1
|
Buechel ER, Dimitrova VS, Karagiaridi A, Kenney LG, Pinkett HW. Structurally diverse C-terminal accessory domains in type I ABC importers reveal distinct regulatory mechanisms. Structure 2025; 33:843-857. [PMID: 40132581 PMCID: PMC12048282 DOI: 10.1016/j.str.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are critical for cellular processes, facilitating the transport of various substrates across membranes by harnessing ATP hydrolysis. These transporters are divided into importers and exporters, with importers playing key roles in nutrient uptake and bacterial virulence. Despite their therapeutic potential as drug targets, the regulatory mechanisms governing ABC importers remain poorly understood. ABC importers often possess additional cytosolic C-terminal accessory domains fused to nucleotide-binding domains (NBDs). These accessory domains, also referred to as C-terminal regulatory domains (CRDs), modulate transport activity by inhibiting NBD dimerization or ATP hydrolysis in response to environmental cues, thus regulating substrate transport. The diversity in CRD folds, architectures, and regulatory mechanisms adds additional complexity to transporter regulation. This review explores the current understanding of C-terminal accessory domains in type I ABC importers, highlighting their contributions to transporter function.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Valentina S Dimitrova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra Karagiaridi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lydia G Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Shao N, Zhou D, Schut GJ, Poole FL, Coffey SB, Donaghy AP, Putumbaka S, Thorgersen MP, Chen L, Rose J, Wang BC, Adams MWW. Storage of the vital metal tungsten in a dominant SCFA-producing human gut microbe Eubacterium limosum and implications for other gut microbes. mBio 2025; 16:e0260524. [PMID: 40126018 PMCID: PMC11980592 DOI: 10.1128/mbio.02605-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Enzymes containing tungsten rather than the ubiquitous and analogous element molybdenum are prevalent in the human gut microbiome, especifically in microbes that contribute to overall gut health. Eubacterium limosum is a dominant human gut organism whose production of beneficial short-chain fatty acids (SCFAs) from lactate involves tungstoenzymes. Here, we characterized E. limosum Tub, a tungsten storage protein. Tub has a sub-nanomolar affinity for tungstate and contains a single TOBE domain first characterized in a molybdate storage protein. Crystal structures revealed Tub assembles as a hexamer composed of a trimer of dimers, capable of binding eight tungstate oxyanions at two distinct binding sites located at inter-subunit interfaces. Tungstate-saturated Tub exhibited unusually high thermal and chemical stability. Glucose-grown E. limosum accumulates tungsten in Tub and has low levels of two tungstoenzymes, termed WOR1 and FDH, which oxidize aldehydes and formate, respectively. Lactate-grown cells contain high concentrations of these two tungstoenzymes where WOR1 and FDH are involved in converting lactate to SCFAs. Glucose-grown cells appear to accumulate tungstate in Tub in preparation for lactate availability in the human gut. Tub and other TOBE-containing proteins are widespread in the human gut microbiome, and gene co-occurrence analysis predicts that there are comparable numbers of TOBE-containing proteins involved in the storage of tungstate as there are that bind molybdate. The results with E. limosum represent an important step for understanding tungsten storage mechanisms for tungstoenzymes within human gut microbes in general.IMPORTANCETungsten metabolism was found to be prevalent in the human gut microbiome, which is involved in the detoxification of food and antimicrobial aldehydes, as well as in the production of beneficial SCFAs. In this study, we characterized a protein in the human gut microbe, Eubacterium limosum, that stores tungstate in preparation for its use in enzymes involved in SCFA generation. This revealed several families of tungstate binding proteins that are also involved in tungstate transport and tungstate-dependent regulation and are widely distributed in the human gut microbiome. Elucidating how tungsten is stored and transported in the human gut microbes contributes to our understanding of the human gut microbiome and its impact on human health.
