIV Rev/Rev response element interaction identified by random screening. Antiviral Res 2002; 54:149-62. [PMID: 12062388 DOI: 10.1016/s0166-3542(01)00222-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A high throughput scintillation proximity assay with biotinylated human immunodeficiency virus (HIV) Rev protein and tritiated Rev response element RNA was used to screen over 500,000 small molecules. Several chemical classes of inhibitors and two chemical classes of enhancers of binding were identified, with the molecular weight range being 400-600. The most common structural motif of inhibitor was an acidic moiety at the end of a linear aromatic system. Most of these modulators had EC(50) values in the 1-10 microM potency range, with several below 1 microM. Several classes displayed structure-activity relationships suggesting specific molecular interactions between small molecule and macromolecule. Several molecules were confirmed as inhibitors in a gel shift assay and by surface plasmon resonance analysis. Furthermore, one inhibitor was shown to bind the Rev protein with a binding constant equal to its IC(50) value, consistent with the mechanism of inhibition being binding Rev. Thus, small molecules can modulate this macromolecular protein-RNA interaction in vitro. However, no compound demonstrated HIV antiviral activity in a relevant cell-based assay.
Collapse
Affiliation(s)
- Richard L Chapman
- Department of Molecular Screening, GlaxoSmithKline, PO Box 1-3398, Research Triangle Park, NC 27709-3398, USA
| | | | | | | |
Collapse
|
28
|
Ding Y, Hofstadler SA, Swayze EE, Griffey RH. An efficient synthesis of mimetics of neamine for RNA recognition. Org Lett 2001; 3:1621-3. [PMID: 11405670 DOI: 10.1021/ol015794g] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As mimetics of neamine, several 4-heterocyclic 2-deoxystreptamine derivatives were chemically synthesized for RNA recognition. Conversion of 4-methylthiomethyl-5,6-di-O-acetyl-diazido-2-deoxystreptamine to the 4-chloromethyl derivative followed by reactions with different nuclophilic reagents gave the 4-heterocyclic 2-deoxystreptamine derivatives in satisfactory yields.
Collapse
Affiliation(s)
- Y Ding
- Ibis Therapeutics, a Division of Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, California 92008, USA.
| | | | | | | |
Collapse
|
29
|
Dayton AI, Zhang MJ. Therapies directed against the Rev axis of HIV autoregulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:199-228. [PMID: 11013765 DOI: 10.1016/s1054-3589(00)49028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- A I Dayton
- Laboratory of Molecular Virology, Food and Drug Administration, Rockville, Maryland 20852-1448, USA
| | | |
Collapse
|
30
|
Xavier KA, Eder PS, Giordano T. RNA as a drug target: methods for biophysical characterization and screening. Trends Biotechnol 2000; 18:349-56. [PMID: 10899816 DOI: 10.1016/s0167-7799(00)01464-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
RNA folds into complex structures that can interact specifically with effector proteins. These interactions are essential for various biological functions. In order to discover small molecules that can affect important RNA-protein complexes, a thorough analysis of the thermodynamics and kinetics of RNA-protein binding is required. This can facilitate the formulation of high-throughput screening strategies and the development of structure-activity relationships for compound leads. In addition to traditional methods, such as filter binding, gel mobility shift assay and various fluorescence techniques, newer methods such as surface plasmon resonance and mass spectrometry are being used for the study of RNA-protein interactions.
Collapse
Affiliation(s)
- K A Xavier
- Message Pharmaceuticals, Malvern, PA 19355, USA.
| | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Jin E, Katritch V, Olson WK, Kharatisvili M, Abagyan R, Pilch DS. Aminoglycoside binding in the major groove of duplex RNA: the thermodynamic and electrostatic forces that govern recognition. J Mol Biol 2000; 298:95-110. [PMID: 10756107 DOI: 10.1006/jmbi.2000.3639] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We use a combination of spectroscopic, calorimetric, viscometric and computer modeling techniques to characterize the binding of the aminoglycoside antibiotic, tobramycin, to the polymeric RNA duplex, poly(rI).poly(rC), which exhibits the characteristic A-type conformation that is conserved among natural and synthetic double-helical RNA sequences. Our results reveal the following significant features: (i) CD-detected binding of tobramycin to poly(rI).poly(rC) reveals an apparent site size of four base-pairs per bound drug molecule; (ii) tobramycin binding enhances the thermal stability of the host poly(rI).poly(rC) duplex, the extent of which decreases upon increasing in Na(+) concentration and/or pH conditions; (iii) the enthalpy of tobramycin- poly(rI).poly(rC) complexation increases with increasing pH conditions, an observation consistent with binding-induced protonation of one or more drug amino groups; (iv) the affinity of tobramycin for poly(rI).poly(rC) is sensitive to both pH and Na(+) concentration, with increases in pH and/or Na(+) concentration resulting in a concomitant reduction in binding affinity. The salt dependence of the tobramycin binding affinity reveals that the drug binds to the host RNA duplex as trication. (v) The thermodynamic driving force for tobramycin- poly(rI).poly(rC) complexation depends on pH conditions. Specifically, at pH< or =6.0, tobramycin binding is entropy driven, but is enthalpy driven at pH > 6.0. (vi) Viscometric data reveal non-intercalative binding properties when tobramycin complexes with poly(rI).poly(rC), consistent with a major groove-directed mode of binding. These data also are consistent with a binding-induced reduction in the apparent molecular length of the host RNA duplex. (vii) Computer modeling studies reveal a tobramycin-poly(rI). poly(rC) complex in which the drug fits snugly at the base of the RNA major groove and is stabilized, at least in part, by an array of hydrogen bonding interactions with both base and backbone atoms of the host RNA. These studies also demonstrate an inability of tobramycin to form a stable low-energy complex with the minor groove of the poly(rI).poly(rC) duplex. In the aggregate, our results suggest that tobramycin-RNA recognition is dictated and controlled by a broad range of factors that include electrostatic interactions, hydrogen bonding interactions, drug protonation reactions, and binding-induced alterations in the structure of the host RNA. These modulatory effects on tobramycin-RNA complexation are discussed in terms of their potential importance for the selective recognition of specific RNA structural motifs, such as asymmetric internal loops or hairpin loop-stem junctions, by aminoglycoside antibiotics and their derivatives.
Collapse
Affiliation(s)
- E Jin
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
A current goal in molecular medicine is the development of new strategies to interfere with gene expression in living cells in the hope that novel therapies for human disease will result from these efforts. This review focuses on small-molecule or chemical approaches to manipulate gene expression by modulating either transcription of messenger RNA-coding genes or protein translation. The molecules under study include natural products, designed ligands, and compounds identified through functional screens of combinatorial libraries. The cellular targets for these molecules include DNA, messenger RNA, and the protein components of the transcription, RNA processing, and translational machinery. Studies with model systems have shown promise in the inhibition of both cellular and viral gene transcription and mRNA utilization. Moreover, strategies for both repression and activation of gene transcription have been described. These studies offer promise for treatment of diseases of pathogenic (viral, bacterial, etc.) and cellular origin (cancer, genetic diseases, etc.).
Collapse
Affiliation(s)
- J M Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
35
|
Kjems J, Askjaer P. Rev protein and its cellular partners. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 48:251-98. [PMID: 10987094 DOI: 10.1016/s1054-3589(00)48009-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J Kjems
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
36
|
Gelus N, Hamy F, Bailly C. Molecular basis of HIV-1 TAR RNA specific recognition by an acridine tat-antagonist. Bioorg Med Chem 1999; 7:1075-9. [PMID: 10428376 DOI: 10.1016/s0968-0896(99)00030-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the interaction of a highly potent acridine-based tat-antagonist with the TAR RNA of HIV-1. The wild type TAR RNA and three mutants with U-->C23, G x C-->C x G26-39 or G x C-->A x U26-39 substitutions were used as substrates to study the molecular basis of drug-TAR RNA complex formation. Melting temperature and RNase protection experiments reveal that the G x C26-39 pair is a critical element for specific major groove recognition of TAR at the pyrimidine bulge. The results provide a rational basis for future design of optimized tat/TAR inhibitors.