Collapse
Affiliation(s)
- Nana Shao
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Sydney B. Coffey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Donaghy
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Saisuki Putumbaka
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael P. Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - John Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Weber JN, Minner-Meinen R, Kaufholdt D. The Mechanisms of Molybdate Distribution and Homeostasis with Special Focus on the Model Plant Arabidopsis thaliana. Molecules 2023; 29:40. [PMID: 38202623 PMCID: PMC10780190 DOI: 10.3390/molecules29010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
This review article deals with the pathways of cellular and global molybdate distribution in plants, especially with a full overview for the model plant Arabidopsis thaliana. In its oxidized state as bioavailable molybdate, molybdenum can be absorbed from the environment. Especially in higher plants, molybdenum is indispensable as part of the molybdenum cofactor (Moco), which is responsible for functionality as a prosthetic group in a variety of essential enzymes like nitrate reductase and sulfite oxidase. Therefore, plants need mechanisms for molybdate import and transport within the organism, which are accomplished via high-affinity molybdate transporter (MOT) localized in different cells and membranes. Two different MOT families were identified. Legumes like Glycine max or Medicago truncatula have an especially increased number of MOT1 family members for supplying their symbionts with molybdate for nitrogenase activity. In Arabidopsis thaliana especially, the complete pathway followed by molybdate through the plant is traceable. Not only the uptake from soil by MOT1.1 and its distribution to leaves, flowers, and seeds by MOT2-family members was identified, but also that inside the cell. the transport trough the cytoplasm and the vacuolar storage mechanisms depending on glutathione were described. Finally, supplying the Moco biosynthesis complex by MOT1.2 and MOT2.1 was demonstrated.
Collapse
Affiliation(s)
| | | | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106 Braunschweig, Germany
| |
Collapse
|
4
|
Physiological Importance of Molybdate Transporter Family 1 in Feeding the Molybdenum Cofactor Biosynthesis Pathway in Arabidopsis thaliana. Molecules 2022; 27:molecules27103158. [PMID: 35630635 PMCID: PMC9147641 DOI: 10.3390/molecules27103158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein–protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.
Collapse
|
5
|
Berasaluce I, Cseh K, Roller A, Hejl M, Heffeter P, Berger W, Jakupec MA, Kandioller W, Malarek MS, Keppler BK. The First Anticancer Tris(pyrazolyl)borate Molybdenum(IV) Complexes: Tested in Vitro and in Vivo-A Comparison of O,O-, S,O-, and N,N-Chelate Effects. Chemistry 2020; 26:2211-2221. [PMID: 31560142 PMCID: PMC7064950 DOI: 10.1002/chem.201903605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The synthesis, characterization and biological activity of molybdenum(IV) complexes containing Trofimenko's scorpionato ligand, hydrotris(3-isopropylpyrazolyl)borate (TpiPr ), in addition to varying biologically active as well as other conventional ligands is described. Ligands employed include (O,O-) (S,O-) (N,N-) donors that have been successfully coordinated to the molybdenum center by means of oxygen-atom transfer (OAT) reactions from the known MoVI starting material, TpiPr MoO2 Cl. The synthesized complexes were characterized by standard analytical methods and where possible by X-ray diffraction analysis. The aqueous stability of the compounds was studied by means of UV/Vis spectroscopy and the impact of the attached ligand scaffolds on the oxidation potentials (MoIV to MoV ) was studied by cyclic voltammetry. Utilizing polyvinylpyrrolidone (PVP) as a solubilizing agent, adequate aqueous solubility for biological tests was obtained. Anticancer activity tests and preliminary mode of action studies have been performed in vitro and in vivo.
Collapse
Affiliation(s)
- Iker Berasaluce
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
| | - Klaudia Cseh
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
| | - Alexander Roller
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
| | - Michaela Hejl
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
| | - Petra Heffeter
- Research Cluster ‘Translational Cancer Therapy Research“University of ViennaWaehringer Straße 421090ViennaAustria
- Institute of Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
| | - Walter Berger
- Research Cluster ‘Translational Cancer Therapy Research“University of ViennaWaehringer Straße 421090ViennaAustria
- Institute of Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
| | - Michael A. Jakupec
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
- Research Cluster ‘Translational Cancer Therapy Research“University of ViennaWaehringer Straße 421090ViennaAustria
| | - Wolfgang Kandioller
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
- Research Cluster ‘Translational Cancer Therapy Research“University of ViennaWaehringer Straße 421090ViennaAustria
| | - Michael S. Malarek
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Straße 421090ViennaAustria
- Research Cluster ‘Translational Cancer Therapy Research“University of ViennaWaehringer Straße 421090ViennaAustria
| |
Collapse
|
6
|
Tsujimoto R, Kotani H, Yokomizo K, Yamakawa H, Nonaka A, Fujita Y. Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism. Sci Rep 2018; 8:7380. [PMID: 29743482 PMCID: PMC5943405 DOI: 10.1038/s41598-018-25396-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/17/2018] [Indexed: 11/24/2022] Open
Abstract
Transfer of nitrogen fixation ability to plants, especially crops, is a promising approach to mitigate dependence on chemical nitrogen fertilizer and alleviate environmental pollution caused by nitrogen fertilizer run-off. However, the need to transfer a large number of nitrogen fixation (nif) genes and the extreme vulnerability of nitrogenase to oxygen constitute major obstacles for transfer of nitrogen-fixing ability to plants. Here we demonstrate functional expression of a cyanobacterial nitrogenase in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803). A 20.8-kb chromosomal fragment containing 25 nif and nif-related genes of the diazotrophic cyanobacterium Leptolyngbya boryana was integrated into a neutral genome site of Synechocystis 6803 by five-step homologous recombination together with the cnfR gene encoding the transcriptional activator of the nif genes to isolate CN1. In addition, two other transformants CN2 and CN3 carrying additional one and four genes, respectively, were isolated from CN1. Low but significant nitrogenase activity was detected in all transformants. This is the first example of nitrogenase activity detected in non-diazotrophic photosynthetic organisms. These strains provide valuable platforms to investigate unknown factors that enable nitrogen-fixing growth of non-diazotrophic photosynthetic organisms, including plants.
Collapse
Affiliation(s)
- Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroya Kotani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Konomi Yokomizo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Aoi Nonaka
- School of Agricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
7
|
Deryusheva EI, Machulin AV, Selivanova OM, Galzitskaya OV. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family. Proteins 2017; 85:602-613. [PMID: 28056497 DOI: 10.1002/prot.25237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evgeniia I Deryusheva
- Laboratory of new methods for biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Andrey V Machulin
- Laboratory of cytology of microorganisms, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga M Selivanova
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oxana V Galzitskaya
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
8
|
Visser M, Pieterse MM, Pinkse MWH, Nijsse B, Verhaert PDEM, de Vos WM, Schaap PJ, Stams AJM. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis. Environ Microbiol 2015; 18:2843-55. [PMID: 26147498 DOI: 10.1111/1462-2920.12973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023]
Abstract
The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2 , and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA.
Collapse
Affiliation(s)
- Michael Visser
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mervin M Pieterse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Martijn W H Pinkse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter D E M Verhaert
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Veterinary Biosciences, Helsinki University, Helsinki, Finland.,Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
9
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
10
|
Glass JB, Poret-Peterson AT, Wolfe-Simon F, Anbar AD. Molybdenum Limitation Induces Expression of the Molybdate-Binding Protein Mop in a Freshwater Nitrogen-Fixing Cyanobacterium. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.36a002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 2012; 96:153-9. [DOI: 10.1007/s00253-012-4069-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
|
12
|
|
13
|
Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C. Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 2011; 24:687-707. [PMID: 21301930 DOI: 10.1007/s10534-011-9421-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Esther Aguilar-Barajas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Edificio B-3, Ciudad Universitaria, 58030 Morelia, Michoacan, Mexico
| | | | | | | | | |
Collapse
|
14
|
Zerkle AL, Scheiderich K, Maresca JA, Liermann LJ, Brantley SL. Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N₂ fixation. GEOBIOLOGY 2011; 9:94-106. [PMID: 21092069 PMCID: PMC3627308 DOI: 10.1111/j.1472-4669.2010.00262.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 10/14/2010] [Indexed: 05/30/2023]
Abstract
We measured the δ⁹⁸Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N₂. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N₂ fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N₂-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of -0.2‰ to -1.0‰ ± 0.2‰ between cells and media (ε(cells-media)), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of -0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N₂, A. variabilis produced fractionations of -0.9 ± 0.1‰ during exponential growth, and -0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments.