Collapse
Affiliation(s)
- N Gelus
- INSERM Unité 524, IRCL, Lille, France
| | | | | |
Collapse
|
37
|
Gelus N, Bailly C, Hamy F, Klimkait T, Wilson WD, Boykin DW. Inhibition of HIV-1 Tat-TAR interaction by diphenylfuran derivatives: effects of the terminal basic side chains. Bioorg Med Chem 1999; 7:1089-96. [PMID: 10428378 DOI: 10.1016/s0968-0896(99)00041-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A series of four biscationic diphenylfuran derivatives was used to investigate drug binding to the transactivation response element (TAR) RNA. The drugs, which are active against the Pneumocystis carinii pathogen (PCP), differ by the nature of the terminal basic side chains. Furimidazoline (DB60) is more potent at inhibiting binding of the Tat protein to TAR than furamidine (DB75) and the amidine-substituted analogues DB244 and DB226. In vivo studies using the fusion-induced gene stimulation (FIGS) assay entirely agree with the in vitro gel mobility shift data. The capacity of the drugs to antagonize Tat binding correlates with their RNA binding properties determined by melting temperature and RNase protection experiments. Footprinting studies indicate that the bulge region of TAR provides the identity element for the diphenylfurans. Access of the drugs to the major groove cavity at the pyrimidine bulge depends on the bulk of the alkylamine substituents. Experiments using TAR mutants show that the bulge of TAR is critical for drug binding but also reveal that the fit of the drugs into the major groove cavity of TAR does not involve specific contacts with the highly conserved residue U23 or the C x G26-39 base pair. The binding essentially involves shape recognition. The results are also discussed with respect to the known activity of the drug against PCP which is the major cause of mortality in AIDS patients. This study provides guidelines for future development of TAR-targeted anti-HIV-1 drugs.
Collapse
Affiliation(s)
- N Gelus
- INSERM Unité 524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, Lille, France
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Daelemans D, Vandamme AM, De Clercq E. Human immunodeficiency virus gene regulation as a target for antiviral chemotherapy. Antivir Chem Chemother 1999; 10:1-14. [PMID: 10079874 DOI: 10.1177/095632029901000101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inhibitors interfering with human immunodeficiency virus (HIV) gene regulation may have great potential in anti-HIV drug (combination) therapy. They act against different targets to currently used anti-HIV drugs, reduce virus production from acute and chronically infected cells and are anticipated to elicit less virus drug resistance. Several agents have already proven to inhibit HIV gene regulation in vitro. A first class of compounds interacts with cellular factors that bind to the long terminal repeat (LTR) promoter and that are needed for basal level transcription, such as NF-kappa B and Sp1 inhibitors. A second class of compounds specifically inhibits the transactivation of the HIV LTR promoter by the viral Tat protein, such as the peptoid CGP64222. A third class of compounds prevents the accumulation of single and unspliced mRNAs through inhibition of the viral regulator protein Rev, such as the aminoglycosidic antibiotics. Most of these compounds have been tested in specific transactivation assays. Whether they are active at the postulated target in virus replication assays has, for many of them, not been ascertained. Toxicity data are often lacking or insufficient. Yet these data are crucial in view of the toxicity that may be expected for compounds that primarily interact with cellular factors. Although a promising lead, considerable research is still required before gene regulation inhibitors may come of age as clinically useful agents.
Collapse
Affiliation(s)
- D Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
40
|
Abstract
Dramatic technical progress in RNA synthesis and structure determination has allowed several difficulties inherent to the preparation, handling and structural analysis of RNA to be overcome, and this has led to a wealth of information about RNA structure and its relationship with biological function. It is now fully recognized that RNA molecules intervene at all stages of cell life, not only because of key sequence motifs but also because of intricate three-dimensional folds. This realization has promoted RNA to a potential therapeutic target. As in protein motifs recognizing nucleic acids, groups of the molecule interacting with RNA contribute to specific binding through defined hydrogen bonds and van der Waals docking, while other parts contribute to the driving force of binding via less specific electrostatic interactions accompanied by water and ion displacement.
Collapse
Affiliation(s)
- T Hermann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | |
Collapse
|
41
|
Abstract
The nuclear export of intron-containing HIV-1 RNA is critically dependent on the activity of Rev, a virally encoded sequence-specific RNA-binding protein. Rev shuttles between the nucleus and the cytoplasm and harbors both a nuclear localization signal and a nuclear export signal. These essential peptide motifs have now been shown to function by accessing cellular signal-mediated pathways for nuclear import and nuclear export. HIV-1 Rev therefore represents an excellent system with which to study aspects of transport across the nuclear envelope.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/analysis
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV Infections/therapy
- HIV-1/chemistry
- Humans
- Karyopherins
- Molecular Sequence Data
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear
- Trans-Activators
- rev Gene Products, Human Immunodeficiency Virus
- Exportin 1 Protein
Collapse
Affiliation(s)
- V W Pollard
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.
| | | |
Collapse
|