Collapse
Affiliation(s)
- A L Zerkle
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA.
| | | | | | | | | |
Collapse
|
15
|
Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 2010; 87:53-60. [PMID: 20393699 DOI: 10.1007/s00253-010-2581-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.
Collapse
|
16
|
Nishitani T, Shimada M, Kuroda K, Ueda M. Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 2009; 86:641-8. [DOI: 10.1007/s00253-009-2304-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 11/24/2022]
|
17
|
Specific interactions between four molybdenum-binding proteins contribute to Mo-dependent gene regulation in Rhodobacter capsulatus. J Bacteriol 2009; 191:5205-15. [PMID: 19502397 DOI: 10.1128/jb.00526-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phototrophic purple bacterium Rhodobacter capsulatus encodes two transcriptional regulators, MopA and MopB, with partially overlapping and specific functions in molybdate-dependent gene regulation. Both MopA and MopB consist of an N-terminal DNA-binding helix-turn-helix domain and a C-terminal molybdate-binding di-MOP domain. They formed homodimers as apo-proteins and in the molybdate-bound state as shown by yeast two-hybrid (Y2H) studies, glutaraldehyde cross-linking, gel filtration chromatography, and copurification experiments. Y2H studies suggested that both the DNA-binding and the molybdate-binding domains contribute to dimer formation. Analysis of molybdate binding to MopA and MopB revealed a binding stoichiometry of four molybdate oxyanions per homodimer. Specific interaction partners of MopA and MopB were the molybdate transporter ATPase ModC and the molbindin-like Mop protein, respectively. Like other molbindins, the R. capsulatus Mop protein formed hexamers, which were stabilized by binding of six molybdate oxyanions per hexamer. Heteromer formation of MopA and MopB was shown by Y2H studies and copurification experiments. Reporter gene activity of a strictly MopA-dependent mop-lacZ fusion in mutant strains defective for either mopA, mopB, or both suggested that MopB negatively modulates expression of the mop promoter. We propose that depletion of the active MopA homodimer pool by formation of MopA-MopB heteromers might represent a fine-tuning mechanism controlling mop gene expression.
Collapse
|
18
|
|
19
|
Rivas MG, Carepo MSP, Mota CS, Korbas M, Durand MC, Lopes AT, Brondino CD, Pereira AS, George GN, Dolla A, Moura JJG, Moura I. Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis. Biochemistry 2009; 48:873-82. [DOI: 10.1021/bi801773t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maria G. Rivas
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Marta S. P. Carepo
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Cristiano S. Mota
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Malgorzata Korbas
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Marie-Claire Durand
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ana T. Lopes
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Carlos D. Brondino
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Alice S. Pereira
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Graham N. George
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Alain Dolla
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Isabel Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
20
|
Gerber S, Comellas-Bigler M, Goetz BA, Locher KP. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 2008; 321:246-50. [PMID: 18511655 DOI: 10.1126/science.1156213] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transport across cellular membranes is an essential process that is catalyzed by diverse membrane transport proteins. The turnover rates of certain transporters are inhibited by their substrates in a process termed trans-inhibition, whose structural basis is poorly understood. We present the crystal structure of a molybdate/tungstate ABC transporter (ModBC) from Methanosarcina acetivorans in a trans-inhibited state. The regulatory domains of the nucleotide-binding subunits are in close contact and provide two oxyanion binding pockets at the shared interface. By specifically binding to these pockets, molybdate or tungstate prevent adenosine triphosphatase activity and lock the transporter in an inward-facing conformation, with the catalytic motifs of the nucleotide-binding domains separated. This allosteric effect prevents the transporter from switching between the inward-facing and the outward-facing states, thus interfering with the alternating access and release mechanism.
Collapse
Affiliation(s)
- Sabina Gerber
- Institute of Molecular Biology and Biophysics, ETH Zürich, HPK D14.3, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
21
|
The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state. Proc Natl Acad Sci U S A 2008; 105:5687-92. [PMID: 18398008 DOI: 10.1073/pnas.0710800105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of new catalytic activities and specificities within an enzyme superfamily requires the exploration of sequence space for adaptation to a new substrate with retention of those elements required to stabilize key intermediates/transition states. Here, we propose that core residues in the large enzyme family, the haloalkanoic acid dehalogenase enzyme superfamily (HADSF) form a "mold" in which the trigonal bipyramidal transition states formed during phosphoryl transfer are stabilized by electrostatic forces. The vanadate complex of the hexose phosphate phosphatase BT4131 from Bacteroides thetaiotaomicron VPI-5482 (HPP) determined at 1.00 A resolution via X-ray crystallography assumes a trigonal bipyramidal coordination geometry with the nucleophilic Asp-8 and one oxygen ligand at the apical position. Remarkably, the tungstate in the complex determined to 1.03 A resolution assumes the same coordination geometry. The contribution of the general acid/base residue Asp-10 in the stabilization of the trigonal bipyramidal species via hydrogen-bond formation with the apical oxygen atom is evidenced by the 1.52 A structure of the D10A mutant bound to vanadate. This structure shows a collapse of the trigonal bipyramidal geometry with displacement of the water molecule formerly occupying the apical position. Furthermore, the 1.07 A resolution structure of the D10A mutant complexed with tungstate shows the tungstate to be in a typical "phosphate-like" tetrahedral configuration. The analysis of 12 liganded HADSF structures deposited in the protein data bank (PDB) identified stringently conserved elements that stabilize the trigonal bipyramidal transition states by engaging in favorable electrostatic interactions with the axial and equatorial atoms of the transferring phosphoryl group.
Collapse
|
22
|
Masters SL, Howlett GJ, Pau RN. The molybdate binding protein Mop from Haemophilus influenzae--biochemical and thermodynamic characterisation. Arch Biochem Biophys 2005; 439:105-12. [PMID: 15946640 DOI: 10.1016/j.abb.2005.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/19/2005] [Accepted: 04/26/2005] [Indexed: 11/18/2022]
Abstract
The protein Mop from Haemophilus influenzae is a member of the molbindin family of proteins. Using isothermal titration calorimetry (ITC), Mop was observed to bind molybdate at two distinct sites with a stoichiometry of 8 mol molybdate per Mop hexamer. Six moles of molybdate bound endothermically at high affinity sites (K(a)=8.5 x 10(7)M(-1)), while 2 mol of molybdate bound exothermically at lower affinity sites (K(a)=3.7 x 10(7)M(-1)). Sulphate was also found to bind weakly at the higher affinity sites. ITC revealed that the affinity of molybdate binding to the endothermic site decreased with increasing pH and was accompanied by the transfer from the buffer to the protein of one proton per Mop monomer. These kinetic and thermodynamic results are interpreted with reference to molbindin crystal structures and data concerning molbindin binding affinities. Mop binds molybdate with high specificity, capacity, and affinity which indicates that Mop has a role as an intracellular molybdate binding protein involved in oxyanion homeostasis.
Collapse
Affiliation(s)
- Seth L Masters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | |
Collapse
|
23
|
de Bono S, Riechmann L, Girard E, Williams RL, Winter G. A segment of cold shock protein directs the folding of a combinatorial protein. Proc Natl Acad Sci U S A 2005; 102:1396-401. [PMID: 15671167 PMCID: PMC547839 DOI: 10.1073/pnas.0407298102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that protein domains evolved by the non-homologous recombination of building blocks of subdomain size. In earlier work we attempted to recapitulate domain evolution in vitro. We took a polypeptide segment comprising three beta-strands in the monomeric, five-stranded beta-barrel cold shock protein (CspA) of Escherichia coli as a building block. This segment corresponds to a complete exon in homologous eukaryotic proteins and includes residues that nucleate folding in CspA. We recombined this segment at random with fragments of natural proteins and succeeded in generating a range of folded chimaeric proteins. We now present the crystal structure of one such combinatorial protein, 1b11, a 103-residue polypeptide that includes segments from CspA and the S1 domain of the 30S ribosomal subunit of E. coli. The structure reveals a segment-swapped, six-stranded beta-barrel of unique architecture that assembles to a tetramer. Surprisingly, the CspA segment retains its structural identity in 1b11, recapitulating its original fold and deforming the structure of the S1 segment as necessary to complete a barrel. Our work provides structural evidence that (i) random shuffling of nonhomologous polypeptide segments can lead to folded proteins and unique architectures, (ii) many structural features of the segments are retained, and (iii) some segments can act as templates around which the rest of the protein folds.
Collapse
Affiliation(s)
- Stephanie de Bono
- Centre for Protein Engineering and Laboratory of Molecular Biology, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Wu B, Yee A, Pineda-Lucena A, Semesi A, Ramelot TA, Cort JR, Jung JW, Edwards A, Lee W, Kennedy M, Arrowsmith CH. Solution structure of ribosomal protein S28E from Methanobacterium thermoautotrophicum. Protein Sci 2004; 12:2831-7. [PMID: 14627743 PMCID: PMC2366991 DOI: 10.1110/ps.03358203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ribosomal protein S28E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. Sequence homologs of S28E are found only in archaea and eukaryotes. Here we report the three-dimensional solution structure of S28E by NMR spectroscopy. S28E contains a globular region and a long C-terminal tail protruding from the core. The globular region consists of four antiparallel beta-strands that are arranged in a Greek-key topology. Unique features of S28E include an extended loop L2-3 that folds back onto the protein and a 12-residue charged C-terminal tail with no regular secondary structure and greater flexibility relative to the rest of the protein. The structural and surface resemblance to OB-fold family of proteins and the presence of highly conserved basic residues suggest that S28E may bind to RNA. A broad positively charged surface extending over one side of the beta-barrel and into the flexible C terminus may present a putative binding site for RNA.
Collapse
Affiliation(s)
- Bin Wu
- Northeast Structural Genomics Consortium, Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zahalak M, Pratte B, Werth KJ, Thiel T. Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 2004; 51:539-49. [PMID: 14756792 DOI: 10.1046/j.1365-2958.2003.03851.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molybdenum is an essential component of the cofactors of many metalloenzymes including nitrate reductase and Mo-nitrogenase. The cyanobacterium Anabaena variabilis ATCC 29413 uses nitrate and atmospheric N2 as sources of nitrogen for growth. Two of the three nitrogenases in this strain are Mo-dependent enzymes, as is nitrate reductase; thus, transport of molybdate is important for growth of this strain. High-affinity transport of molybdate in A. variabilis was mediated by an ABC-type transport system encoded by the products of modA and modBC. The modBC gene comprised a fused orf including components corresponding to modB and modC of Escherichia coli. The deduced ModC part of the fused gene lacked a recognizable molybdate-binding domain. Expression of modA and modBC was induced by starvation for molybdate. Mutants in modA or modBC were unable to grow using nitrate or Mo-nitrogenase. Growth using the alternative V-nitrogenase was not impaired in the mutants. A high concentration of molybdate (10 microM) supported normal growth of the modBC mutant using the Nif1 Mo-nitrogenase, indicating that there was a low-affinity molybdate transport system in this strain. The modBC mutant did not detectably transport low concentrations of 99Mo (molybdate), but did transport high concentrations. However, such transport was observed only after cells were starved for sulphate, suggesting that an inducible sulphate transport system might also serve as a low-affinity molybdate transport system in this strain.
Collapse
Affiliation(s)
- Marta Zahalak
- Department of Biology, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121-4499, USA
| | | | | | | |
Collapse
|
26
|
Schüttelkopf AW, Boxer DH, Hunter WN. Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J Mol Biol 2003; 326:761-7. [PMID: 12581638 DOI: 10.1016/s0022-2836(02)01358-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ModE is a bacterial transcriptional regulator that orchestrates many aspects of molybdenum metabolism by binding to specific DNA sequences in a molybdate-dependent fashion. We present the crystal structure of Escherichia coli ModE in complex with molybdate, which was determined at 2.75A from a merohedrally twinned crystal (twin fraction approximately 0.30) with space group P4(3). We now have structures of ModE in both its "switched on" (ligand-bound) and "switched off" (apo) states. Comparison with the apo structure shows that ligand binding leads to extensive conformational changes not only in the molybdate-binding domain, but also in the DNA-binding domain. The most obvious difference is the loss of the pronounced asymmetry between the two chains of the ModE dimer, which had been a characteristic property of the apo structure. Another major change concerns the relative orientation of the two DNA-interacting winged helix-turn-helix motifs. Manual docking of an idealized DNA structure suggests that this conformational change should improve DNA binding of the activated molybdate-bound ModE.
Collapse
Affiliation(s)
- Alexander W Schüttelkopf
- Division of Biological Chemistry and Molecular Microbiology, The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
27
|
Schüttelkopf AW, Harrison JA, Boxer DH, Hunter WN. Passive acquisition of ligand by the MopII molbindin from Clostridium pasteurianum: structures of apo and oxyanion-bound forms. J Biol Chem 2002; 277:15013-20. [PMID: 11836258 DOI: 10.1074/jbc.m201005200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MopII from Clostridium pasteurianum is a molbindin family member. These proteins may serve as intracellular storage facilities for molybdate, which they bind with high specificity. High resolution structures of MopII in a number of states, including the first structure of an apo-molbindin, together with calorimetric data, allow us to describe ligand binding and provide support for the proposed storage function of the protein. MopII assembles as a trimer of dimers and binds eight oxyanions at two types of binding sites located at intersubunit interfaces. Two type 1 sites are on the molecular 3-fold axis and three pairs of type 2 sites occur on the molecular 2-fold axes. The hexamer is largely unaffected by the binding of ligand. Molybdate is admitted to the otherwise inaccessible type 2 binding sites by the movement of the N-terminal residues of each protein chain. This contrasts with the structurally related molybdate-dependent transcriptional regulator ModE, which undergoes extensive conformational rearrangements on ligand binding. Despite similarities between the binding sites of ModE and the type 2 sites of MopII the molbindin has a significantly reduced ligand affinity, due, in part, to the high density of negative charges at the center of the hexamer. In the absence of ligand this effects the movement of an important lysine side chain, thereby partially inactivating the binding sites. The differences are consistent with a biological role in molybdate storage/buffering.
Collapse
Affiliation(s)
- Alexander W Schüttelkopf
- The Wellcome Trust Biocentre, Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
28
|
Makdessi K, Andreesen JR, Pich A. Tungstate Uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 2001; 276:24557-64. [PMID: 11292832 DOI: 10.1074/jbc.m101293200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive anaerobe Eubacterium acidaminophilum contains at least two tungsten-dependent enzymes: viologen-dependent formate dehydrogenase and aldehyde dehydrogenase. (185)W-Labeled tungstate was taken up by this organism with a maximum rate of 0.53 pmol min(-)1 mg(-)1 of protein at 36 degrees C. The uptake was not affected by equimolar amounts of molybdate. The genes tupABC coding for an ABC transporter specific for tungstate were cloned in the downstream region of genes encoding a tungsten-containing formate dehydrogenase. The substrate-binding protein, TupA, of this putative transporter was overexpressed in Escherichia coli, and its binding properties toward oxyanions were determined by a native polyacrylamide gel retardation assay. Only tungstate induced a shift of TupA mobility, suggesting that only this anion was specifically bound by TupA. If molybdate and sulfate were added in high molar excess (>1000-fold), they were also slightly bound by TupA. The K(d) value for tungstate was determined to be 0.5 microm. The genes encoding the tungstate-specific ABC transporter exhibited highest similarities to putative transporters from Methanobacterium thermoautotrophicum, Haloferax volcanii, Vibrio cholerae, and Campylobacter jejuni. These five transporters represent a separate phylogenetic group of oxyanion ABC transporters as evident from analysis of the deduced amino acid sequences of the binding proteins. Downstream of the tupABC genes, the genes moeA, moeA-1, moaA, and a truncated moaC have been identified by sequence comparison of the deduced amino acid sequences. They should participate in the biosynthesis of the pterin cofactor that is present in molybdenum- and tungsten-containing enzymes except nitrogenase.
Collapse
Affiliation(s)
- K Makdessi
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle, Germany
| | | | | |
Collapse
|
29
|
Gourley DG, Schuttelkopf AW, Anderson LA, Price NC, Boxer DH, Hunter WN. Oxyanion binding alters conformation and quaternary structure of the c-terminal domain of the transcriptional regulator mode. Implications for molybdate-dependent regulation, signaling, storage, and transport. J Biol Chem 2001; 276:20641-7. [PMID: 11259434 DOI: 10.1074/jbc.m100919200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molybdate-dependent transcriptional regulator ModE of Escherichia coli functions as a sensor of intracellular molybdate concentration and a regulator for the transcription of several operons that control the uptake and utilization of molybdenum. We present two high-resolution crystal structures of the C-terminal oxyanion-binding domain in complex with molybdate and tungstate. The ligands bind between subunits at the dimerization interface, and analysis reveals that oxyanion selectivity is determined primarily by size. The relevance of the structures is indicated by fluorescence measurements, which show that the oxyanion binding properties of the C-terminal domain of ModE are similar to those of the full-length protein. Comparisons with the apoprotein structure have identified structural rearrangements that occur on binding oxyanion. This molybdate-dependent conformational switch promotes a change in shape and alterations to the surface of the protein and may provide the signal for recruitment of other proteins to construct the machinery for transcription. Sequence and structure-based comparisons lead to a classification of molybdate-binding proteins.
Collapse
Affiliation(s)
- D G Gourley
- Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Delarbre L, Stevenson CE, White DJ, Mitchenall LA, Pau RN, Lawson DM. Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. J Mol Biol 2001; 308:1063-79. [PMID: 11352591 DOI: 10.1006/jmbi.2001.4636] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray structures of the cytoplasmic molybdate-binding protein ModG from Azotobacter vinelandii in two different crystal forms have been determined. For such a small protein it is remarkably complex. Each 14.3 kDa subunit contains two small beta-barrel domains, which display an OB-fold motif, also seen in the related structure of ModE, a molybdenum-dependent transcriptional regulator, and very recently in the Mop protein that, like ModG, has been implicated in molybdenum homeostasis within the cell. In contrast to earlier speculation, the functional unit of ModG is actually not a dimer (as in ModE), but a trimer capable of binding a total of eight molybdate molecules that are distributed between two disparate types of site. All the binding sites are located at subunit interfaces, with one type lying on a crystallographic 3-fold axis, whilst the other lies between pairs of subunits. The two types of site are linked by short hydrogen bond networks that may suggest a cooperative binding mechanism. A superposition of two subunits of the ModG trimer on the apo-ModE dimer allows the probable locations of the molybdate-binding sites of the latter to be assigned. Through structural comparisons with other oxyanion-binding proteins, including Mop and ModE, it is possible to speculate about ligand-binding affinities, selectivity and evolution.
Collapse
Affiliation(s)
- L Delarbre
- Department of Biological Chemistry, Norwich, NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|